Композиты и наноструктуры (Composites and Nanostructures)

Научно-технический журнал

http://www.issp.ac.ru/journal/composites/

ISSN 1999-7590

Издаётся с 2009 г.

Учредители: ИФТТ РАН ООО «Научно-техническое предприятие «Вираж-Центр»	Главный редактор С.Т. Милейко д-р техн. наук, проф., ИФТТ РАН, Россия Редакционная коллегия М.И. Алымов члкорр. РАН, ИМЕТ РАН, Россия
Редакция: ИФТТ РАН Россия, 142432, г. Черноголовка Московской обл. Тел./Факс: +7(49652)22493 http://www.issp.ac.ru Ведущий редактор: Нелли Анатольевна Прокопенко	 Р. А. Андриевский д-р физмат. наук, ИПХФ РАН, Россия Ю.О. Бахвалов д-р техн. наук, ГКНПЦ им. Хруничева, Россия С.И. Бредихин д-р физмат. наук, ИФТТ РАН, Россия Л.Р. Вишняков д-р техн. наук, ИПМ НАНУ, Украина В. В. Вихудин
Издательство: ООО НТП «Вираж-Центр» Россия, 105264, Москва, ул. Верхняя Первомай- ская, д. 49, корп. 1 офис 401. Почтовый адресс: Россия, 105043, Москва, а/я 29 Тел.: 7 495 780-94-73 http://www.machizdat.ru e-mail: virste@dol.ru Директор журнала М.А.Мензуллов Вёрстка	 в. в. викулин проф., ФГУП ОНПП «ТЕХНОЛОГИЯ» в.М. Кийко канд. техн. наук, ИФТТ РАН, Россия Ю.Р. Колобов д-р физмат. наук, проф., БелГУ, Россия в.И. Костиков члкорр. РАН, МИСИС, Россия А.М. Куперман д-р техн. наук, ИХФ РАН им. Н.Н. Семёнова, Россия С.А. Лурье д-р физмат. наук, ВЦ РАН, Россия Б.Е. Победря д-р физмат. наук, проф., МГУ им. М.В. Ломоносова, Россия В.Г. Севастьянов д-р хим. наук, ИОНХ РАН, Россия А.В. Серебряков д-р техн. наук, проф., ИФТТ РАН, Россия А.R. Bunsell
А.А.Мензуллов Отпечатано: ООО «РПЦ ОФОРТ» г. Москва, пр-кт Будённого, 21 Заказ № Тираж 100 Цена – договорная	проф., Франция K. Chawla проф., США T-W. Chou проф., США George C. Sih проф., США Shanvi Du
Журнал зарегистрирован Федеральной служ- бой по надзору в сфере связи и массовых ком- муникаций. Свидетельсво о регистрации средства массовой информации № ФС77-33449 от 08.10.2008.	проф., Китай Т. Ishihara проф. Япония А. Kelly проф., Великобритания А. Koyama проф. Япония
Авторы опубликованных материалов несут полную ответствен- ность за достоверность приведённых сведений, а также за нали- чие в них данных, не подлежащих открытой публикации. Мате- риалы рецензируются. Перепечатка, все виды копирования и воспроизведения материа- лов, публикуемых в журнале, осуществляются только с разрешения редакции. На первой стр. обложки: Рис. 2. (а)- FESEM изображение общего вида нановолокон; (b,c) - FESEM изображение отдельных волокон в фор- ме гексагональной призмы и бамбука, соответственно; (d-g) – TEM изображение нановолокон в светлом поле, стр. 8 статья «Синтез и морфология наноструктур SiC при карботермическом восстанов- лении диоксида кремния».	 w.м. Kriven проф., США L.M. Manocha проф., Индия V.M. Orera проф., Испания H. Schneider проф., Германия K. Schulte проф., Германия M. Singh проф., США H.D. Wagner проф., Израиль

Composites and Nanostructures

http://www.issp.ac.ru/journal/composites/

ISSN 1999-7590

Editor-in-Chief:	Established by:
Professor S.T. Mileiko,	Solid State Physics Institute
Institute of Solid State Physics of RAS, Russia	
Editorial Board:	Russian Academy of Sciences
A A Baikov	(ISSP RAS)
Institute of Metallurgy and Materials Science of RAS, Russia	1
Professor R. A. Andriyevskii	and
Institute of Problem of Chemical Physics of RAS, Russia	Science Technical Enterprise
Dr Yu.O. Bakhvalov	Wirog Controw ITD
Dr S L Bredikhin	«virag-Cenue» LID
Institute of Solid State Physics of RAS, Russia	
Professor A.R. Bunsell	
Ecole Nationale Superieure des Mines de Paris, France	ISSP RAS:
Professor K. Chawla	
University of Alabama, USA Professor T.W. Chou	2, Institutskaya str., Chernogolovka, Moscow district., Russia,
University of Delawere, USA	142432
Professor T. Ishihara	Tel /Fax: $+7(49652)22493$
Japan	$1(1,1)^{-1}(4,$
Professor Shanyi Du	http://www.issp.ac.ru/journal/composites/
Harbin Institute of Technology, China	Editor: Nelli Prokopenko
University of Cambridge, UK	
Dr V.M. Kiiko	
Institute of Solid State Physics of RAS , Russia	Publishing House:
Professor A. Koyama	STE Virag-Centre LTD
Kyoto University, Japan	$40/1$ $V_{\rm curl}$ means $P_{\rm current}$ and $r_{\rm current}$
Belgorod State University Russia	49/1, verchnyaya Pervomayskaya str., Moscow,
Professor V.I. Kostikov	Russia, 105264.
State Technological University «Moscow Institute of Steel and Alloys»,	Phone: 7 105 780 01 73
Russia	
Professor W.M. Kriven The University of Illinois at Urbana Champaign USA	http://www.mashizdat.ru
Dr A.M. Kunerman	
Institute of Chemical Physics of RAS, Russia	Director of journal
Professor S.A. Lurie	M.A. Menzullov
Dorodnicyn Computing Centre of RAS, Russia	
Professor L.M. Manocha Sardar Patle University India	
Professor V.M. Orera	Making-up
Instituto de Cinicia de Materiales, Spain	A.A.Menzullov
Professor B.E. Pobyedrya	
Lomonosov Moscow State University, Russia	Subscriptions: please apply to one of the partners
Professor H. Schneider	of ISC «MK Deviodica» in your country or to ISC
Professor K. Schulte	of JSC «MIK-Feriodica» in your country or to JSC
Technical University Hamburg - Hamburg, Germany	«MK-Periodica» directly:
Professor George C. Sih	<i>39, Gilyarovsky Street, Moscow Russia, 129110;</i>
Lehigh University, Bethlehem, USA	T_{Pl} + 7(495) 681-9137 681-9763
Professor A.V. Serebryakov Institute of Solid State Physics of PAS – Pussia	$E_{rrr} + 7(405) 601 9137, 001 9703,$
Professor V.G. Sevastvanov	Fax + 7(493) 081 - 3798
Institute of General and Inorganic Chemistry of RAS, Russia	E-mail: info@periodicals.ru
Dr M. Sing	http://www.periodicals.ru
NASA Glenn Centre, USA	(Inquire Komposity i nanostructure)
Professor V.V. Vikulin ESUE ODDE (/TECHNOLOCIVA), State Descende Centre of the Duration	
For okie (rechnologita) state research centre of the Russian Federation. Russia	Photo on the cover: Fig. 2. (a)- FESEM image of the nanowires
Dr Leon Vishnyakov	(general view); (b,c) – FESEM images of the single hexagonal prism-
Frantsevich Insnitute for Problems of Materials Science, Ukrain	shaped wire and $bamboo-like$ wire, $respectively$; $(d-g) - TEM$ $bright-basis$
Professor H.D. Wagner	field images of the nanowires. «Synthesis and Morphology of SiC
Weizmann Institute of Science, Israel	nanowires under carbothermal reduction silicon dioxide» p. 8.

23

СОДЕРЖАНИЕ

Исследован синтез нанокристаллов SiC методом карботермического восстановления коллоидного диоксида кремния при температурах 1700, 2100 и 2200К. При температуре 1700К были получены SiC нановолокна с диаметром от 20 до 200 нм и длиной, достигающей несколько десятков микрон. Рентген-дифракционный анализ (XRD) и просвечивающая электронная микроскопия (TEM) показали, что волокна имеют преимущественно 3C-SiC структуру с высокой плотностью дефектов упаковки. Было обнаружено три типа нановолокон: (i)–нановолокна с морфологией гексагональной призмы и осью роста [111]; (ii)-нанопластины с поперечным сечением близким к прямоугольному и направлениями роста [110], [112], [113] и [331]; (iii) - бамбукообразные нановолокна, состоящие из широких сегментов с совершенной 3C-структурой. Повышение температуры процесса до 2100-2200К привело к радикальному изменению морфологии нанокристаллов карбида кремния. Проведен термодинамический анализ возможных реакций в исследуемой системе. Особое внимание уделено местам зарождения и механизмам роста нановолокон (с. 5-22; ил. 13).

Чесноков В.В., Чичкань А.С., Зайковский В.И., Паукштис Е.А., Пармон В.Н.

ПОЛУЧЕНИЕ УНТ-SiO₂ КОМПОЗИТОВ С ИСПОЛЬЗОВАНИЕМ ОЛИГОМЕТИЛГИДРИДСИЛОКСАНА В КАЧЕСТВЕ ПРЕДШЕСТВЕННИКА SiO₂

Разработан метод синтеза УНТ-SiO₂ композита с использованием олигометилгидридсилоксана (ОМГС) в качестве предшественника SiO₂. Наличие активного водорода в составе олигометилгидридсилоксана позволило достичь химического взаимодействия между поверхностью углеродных нанотрубок и нанесенным слоем оксида кремния. Исследовано влияние пленки оксида кремния на окисление УНТ кислородом. Установлено, что скорость окисления УНТ-SiO₂ композита уменьшается примерно на порядок по сравнению с исходными УНТ. Изучены морфология и структура аморфного оксида кремния, получающегося после окисления УНТ-SiO₂ композита. Исследована термическая стабильность УНТ-SiO₂ композита. Установлено, что в инертной среде УНТ-SiO₂ композит обладает термической стабильностью до температур 1100-1200 °С. Повышение температуры прокалки до 1300 °С приводит к разделению УНТ-SiO₂ композита на отдельные составляющие: УНТ и частицы SiO₂ (с. 23-32; ил. 8).

В.С.Попов, В.Г.Севастьянов, Н.Т.Кузнецов

ПОЛУЧЕНИЕ НАНОСТРУКТУРИРОВАННЫХ ПОКРЫТИЙ SnO, ЧЕРЕЗ НОВЫЕ ЛЕТУЧИЕ ПРЕКУРСОРЫ	
МЕТОДОМ АРСVD С ИНДУКЦИОННЫМ НАГРЕВОМ́	. 33

Выполнены синтез и идентификация четырех летучих координационных соединений олова: $[Sn(AcAc)_2Cl_2]$, $[Sn(H_2O)_2Cl_4]$ ·18К6, $[Sn(18K6)Cl_4]$, $[Sn(H_2O)_2Cl_4]$ ·15К5. Синтезированные соединения использованы в качестве новых прекурсоров покрытий диоксида олова в химическом парофазном осаждении при атмосферном давлении (APCVD) на установке с индукционным нагревом в зоне деструкции. Полученные покрытия охарактеризованы комплексом физико-химических методов анализа. Исследована взаимосвязь морфологии покрытий и использовавшихся прекурсоров (с. 33-43; ил. 6).

В условиях воздействия давления и сдвиговых деформаций в опытно-промышленном двухшнековом экструдере получены водорастворимые привитые сополимеры хитозана и поливинилового спирта. На первой стадии обработке подвергалась реакционная смесь, состоящая из твёрдых NaOH и хитина. К полученному щелочному хитозану добавляли ПВА и повторно экструдировали. Влияние соотношения компонентов реакционных смесей и ММ исходного ПВА на структуру и свойства продуктов исследовалось методами элементного анализа, вискозиметрии, ИК-спектроскопии, протонномагнитного резонанса и гельпроникающей хроматографии (с. 44-55; ил. 6).

В.Я.Варшавский, В.А.Морозов

О ГРАФИТИРУЕМОСТИ УГЛЕРОДНЫХ ВОЛОКОН ИЗ ПОЛИАКРИЛОНИТРИЛЬНЫХ ВОЛОКОН 56

Методом Риетвелда (полнопрофильного анализа) исследованы структуры графитированных углеродных волокон, содержащих соединения внедрения бора. Метод Риетвелда подтвердил способность борсодержащих углеродных волокон к графитации при высокой температуре и позволил выявить, что структура волокон лучше описывается в ромбоэдрической модели структуры графита (с. 56-62 ил. 3).

© ИФТТ РАН «Композиты и наноструктуры». 2012

23

CONTENS

Synthesis of SiC nanocrystals by carbothermal reduction of colloidal silica at temperature of 1700, 2100 µ 2200K has been studied. The nanocrystals at 1700K a shape of nanowires of a diameter between 20 and 200 nm an a length of tens to hundreds of microns. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis have shown the beta-SiC structure of the nanowires with a high density of stacking faults. The three types of the nanowires have been found: (i) - hexagonal nanowires with the [111] growth direction; (ii) -nanobelts with a rectangle-like cross-section and the [110], [112], [113] or the [331] growth directions; (iii) - «bamboo-like» nanowires, formed by wide segments with the perfect beta-SiC structure. Enhancing the process temperature up to 2100-2200K leads a major change in the SiCnanocrystal morphology. A thermodynamic analysis of possible reactions in the system was performed. Special attention was paid to nucleation sites and growth mechanism of nanowires (p. 5-22; fig. 13).

V.V.Chesnokov, A.S.Chichkan, V.I.Zaikovskii, E.A.Paukshtis, V.N.Parmon FABRICATION OF CNT-SiO $_2$ COMPOSITES WITH USE

OF OLIGOMETHYLHYDRIDESILOXANE AS THE PRECURSOR OF SiO,

A new method of fabrication of CNT-SiO₂ composite is developed. The oligomethylhydridesiloxane (OMHS) was used as the precursor of SiO₂. The presence of active hydrogen in the composition of OMHS made it possible to reach the chemical interaction between the surface of carbon nanotubes and the deposited layer of the silicon oxide. An effect of the silicon oxide film on the oxidizing ability of CNT is studied. It is found that the oxidation rate of the CNT-SiO₂ composite decreases approximately by an order of the magnitude in comparison with the virgin CNT. The morphology and structure of the amorphous silicon oxide obtained after oxidation CNT-SiO₂ composite were studied. The thermal stability of the CNT-SiO₂ composite was also studied. It is found that the CNT-SiO₂ composite is thermally stable up to temperatures of 1100-1200 °C. An increase in the temperature of head tempering to 1300 °C leads to separation of CNT-SiO₂ composite into individual components: CNT and particles of SiO₂ (p.23-32; fig. 8).

V.S.Popov, V.G.Sevastynov, N.T.Kuznetsov

In this paper four volatile tin coordination compounds $[Sn(AcAc)_2Cl_2]$, $[Sn(H_2O)_2Cl_4] \cdot 18K6$, $[Sn(18K6)Cl_4]$, $[Sn(H_2O)_2Cl_4] \cdot 15K5$ were synthesized and identify. Synthesized compounds were used as new precursors for tin dioxide coatings in atmospheric pressure chemical vapor deposition (APCVD) at the facility with induction heating in destruction zone. The coatings were characterized with physicochemical methods of analysis. Relationship of coatings morphology and precursors was investigated (p.33-43; fig. 6).

L.V. Lesnyakova, T.A. Akopova, N.S. Perov, G.A. Vikhoreva, A.N. Zelenetskii

Water-soluble graft copolymers of chitosan and polyvinyl alcohol were obtained in an experimental twin-screw extruder, in which pressure and shear strains were applied. On the first stage, the reaction mixture of solid NaOH and chitin was treated. To a product produced chitosan alkaline PVA was added and re-extruded. An effect of ratio of the components of reaction mixtures and MM PVA source on structure and properties of the products were examined by elemental analysis, measuring viscosity, IR spectroscopy, NMR and gel - chromatography (p. 44-55; fig. 6).

X-ray powder diffraction patterns of boron-containing carbon fibres were analysed using the Rietveld method. Rietveld refinements confirm possibility of carbon fibers contained boron to graphitization at high temperature. A age of the Rietveld refinement technique allows revealing that the structure of carbon fibres is better described by the rhombohedral model of graphite structure (p. 56-62; fig. 3).

СИНТЕЗ И МОРФОЛОГИЯ НАНОСТРУКТУР SIC ПРИ КАРБОТЕРМИЧЕСКОМ ВОССТАНОВЛЕНИИ ДИОКСИДА КРЕМНИЯ

(Поступила в редакцию 19.03.12, переработанный вариант - 30.03.12, принята к печати – 02.04.2012г.)

Е.А.Кудренко¹, В.Роддатис², А.А.Жохов¹, И.И.Зверькова¹, И.И.Ходос³, Г.А.Емельченко¹

¹Институт физики твердого тела Российской академии наук, г. Черноголовка, Московская область, Россия, ²Российский научный центр «Курчатовский институт», Москва, Россия, ³Институт проблем технологии микроэлектроники Российской академии наук, г. Черноголовка, Московская область, Россия

Исследован синтез нанокристаллов SiC методом карботермического восстановления коллоидного диоксида кремния при температурах 1700, 2100 и 2200К. При температуре 1700К были получены SiC нановолокна с диаметром от 20 до 200 нм и длиной, достигающей несколько десятков микрон. Рентген-дифракционный анализ (XRD) и просвечивающая электронная микроскопия (TEM) показали, что волокна имеют преимущественно 3C-SiC структуру с высокой плотностью дефектов упаковки. Было обнаружено три типа нановолокон: (i)–нановолокна с морфологией гексагональной призмы и осью роста [111]; (ii)-нанопластины с поперечным сечением близким к прямоугольному и направлениями роста [110], [112], [113] и [331]; (iii) - бамбукообразные нановолокна, состоящие из широких сегментов с совершенной 3С-структурой. Повышение температуры процесса до 2100-2200К привело к радикальному изменению морфологии нанокристаллов карбида кремния. Проведен термодинамический анализ возможных реакций в исследуемой системе. Особое внимание уделено местам зарождения и механизмам роста нановолокон

Ключевые слова: нановолокна SiC, синтез, морфология

SYNTHESIS AND MORPHOLOGY OF SIC NANOWIRES UNDER CARBOTHERMAL REDUCTION SILICON DIOXIDE

E.A.Kudrenko¹, V.Roddatis², A.A.Zhokhov¹, I.I.Zverkova¹, I.I.Khodos³, G.A.Emelchenko¹

¹ Institute solid state physics RAS, Chernogolovka, Moscow region, Russia ²RSC «Kurchatov Institute», Moscow, Russia ³ IPTM RAS, Chernogolovka, Moscow region, Russia

Synthesis of SiC nanocrystals by carbothermal reduction of colloidal silica at temperature of 1700, 2100 µ 2200K has been studied. The nanocrystals at 1700K a shape of nanowires of a diameter between 20 and 200 nm an a length of tens to hundreds of microns. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis have shown the beta-SiC structure of the nanowires with a high density of stacking faults. The three types of the nanowires have been found: (i) - hexagonal nanowires with the [111] growth direction; (ii) -

Nº 1	Композиты и наноструктуры
2012	COMPOSITES and NANOSTRUCTURES

nanobelts with a rectangle-like cross-section and the [110], [112], [113] or the [331] growth directions; (iii) - «bamboo-like» nanowires, formed by wide segments with the perfect beta-SiC structure. Enhancing the process temperature up to 2100-2200K leads a major change in the SiCnanocrystal morphology. A thermodynamic analysis of possible reactions in the system was performed. Special attention was paid to nucleation sites and growth mechanism of nanowires.

Key words: SiC nanowires, synthesis, morphology.

1. Введение

Интерес к синтезу различных материалов в форме наностержней или нанопроволок значительно вырос после открытия углеродных нанотрубок. Среди массы исследованных материалов карбид кремния выделяется своими уникальными физическими свойствами, такими как широкая запрещенная зона, высокая теплопроводность, химическая инертность, механическая твердость, высокая электронная подвижность, благодаря чему этот материал перспективен в микрои оптоэлектронике [1]. Превосходные фотокаталитические свойства обнаружены у полупроводниковых наностержней карбида кремния, покрытых оксидным слоем [2]. К настоящему времени нановолокна SiC выращивали различными методами, включая CVD [3], дуговой разряд [4], карботермические реакции с использованием углеродных нанотрубок [5], бамбука [6] и активированного углерода [7], лазерное распыление [8] и др. [9-15]. Карботермическое восстановление диоксида кремния является наиболее простым и экономичным способом синтеза наноструктур SiC. Известно, что источник углерода значительно влияет на скорость реакции, а также на морфологию и размер синтезированного карбида кремния [16]. Источником кремния в карботермических реакциях используют, как порошки диоксида SiO₂, так и монооксида кремния SiO [2].

Морфология нанокристаллов карбида кремния зависит от условий и методов выращивания. В литературе сообщается об изготовлении нановолокон, периодически двойникованных [17], спиральных [18], с периодическими утолщениями из покрытий SiO₂ [19], в форме нанотрубок [20], пространственных наносеток [21], S- образных и Y- бикристаллов [22-25], пластинчатых бикристаллов [26]. Следует отметить, что для большинства нановолокон характерным направлением роста является ось [111], включая нановолокна, полученные путем карботермического восстановления диоксида кремния [2,5-7,17,23, 24, 26-28]. В работах по синтезу бикристаллов авторы наблюдали направления роста вдоль кристаллографических осей [110], [112] или [113] [22-25]. Не смотря на многочисленные исследования методов получения, структуры и свойств наностержней SiC, в литературе мало внимания уделяется изучению механизмов роста наностержней и структурным трансформациям в процессе их роста.

В настоящей работе представлены результаты исследований нановолокон карбида кремния, полученных методом карботермического восстановления SiO₂. Особое внимание в работе было уделено местам зарождения и механизмам роста нановолокон, которые приводят к формированию волокон с различной микроструктурой.

2. Экспериментальная часть

Сферические частицы SiO₂ заданного размера были получены путём гидролиза тетраэтилового эфира кремниевой кислоты (tetraethyl ortosilicate) (TEOC) в растворе этилового спирта в присутствии гидроксида аммония [29,30]. Синтез частиц малого размера (~ 10 nm) проводили в кислой

№ 1 2012

среде. Суспензия частиц диоксида кремния (SiO₂ - золь) смешивалась с водным раствором коллоидного графита, обеспечивая избыточное содержание углерода относительно кремния C/SiO₂ = 3 : 1 (мол). После ультразвуковой обработки и интенсивного перемешивания магнитной мешалкой суспензия сушилась и помещалась в графитовый тигель. В качестве крышки тигля использовался углеродный войлок с небольшим центральным отверстием для локализации области, необходимого градиента температуры. Процесс синтеза проводился в индукционной печи в среде аргона (0.5 атм.) при температурах 1700 К, 2100К и 2200К в течение 1 часа. Продуктом реакции был ворсистый слой светло-голубого цвета, осажденный вокруг центрального отверстия в войлоке на ее внешней стороне.

Рентгенографические исследования образцов проводились на рентгеновском дифрактометре *Siemens D-500* на СоК α - излучении. Электронно-микроскопические изображения в светлом и темном полях и электронные микродифракции были получены на просвечивающем микроскопе *Jeol JEM-100CX*. Электронно-микроскопические изображения высокого разрешения в просвечивающем режиме были получены на микроскопах *Titan 80-300* с корректором сферической аберрации и *Jeol JEM-2100*. Электронно-микроскопические изображения поверхности волокон и карты распределения элементов на отдельных волокнах получены на сканирующем электронном микроскопе *Zeiss Supra-50VP* с EDX спектрометром.

3. Результаты и обсуждение

3.1. Общая характеристика нановолокон SiC, синтезированных при температуре 1700К. Дифрактограмма синтезированного продукта представлена на рис. 1. Из дифрактограммы (XRD

Рис. 1. Рентгеновский дифракционный спектр нановолокон SiC на подложке углеродного войлока; SiC (куб) - о, SiC (гексагональный, 2H) - х, Углерод с небольшой долей кристаллического графита - с

XRD spectrum of SiC nanowires on the carbon felt substrate; SiC (*cub*) - o, SiC (*hex*, 2H) - x, Carbon with small part of crystalline graphite - c

spectrum) следует, что основные дифракционные пики индицируются как 3С- структура карбида кремния. Наблюдаемые слабоинтенсивные рефлексы, обозначенные *X*, вблизи основного максимума относятся к дефектам упаковки и двойникам. Широкие максимумы, отмеченные *C*, соответствуют аморфному углероду с небольшим содержанием фазы графита. Наличие углерода связано с использованием углеродного войлока в качестве крышки графитового тигля, на который в процес-

Рис. 2. (а)- *FESEM* изображение общего вида нановолокон; (*b,c*) - *FESEM* изображение отдельных волокон в форме гексагональной призмы и бамбука, соответственно; (*d-g*) – *TEM* изображение нановолокон в светлом поле

(a)- FESEM image of the nanowires (general view); (b,c) - FESEM images of the single hexagonal prism-shaped wire and bamboo-like wire, respectively; (d-g) - TEM bright-field images of the nanowires

Композиты и наноструктуры	
COMPOSITES and NANOSTRUCTURES	

се синтеза осаждался конечный продукт реакции. Таким образом, дальнейшее обсуждение структуры волокон будет вестись в рамках 3С- SiC политипа.

На рис. 2 (а) показано FESEM изображение общего вида продукта синтеза. Из рисунка видно, что продукт состоит из волокон с диаметром от 20 до 200 нм и длиной до нескольких десятков микрон. FESEM изображения 2(b-i) показывают, что нановолокна имеют различные типы морфологий. Из TEM изображений (d-g) следует, что все волокна имеют ярко-выраженную полосчатую структуру, которая указывает на наличие дефектов упаковки и двойников в волокнах. В целом можно выделить три типа морфологий нановолокон: морфология гексагональной призмы (рис.2 b, g); бамбукообразные волокна (рис.1c, f) и лентообразные нановолокна (рис.2 d, e, h) с прямоугольным поперечным сечением (рис.2d) и типичным отношением сторон ~ 5 - 15 (fig. 2e). В редких случаях наблюдаются бикристалы нановолокон с Y-морфологией [31] (fig. 2i). «Ствол» этого бикристала представляет собой два волокна, соединенных по плоскости двойникования типа (111) -3C, которые затем разветвляются под углом 70°, соответствующем углу между плоскостями типа (111) в кубической системе. Более подробное описание структур различного типа нановолокон будет дано ниже.

3.2 Зарождение и рост нановолокон SiC.

Подложка из войлока, на которой осаждаются наностержни карбида кремния, состоит из крупных углеродных волокон диаметром 5 – 8 микрон, (рис. 3а). На рис. 3b представлено увеличенное изображение исходного углеродного волокна войлока до проведения синтеза нановолокон SiC. Как видно из рисунка, поверхность волокна не гладкая, а покрыта шарообразными «холмиками» размером ~20-50 нм (однако при сканировании по поверхности можно наблюдать холмики размером до 300 нм). Холмики распределены по поверхности углеродного волокна случайным образом.

Изображение отдельного углеродного волокна после синтеза SiC наностержней показано на рис. 4а. На поверхности волокна видны светлые участки и вертикально растущие усы/стержни. При большем увеличении (рис. 4d-f) можно видеть, что эти светлые участки состоят из кристаллитов различной морфологии и наностержней SiC; при этом и кристаллы, и стержни имеют полосчатую микроструктуру (рис. 4 e,f), которая отображает наличие ДУ и микродвойников, харак-

Рис. 3. Изображения FESEM, показывающие зарождение SiC волокон на поверхности углеродного войлока (d,e,f); (a) – FESEM изображение отдельного углеродного волокна; (b,c) - EDX картирование углеродного волокна по линиям излучения

FESEM images showing nucleation of SiC nanowires on a carbon fiber surface (d,e,f); (a)- FESEM images of a single carbon fiber; **(b,c) -** EDX mapping of a carbon fiber according to emission line

№ 1 2012 терных для политипов SiC. Построение EDX карт распределения элементов на поверхности отдельного волокна войлока (рис. 4a) представлено на рис. 4b-с. Из этих наблюдений следует, что этот участок волокна содержит углерод C, равномерно распределенный вдоль волокна, и кремний Si, содержащийся преимущественно в светлых областях (рис.4a). Следовательно, наблюдаемые кристаллиты и волокна SiC неравномерно распределены по поверхности углеродных волокон. Поскольку холмики распределены по поверхности углеродного волокна случайным образом, можно сделать предположение, что холмики могут служить местами зарождения будущих нановолокн SiC.

Рис. 4. (а) – FESEM изображение углеродного войлока до синтеза; **(b)** – вид поверхности углеродного волокна при большем увеличении

(a) - FESEM image of the carbon felt before synthesis; (b) – magnified view of the carbon fiber surface

Рис. 4 (e-f) содержит изображения нановолокон, растущих из кристаллитов SiC. Рис. 4е показывает, что кристаллиты имеют большую плотность дефектов упаковки и постепенно сужаются в направлении, перпендикулярном дефектам и, следовательно, плотноупакованным слоям (111) и дальнейший рост продолжается в виде тонкого стержня вдоль кристаллографического направления [111]-3C. Вероятно, когда размер плоскости (111) достигает некоторого критического размера, начинается рост волокна. Другой пример роста волокон в виде пластин представлен на рисунке 4f. По сравнению с предыдущим примером, в этом случае плотноупакованные плоскости наклонены по отношению к направлению роста под некоторым углом и поэтому ось роста пластинчатых волокон (belt-like wires) отличается от кристаллографического направления [111]-3C.

Такое поведение при зарождении и росте наностержней карбида кремния объясняется их механизмом роста. Так, первая стадия реакции карботермического восстановления диоксида кремния генерирует газообразный монооксид кремния согласно реакции:

$$SiO_2(solid) + C(solid) \rightarrow SiO(vapor) + CO(vapor)$$
 (1)

Пары монооксида кремния переносятся к крышке тигля (войлок) и взаимодействуют с углеродом на поверхности углеродных волокон с образованием кристаллитов SiC по реакции:

$$SiO(vapor) + 2C(hillock) \rightarrow SiC(nanoparticles) + CO(vapor)$$
⁽²⁾

Следуя работе [32], можно предположить, что именно холмики (рис. 4б) на углеродных волокнах служат восстановителем и темплатой для образования наночастиц SiC по реакции (2). Однако реакция (2) не обеспечивает рост наностержней карбида кремния. Кристаллиты SiC, образованные по реакции (2), служат только в качестве зародышей и контролируют диаметр нановолокон SiC. Сам рост наностержней происходит в условиях пересыщения паров CO:

$$SiO(vapor) + 3CO(vapor) \rightarrow SiC(solid) + 2CO_2(vapor)$$
 (3)

Условие пересыщения паров СО в реакции (3) имеет принципиальное значение, так как в равновесных термодинамических условиях эта реакция при температуре 1700К не должна проходить [6]. Газовая фаза СО₂, образованная по реакции (3), преобразуется в газовую фазу СО по реакции:

$$CO_2(vapor) + C(solid) \rightarrow 2CO (vapor)$$
 (4)

Авторы [32] показали, что реакции (3) и (4) связаны между собой положительной обратной связью. Это приводит в конечном итоге к локальному пересыщению паров СО. Как известно [33, 34], рост в условиях пересыщения происходит в кинетическом режиме и приводит к иглообразным кристаллам и дендритам. Грань (111) SiC в условиях пересыщения имеет наименьшую поверхностную энергию. В процессе реакции (3) атомы кремния и углерода осаждаются на поверхность кристаллита SiC и большинство из них движутся к грани с наименьшей поверхностной энергией (111) [6]. Существующие механизмы образования и роста наностержней с использованием темплат из одномерных углеродных нанотрубок [35] или металлических катализаторов [36] в нашем случае не работают. В тоже время механизм роста наностержней вдоль направления [111] по реакции паров SiO и CO в условиях пересыщения позволяет объяснить многие особенности их морфологии и структуры, такие как кривизна нановолокон, наличие дефектов упаковки и явление ветвления нановолокон [32].

3.3. Бамбукообразные наностержни.

На рис. 5 представлены TEM изображения для «bamboo-like» стержня. В общем случае эти волокна состоят из двойников 3C структуры. Пример электронной диффракции от такого нанокристаллического стержня для зоны [-110] приведен на рис. 5а. Обозначенные рефлексы принадлежат к одному из двойников 3C, дополнительная система рефлексов соответствует второй части двойников 3C структуры. Поворот вокруг оси [111] – 3C на 180° совмещает одну систему рефлексов с другой. На темнопольном изображении рис.5b, полученном в рефлексе (002) хорошо видны яркие участки стер-

Рис. 5. (а) Картина электронной дифракции при падении электронного луча вдоль направления [-110]; **(b)** - ТЕМ изображение в темном поле в рефлексе (002); **(c)** - ТЕМ изображение в темном поле двойника (11-1)

(a) - SAED pattern with the incident electron beam along [-110] direction; (b) - dark field TEM image of a (002); (c)-dark field TEM image of a (11-1) twin

жня, которые дают вклад в это отражение, левый большой домен двойника отражает в этом рефлексе, в то время как правый не виден на изображении. На рис. 5с представлено ТЕМ темнопольное изображение в рефлексе (11-1) twin второй системы рефлексов, видно, что в темном поле светиться правый домен, который дает вклад в отражение (11-1) twin. Таким образом, левый и правый уширенные участки стержня, являются доменами двойника 3С-структуры.

Более детальный анализ структуры наностержня с утолщениями представлен на рис. 6. На изображениях рис. 6 а показано светлопольное ТЕМ изображение общего вида bamboo-like наностержня, на рис. 6b показано электронно-микроскопическое изображение высокого разрешения с участка выделенного кружком на рис. 6a.

На изображении высокого разрешения рис. 6b видно, что широкий участок имеет совершенную 3С-структуру. На вставке показана FFT картина данного изображения, которая содержит только точечные рефлексы для зоны типа [110]-3С, что подтверждает бездефектность данного участка стержня. Границы этого участка соответствуют направлениям [112] и [110].

Однако, когда появляется большая плотность дефектов упаковки (рис. 6 а, узкий участок стержня) общее направление роста соответствует кристаллографической оси [111]. Ниже, рис. 6с, приведено TEM изображение высокого разрешение участка волокна, содержащего бездефектную (1) и дефектную (2) части, белыми линиями отмечены следы плоскостей типа (111). На вставке для участка (1) в левом нижнем углу показана, соответствующая ему FFT картина, которая идентична, приведенной на рис. 6b, и отражает бездефектность 3С-структуры данной области. В левом верхнем углу показана FFT картина дефектного участка (2). Она содержит, как дифракционные максимумы, так и тяжи, что соответствует большой плотности дефектов упаковки. Тяжи, на FFT картине перпендикулярны атомным плоскостям (111) участка (2), следовательно, направление роста узких дефектных участков совпадает с направлением [111]-3С структуры и средняя ось роста для стержня с bamboo-like морфологией совпадает с [111].

Таким образом на волокнах с утолщениями уширенные участки представляют собой домены двойников 3С-структуры, которые связаны друг с другом узкими сегментами с большой плотнос-

Рис. 6. (а) – ТЕМ изображение бамбукообразного волокна; **(b)** - НREМ изображение бездефектной части волокна с сооветствующим Фурье – образом в правом нижнем углу; **(c)** – НREМ изображение как бездефектной части, так и части SiC волокна с высокой плотностью дефектов упаковки

(a)- TEM image of bamboo-like wire; (b) - HREM image of defect - free part of wire with corresponding Fourier transform at the right bottom angle; (c) – HREM image of the both defect-free (1) and high density stacking faults (2) parts of SiC wire

тью дефектов упаковки. При этом средняя ось роста bamboo-like стержня совпадает с кристаллографическим направлением [111]-3С структуры.

3.4. Гексагональные SiC наностержни и прямоугольные SiC нанопластины.

На рис. 7а приведено светлопольное TEM изображение стержня с морфологией гексагональной призмы и HRTEM изображение, соответствующее данному стержню (рис. 7b). На изображении с высоким разрешением белая линия обозначает след плотноупакованных плоскостей типа {111} и стрелкой показано направление нормали к этим плоскостям. Из HRTEM изображения хорошо видно, что плоскости {111} расположены перпендикулярно оси роста волокна и, следовательно, направление роста волокна соответствует направлению [111]-3C. На вставке приведена FFT-картина, на которой, кроме точечных рефлексов, соответствующих 3C структуре, видны тяжи, перпендикулярные плотноупакованным слоям. Наличие таких тяжей на FFT картине свидетельствует о большой плотности ДУ, т.е. отсутствию дальнего порядка в упаковке плотных слоев. На рис. 7d приведено увеличенное изображение участка, выделенного рамкой на рис. 7b. Анализ последовательности плотноупакованных плоскостей показал, что на данном участке можно выделить последовательность 3C с большой плотностью дефектов упаковки. Для сравнения на рис. 7c приведен пример совершенной ABC последовательности для 3C-политипа.

На рис. 8 (a,b) приведены ТЕМ темнопольные изображения для SiC nanobelts с относительно низкой плотностью дефектов упаковки. Видно, (рис. 8a), что границы ДУ, которые в плотноупакованных структурах совпадают с плоскостями типа (111) куба, лежат под углом 55° (125°) по отношению к оси роста стержня (соответственно, нормаль к границам составляет угол 35° с осью роста стержня). Этот угол близок к кристаллографическому углу между направлениями [111] и [110] для кубической структуры.

Рис. 7. (a) ТЕМ изображение при малом увеличении гладкого волокна SiC с направлением роста [111]; (b) - HREM изображение волокна, показывающее высокую плотность дефектов упаковки; (d) - увеличение области в рамке в (b); (c)- пример идеальной последовательности 3C

(a) Low magnification TEM image of the «smooth» SiC wire with [111] growth direction; (b) - HREM image of the wire showing high density of stacking faults; (d)- enlargement of the framed area in (b); (c) - a example of the perfect 3C sequence

Рис. 8. (a, b) – темнопольные ТЕМ изображения нанопластин с направлениями роста [110] и [112], соответственно; (d, c) – HRTEM изображение бездефектного участка нанопластины, и соответствующая ему FFT pattern; (e) - темнопольное ТЕМ изображение волокна с изменением направления роста с [111] на [110]

(*a*, *b*) - Dark field TEM images of nanobelts with [110] and [112] growth directions. respectively; (*d*, *c*) HRTEM image of defect-free nanobelt zone and the corresponding FFT pattern; (*e*) - dark field TEM image of NW with growth direction changed from [111] to [110]

Ось роста стержня в данном случае соответствует направлению [110]. В случае стержня, рис. 8b., нормаль к границам плотноупакованных слоев лежит под углом 19° к оси стержня, что соответствует углу между направлениями [111] и [112] куба. Следовательно, ось роста данного стержня имеет направление [112]. Таким образом, ось роста стержней с наклонными ДУ может соответствовать, по крайней мере, двум кристаллографическим направлениям [110] и [112]. Выше, при рассмотрении bamboo-like стержней, показано (см. рис.6b), что боковые границы домена двойника с совершенной 3С структурой имеют направления [110] и [112], соответственно; т.е., если в рассмотренных примерах nanobelts доминируют бездефектные домены 3С-структуры, то направление роста такого волокна будет определяться направлением боковых границ таких доменов. На рис. 8d представлено изображение высокого разрешения участка волокна с осью роста [112] и, соответствующая ему FFT картина (рис. 8c). FFT картина этого участка соответствует типичной дифракционной картине для зоны [1-10] - 3С структуры, белыми линиями отмечены следы плоскостей {111} типа. Анализ HRTEM изображения показывает, что боковая граница нижнего домена двойника имеет направление [110], а верхнего [112], соответственно. При этом средняя ось роста данного стержня совпадает с направлением [112], что указывает на доминирование в структуре доменов с направлением боковых границ [112].

Следовательно, SiC нанопластины имеют относительно низкую плотность ДУ, что связано с наличием в nanobelts определенного типа бездефектных доменов двойников 3С-структуры, которые определяют ориентацию плотноупакованных плоскостей SiC и, тем самым, среднее направление оси волокна, совпадающее с [110] или [112] направлениями 3С-структуры.

На рис. 8е приведено темнопольное TEM изображение для волокна, в котором наблюдается изменение направления оси роста с [111] на [110]. Из изображения можно предположить, что изменение направления роста связано также с изменением морфологии волокна. Участок с направлением [111] соответствует волокну с морфологией гексагональной призмы, и изменение направления оси роста на [110] приводит к трансформации гексагональной призмы в прямоугольную нанопластину.

На рис. 9 приведены ТЕМ изображения другого типа SiC нанопластин. На Рис. а, b приведены темнопольное ТЕМ изображение нанопластины, полученное в рефлексе (002) и соответствующая ему электронограмма. Из электронограммы (SAED pattern) видно, что направление роста данной нанопластины совпадает с кристаллографическим направлением [331] для 3С-стурктуры. Наличие тяжей вдоль направления [111] на электронограмме говорит о большой плотности дефектов упаковки в волокне, что также подтверждает ярко-выраженная полосчатая структура нанопластины (рис. 9а). На рис. 9 с, d приведены ТЕМ изображение нанопластины и, относящаяся к нему электронограмма, указывающая на направление роста [113] для данного волокна и наличие большой плотности дефектов упаковки. Общим для приведенных двух случаев является то, что электронограммы (рис. 9 b,d) содержат дополнительные рефлексы (стрелками указано на дифракционных картинах), относящиеся к гексагональным политипам, при этом интенсивность этих рефлексов превышает интенсивность рефлексов от кубической структуры, что свидетельсвтует о преимущественном содержании гексагональных политипов в этих нанопластнах. На рис. 10 а приведено HRTEM изображение нанопластины с направлением оси роста [331]. В верхнем левом углу приведена соответствующая ему FFT картина, которая содержит точечные рефлексы, относящиеся к гексагональной структуре. На рис. 10b приведено увеличенное HRTEM изображение участка, выделенного рамкой на рис. 10a. Анализ последовательности плотноупакованных слоев показал, что в целом данную последовательность можно отнести к 2Н структуре с дефектами упаковки. В рамке, выделенной пунктирной линией, в качестве сравнения приведена модель 2Н структуры, откуда видно, что экспериментальная и модельная картины полностью соответствуют одна другой.

Следовательно, нанопластины с высокой плотностью дефектов упаковки растут в направлениях, совпадающих с кристаллографическими направлениями [113] и [331] кубической системы. При этом в описанных нанопластинах присутствуют как 3С, так и 2Н политипы, с доминирующим содержанием последних.

На рис. 9 (e-f) приведены темнопольное изображение, электронограмма и светлопольное изображение для волокна, в котором наблюдается изменение направления роста с [111] на [331]. Участок

Рис.9. (a) - темнопольное изображение волокна с осью роста [331], полученное в рефлексе (00-2) и соответствующая ему SAED pattern с осью зоны [-110] (b); (c) - темнопольное изображение волокна с осью роста [113], полученное в рефлексе (00-2) и соответствующая ему SAED pattern с осью зоны [-110] (d); (g, e) – светлопольное и темнопольное изображения волокна с изменением направления роста и соответствующая ему SAED pattern с осью зоны [-110] (d); (g, e) – светлопольное и темнопольное изображения волокна с изменением направления роста и соответствующая ему SAED pattern с осью зоны [-110] (f). (стрелками на электронограммах обозначены рефлексы, указывающие на присутствие гексагональных политипов в образце)

(a) dark field image of NW with [331] growth axis obtained in reflex (00-2) and the corresponding SAED pattern with zone axis [-110] (b); (c) dark field image of NW with [113] growth axis obtained in reflex (00-2) and the corresponding SAED pattern with [-110] zone axis (d); (g, e) light and dark field images of NW with changed growth axis and the corresponding SAED pattern with [-110] zone axis (f) (arrows on the electron diffraction pattern denote the reflexes pointing to the presence of hexagonal polytypes in the sample)

волокна с направлением роста [111] имеет морфологию гексагональной призмы, пример поперечного сечения для такого типа нановолокон приведен на рис. 2 b. На объемность данного участка указывает также наличие толщинного контура, который проходит по центральной части волокна в виде темной полосы на светлопольном изображении (рис. 9g). Участок волокна с направлением оси роста [331] содержит дефекты упаковки (полосчатая структура), которые имеют наклонную ориента-

Рис.10. а-HRTEM изображение SiCнанолент с преобладающими в структуре гексагональными политипами (в верхнем левом углу – соответствующая FFT картина); (b) – увеличенное HRTEM изображение участка, выделенного рамкой на рис. 10 (a) (в рамке, выделенной пунктирной линией, приведен пример 2H-политипа).

a-HRTEM image of SiC nanobelts with dominating hexagonal polytypes (left upper angle – FFT pattern); (*b*) – enlarged HRTEM part image, selected by frame at fig. 10a (in the frame example of 2H polytype is shown).

цию по отношению к направлению роста волокна. Ранее, на рис. 2е, было показано, что для такого типа волокон характерна морфология прямоугольной пластины, т.е., как и в предыдущем случае (рис. 8e), с изменением направления оси роста происходит трансформация морфологии волокна от гексагональной призмы в прямоугольную пластину. Причина изменения геометрии {111} плоскости от правильного шестиугольника к прямоугольнику с соотношением сторон 4-12 при изменении направления роста волокна, может быть связана с тем, что образование таких высокоиндексных граней, как {112}, {113} и {331} приводит к значительному возрастанию поверхностной энергии плоскости, которая, как известно [37], минимальна для граней типа {111}, и изменение геометрии с понижением симметрии может являться следствием компенсации поверхностной энергии.

3.5. Наностержни SiC со структурой ядро (SiC)-оболочка (SiO₂).

Во многих публикациях сообщается о нановолокнах карбида кремния со структурой ядро (SiC)оболочка (SiO₂) [6]. Электронно-физические свойства таких волокон значительно отличаются от «голых» аналогов [2]. В настоящей работе были получены волокна со структурой ядро-оболочка посредством отжига исходных «голых» SiC нановолокон при температуре 850 °C в течение 4 часов на воздухе. На рис. 11а показано TEM bright-field image полученного волокна, откуда видно, что волокно вдоль всей длины имеет слабоконтрастную оболочку, предположительно принадлежащую аморфному слою SiO₂. При этом внутренняя часть имеет полосчатую структуру, соответствующую дефектной 3C - структуре SiC.

Изображения 11 (b,c) демонстрируют EDX карты распределения кремния (зеленый цвет в цветном изображении) и кислорода (красный цвет). в отожженном и исходном образцах нановолокон, соответственно. На рис. 11b видно, что внешний слой отожженного волокна содержит значительно больше кислорода, чем его середина, в то время как внутренний слой в основном состоит из кремния. Это обстоятельство дополнительно подтверждает формирование внешней аморфной оболочки SiO₂ вокруг поверхности волокна SiC. Для сравнения, на рис. 11 с представлен результат EDX картирования исходного «голого» SiC волокна, который показывает, что волокно в основном содержит кремний с незначительными вкраплениями кислорода.

3.6. Морфология нанокристаллов SiC при температурах 2100К и 2200К

Повышение температуры процесса до 2100К-2200К привело к радикальному изменению морфологии кристаллов карбида кремния. На рис. 12 представлены СЭМ изображения спонтанных кристаллов SiC, полученных на поверхности волокон углеродного войлока при температуре 2100К, и EDX карта распределения кремния (красный цвет) и углерода (зеленый цвет) в образце (рис. 12с). Из-за резкого повышения кинетики процесса наблюдается массовая кристаллизация спонтанных кристаллов SiC на поверхности волокон углеродного войлока (рис. 12а). В некоторых случаях весь объем углеродного волокна преобразуется в карбид кремния (рис. 12b). Карта распределения кремния (красный цвет) и углерода (зеленый цвет) в образце (рис. 12с) подтверждает наличие слоя карбида кремния на поверхности углеродного волокна. Рентгенофазовый анализ выявил

Рис. 11. (а) – ТЕМ изображение отожженного волокна со структурой ядро (SiC)-оболочка (SiO₂); **(b,c)** - EDX картирование нановолокна SiC по линиям излучения

(a)- TEM image of the annealed wire with core (SiC)-shell (SiO₂) structure; (b,c)-EDX mapping of a SiC wire according to emission line

в этих образцах только две кристаллические фазы: графит и карбид кремния. В этом случае карбид кремния образуется по реакции взаимодействия паров монооксида кремния с углеродом войлока (реакция 2). Наностержни SiC при температурах 2100-2200К не образуются. Для роста наностержней SiC требуется подвод двух газовых компонентов SiO и CO по реакции 3. Однако в равновесных термодинамических условиях эта реакция не должна проходить при температуре 1700К и

Рис. 12. SEM изображения спонтанных кристаллов SiC, полученных на поверхности волокон углеродного войлока по реакции взаимодействия паров монооксида кремния с углеродом войлока (a и b) при температуре 2100К, и EDX карта распределения кремния (красный цвет) и углерода (зеленый цвет) в образце, представленном на рис. 12a (c)

SEM images of spontaneous SiC crystals, prepared on a carbon fiber surface by reaction of interaction silicon monooxide vapor with carbon felt (a and b) at 2100K, and EDX map of silicon (red color in a color version of the figure) and carbon (green color in a color version of the figure) in a sample on fig. 12a (c)

выше [6,38]. В условиях быстрой кинетики не обеспечивается пересыщение по монооксиду углерода, которое необходимо для синтеза наностержней, и рост карбида кремния происходит по механизму взаимодействия пара (SiO) с твердой фазой (войлок C).

При температуре процесса 2200К изменяется состав паровой фазы в тигле. К парам монооксида кремния добавляются пары карбида кремния, которые переносятся со дна тигля на крышку. На рис. 13 (a,b,c) показаны колонии спонтанных кристаллов SiC при разных увеличениях. На микрофотографиях видно, что кристаллы в колониях растут из паровой фазы. В газовой фазе могут быть пары SiO, CO, CO₂ и SiC. Содержанием паров углерода при этой температуре можно пренебречь. Так как образование карбида кремния по реакции взаимодействия SiO и CO термодинамически невыгодно при этой температуре, кристаллы SiC растут путем пересублимации паров карбида кремния со дна тигля на крышку. Кроме того, наблюдается образование карбида кремния по реакции взаимодействия 2), что видно на рис. 2d.

4. Выводы

Методом карботермического восстановления коллоидного диоксида кремния с использованием коллоидного графита синтезированы нанокристаллы SiC в инертной атмосфере при температурах 1700К, 2100К и 2200К на подложке из углеродного войлока. Показано, что нановолокна карбида кремния зарождаются на поверхности волокон углеродного войлока при температуре 1700К. На первой стадии происходит зарождение кристаллитов SiC. На кристаллах с выделенным направлением роста [111] в процессе синтеза формируются волокна с тем же направлением роста и морфологией гексагональной призмы. На кристаллитах с отсутствием преимущественной кристаллографической ориентацией растут волокна с наклонной ориентацией плотноупакованных плоскостей по отношению к оси роста с морфологией нанопластин. Сделано предположение о том, что «холмики», обнаруженные на поверхности углеродных волокон войлока, служат восстановителем и темплатой для образования кристаллитов SiC. Такое поведение при зарождении и росте наностержней карбида кремния объясняется их механизмом роста. Показано, что формируются нанопластины двух типов: 1) – с наличием бездефектных доменов двойников 3С-структуры, наличие которых приводит к формированию пластин с направлениями роста [110] и [112]; 2) –

пластины со смесью 3С и 2Н политипов, с доминированием гексагональной структуры и направлениями роста [113] и [331]. Обнаружены нановолокна с bamboo-like морфологией, в которых широкие участки являются доменами двойников с совершенной 3С-стурктурой. Продемонстрированы условия термообработки, позволяющие получать волокна со структурой ядро - оболочка (SiC -SiO₂). Наностержни SiC при температурах 2100-2200К не образуются. Проведен анализ возможных реакций в системе и механизмов роста в зависимости от морфологии кристаллов.

Работа выполнена при финансовой поддержке Программы ОФН РАН «Физика новых материалов и структур»

Библиографический список

1. CE Weitzel, JW Palmour, CH Carter, KJr Moore, KJ Nordquist, S Allen, C Theroand, MBhatnagar, *IEEETrans.Electron Devices*, **43**, 1732, (1996)

2. W. Zhou, L. Yan, Y. Wang, and Y. Zhang, APPL. PHYS. LETT, 89, 013105 (2006)

3. W. Yang, H. Araki, Q. L. Hu, N. Ishikawa, H. Suzhki, and T. Noda, *J.Phys.: Condens. Matter*, **264**, 278, (2004).

4. T. Seeger, P. K. Redlich, and M. Rühle, Adv. Mater., 12, 279, (2000)

5. H. J. Dai, Eric W. Wong, Y. Z. Lu, S. S. Fan, and C. M. Lieber, *Nature*, **375**, 769, 1995.

6. X. Luo, W. Ma, Y. Zhou, D. Liu, B. Yang, Y. Dai, Nanoscale Res Lett (2010), 5, 252-256

7. S. Dhage, H.C. Lee, M.S. Hassan, M.S. Akhtar, C.Y. Kim, J.M. Sohn, K.J. Kim, H.S. Shin, O.B. Yang, *Mater. Lett.* **63**, 174, (2009).

8. W.S. Shi, Y.F. Zheng, H.Y. Peng, N. Wang, C.S. Lee, S.T. Lee, *J. Am. Ceram. Soc.*, **83**, 3228, (2000). 9. Y. W. Ryu and K. J. Yong, J. Vac., *Sci. Technol.*, **B 23**, 2069, (2005).

10. C. C. Tang, Y. Bando, T. Sato, and K. Kurashima, Appl. Phys. Lett., 80, 4641, (2002).

11. Z. S. Wu, S. Z. Deng, N. S. Xu, J. Chen, J. Zhou, and J. Chen, Appl. Phys. Lett., 80, 3829, (2002).

12. S. Kagamihara, M. Komeda, and H. Matsuura, Inst. Phys. Conf. Ser., 184, 325, (2005).

13. P. G. Neudeck, J. Electron. Mater., 24, 283, (1995).

14. H. K. Seong, H. J. Choi, S. K. Lee, J. Lee, and D. J. Choi, Appl. Phys. Lett., 85, 1256 (2004).

15. T. D. Corrigan, D. M. Druen, A. R. Krauss, P. Zapol, and R. P. Chang, *Diamond Relat. Mater.*, 10, 43, (2002).

16. A.W. Weimer, K.J. Nilsen, G.A. Cochran, R.P. Roach, AIChE Journal, 39, 493 (1993)

17. D.-H. Wang, D. Xu, Q. Wang, Y.-J.Hao, G.-Q.Jin, X.-Y.Guo, K N Tu, *Nanotechnology*, **19**, (2008), 215602 (7pp)

18. D. Zhang, A. Alkhateeb, H. Han, H. Mahmood, and D.N. McIlroy, Nano Letters, 2003, 3 (7), pp 983–987

19. Z.Li, W. Gao, A. Meng, Z. Geng and L. Gao, J. Phys. Chem., C 113, (2009), 91-96

20. Z. Xie, D.Tao, J. Wang, J. Nanoscience and Nanotechnology, 7, № 2, 2007, pp. 647-652.

21. H. J. Li, Z. J. Li, A. L. Meng, K. Z. Li, X. N. Zhangand Y. P. Xu, *J. of Alloys and Compounds*, **352**, iss. 1-2, 2003, p. 279-282.

22. W. M. Zhou, B. Yang, Z. X. Yang, F. Zhu, L. J. Yan, Y. F. Zhang, *Applied Surface Science*, **252**, (2006), 5143–5148.

23. Tang C C, Bando Y, Sato T, Kurashima K, Ding X X, Gan Z W and Qi S R, *Appl. Phys. Lett.*, 2002, **80**, 4641–3.

24. Wang Z L, Dai Z R, Gao R P, Bai Z G and Gole J L, Appl. Phys. Lett., 2000, 77, 3349-3351.

25. Wu R B, Wu L L, Yang G Y, Pan Y, Chen J J, Zhai R and Lin J, *J. Phys. D: Appl. Phys.*, 2007, **40**, 3697–701.

26. Weimin Zhou, Xuan Liu, and Yafei Zhang, Appl. Phys. Lett., 2006, 89, 223124.

27. S. Dhage, H-C.Lee, M. Shamshi Hassan, M. ShaheerAkhtar, C.-Y. Kim, J. M. Sohn, K., J. Materials Letters, 63, Issue 2, 2009, pp174-176.

28. G.W. Meng, L.D. Zhang, C.M. Mo, S.Y. Zhang, Y.Qin, S.P. Feng, H.J. Li, *J Mater. Res.*, 1998, 13, p 2533. 29. W.Stober, A.Fink, E.Bohn, *J.Colloidal Interface Sci.*, 1968, **26**, 62.

30. И.И.Бардышев, А.Д.Мокрушин, А.А.Прибылов, Э.Н.Самаров, В.М.Масалов, И.А.Карпов, Г.А.Емельченко, *Коллоидный журнал*, 2006, **68**, №1, с. 25.

31. C.Wu, X. Liao, J. Chen, Nanotechnology, 2010, 21, 405303.

32. Y.H. Gao, Y. Bando, K. Kurashima, T. Sato, J. Mater. Sci., 2002, 37, 2023.

33. Чернов А.А., Современная кристаллография, «Наука», 1980, Москва, т. 3. стр. 176

34. B.R. Pamplin, Crystal Growth, 2-nd ed. Pergamon Press, 1980, p. 58.

35. W. Han, Sh. Fan, Q. Li, W. Liang, B. Gu, D. Yu, Chemical Physics Letters, 1997, 265, 374-378.

36. R.S. Wagner, W.G. Ellis, Appl. Phys. Lett., 1964, 4, 89.

37. H.W. Shim, J. Zhang and H. Huang, Journal of Applied Physics, 2008, 104, 063511.

38. W.M.Zhou, Z.X. Yang, F.Zhu, Y.F. Zhang, *Physica E*, 2006, **31**, 9-12.

Сведения об авторах

Е.А.Кудренко: канд. физ-мат. наук, ст. научный сотрудник Института физики твёрдого тела РАН, Черноголовка Московской области, Россия, lenak@issp.ac.ru, тел +7(49652) 27414;

В.Роддатис: канд. физ-мат. наук, ст. науч. сотрудник РНЦ «Курчатовский институт», Москва, Россия;

А.А.Жохов: канд. техн. наук, ст. научный сотрудник Института физики твёрдого тела РАН, Черноголовка Московской области, Россия, jokhov@issp.ac.ru, тел +7(49652) 28380;

И.И.Зверькова: канд. хим. наук, ст. научный сотрудник Института физики твёрдого тела РАН, Черноголовка Московской области, Россия, zverkova@issp.ac.ru, тел +7(49652) 28414;

И.И.Ходос: д-р физ-мат. наук, зав. лабораторией Института проблем технологии микроэлектроники и особо чистых материалов РАН, Черноголовка Московской области, Россия, khodos@iptm.ru, тел +7(49652) 44193;

Г.А.Емельченко: д-р. техн. наук, зав. лабораторией Института физики твёрдого тела РАН, Черноголовка Московской области, Россия, emelch@issp.ac.ru, тел +7(49652) 24693.

ПОЛУЧЕНИЕ УНТ-SiO₂ КОМПОЗИТОВ С ИСПОЛЬЗОВАНИЕМ ОЛИГОМЕТИЛГИДРИДСИЛОКСАНА В КАЧЕСТВЕ ПРЕДШЕСТВЕННИКА SiO₂

(Поступила в редакцию 21.02.12, переработанный вариант - 30.03.12, принята к печати – 03.04.2012г.)

В.В.Чесноков*, А.С.Чичкань, В.И.Зайковский, Е.А.Паукштис, В.Н. Пармон

Институт катализа им. Г.К.Борескова СО РАН, г. Новосибирск

Разработан метод синтеза УНТ-SiO₂ композита с использованием олигометилгидридсилоксана (ОМГС) в качестве предшественника SiO₂. Наличие активного водорода в составе олигометилгидридсилоксана позволило достичь химического взаимодействия между поверхностью углеродных нанотрубок и нанесенным слоем оксида кремния. Исследовано влияние пленки оксида кремния на окисление УНТ кислородом. Установлено, что скорость окисления УНТ-SiO₂ композита уменьшается примерно на порядок по сравнению с исходными УНТ. Изучены морфология и структура аморфного оксида кремния, получающегося после окисления УНТ-SiO₂ композита. Исследована термическая стабильность УНТ-SiO₂ композита. Установлено, что в инертной среде УНТ-SiO₂ композит обладает термической стабильностью до температур 1100-1200 °C. Повышение температуры прокалки до 1300 °C приводит к разделению УНТ-SiO₂ композита на отдельные составляющие: УНТ и частицы SiO₂.

Ключевые слова: углеродные нанотрубки, оксид кремния, композит, окисление, термическая стабильность.

FABRICATION OF CNT-SiO₂ COMPOSITES WITH USE OF OLIGOMETHYLHYDRIDESILOXANE AS THE PRECURSOR OF SiO₂

V.V.Chesnokov, A.S.Chichkan, V.I.Zaikovskii, E.A.Paukshtis, V.N.Parmon

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia

A new method of fabrication of CNT-SiO₂ composite is developed. The oligomethylhydridesiloxane (OMHS) was used as the precursor of SiO₂. The presence of active hydrogen in the composition of OMHS made it possible to reach the chemical interaction between the surface of carbon nanotubes and the deposited layer of the silicon oxide. An effect of the silicon oxide film on the oxidizing ability of CNT is studied. It is found that the oxidation rate of the CNT-SiO₂ composite decreases approximately by an order of the magnitude in comparison with the virgin CNT. The morphology and structure of the amorphous silicon oxide obtained after oxidation CNT-SiO₂ composite were studied. The thermal stability of the CNT-SiO₂ composite was also studied. It is found that the cNT-SiO₂ composite is thermally stable up to temperatures of 1100-1200°C. An increase in the temperature of head tempering to 1300°C leads to separation of CNT-SiO₂ composite into individual components: CNT and particles of SiO₂.

The keywords: carbon nanotubes, the oxide of silicon, composite, oxidation, thermal stability.

1. Введение

Среди современных и весьма перспективных материалов важное место занимают углеродные нанотрубки (УНТ) и углеродные нанонити (УНН). Эти материалы обладают богатым набором уникаль-

ных свойств: высокими прочностью и электропроводностью, коррозионной стойкостью, совместимостью с живыми тканями и др. Благодаря этому перспективы использования этих материалов в разных областях достаточно широки [1-3]. В последние годы ведутся интенсивные исследования по созданию композиционных материалов с использованием УНТ и УНН, особенно на основе полимерных [4,5] и металлических матриц [6,7]. Ещё более широкому использованию углеродных наноматериалов мешает их способность окисляться при средних и высоких температурах в окислительной среде. В работе [8] указывается, что этот недостаток может быть преодолен посредством защиты углеродных нановолокон, полученных из полиакрилонитрила, керамической матрицей, которая действует как диффузионный барьер между кислородом и поверхностью углерода. Проведенные исследования показали [9-16], что нанесение тонкой пленки SiO₂ на поверхность углеродных наноматериалов существенно замедляет окисление углерода. Наиболее часто используемый метод нанесения оксида кремния на углеродные наноматериалы включает гидролиз тетраэтоксисилана и нанесение полученного золя на поверхность углеродных материалов. Для нанесения SiO, на поверхность различных углеродных материалов (сажу, активированный уголь, СИБУНИТ, углеродные нанонити (УНН)) в работе [17] был использован золь-гель метод. Авторы [17] использовали проведение гидролиза тетраэтоксисилана (ТЭОС) в кислой (H₂O-HCl) среде. Для получения композита УНН-SiO, полученный золь смешивали с углеродным материалом, сушили при комнатной температуре и прокаливали 300 °С. Однако полученный таким образом УНН-SiO, композит больше представлял собой матрицу SiO₂, в которую ввели углеродные нанонити.

Качество композиционного материала существенно зависит от характера взаимодействия между матрицей и наполнителем. В описанных выше композитах взаимодействие между углеродом и оксидом кремния ограничивается ван-дер-ваальсовыми силами. Кроме того, использованные методы включают проведение длительного, в течение нескольких суток гидролиза ТЭОС, что делает эти методы не технологичными. Поэтому продолжаются попытки улучшить метод получения композитов «углеродный материал-SiO₂». В работе [18] в качестве альтернативного предшественника получения SiO₂ на поверхности углеродных нанонитей использовали этилсиликат, а в [19] – смесь ТЭОС и метилтриэтоксисилана (МТЭС) в присутствии цетилтриметиламмоний бромида.

В настоящей работе в качестве предшественника SiO₂ при нанесения оксида кремния на поверхность УНТ предлагаем использовать олигометилгидридсилоксан (ОМГС). Особенностью строения и состава олигоорганогидридсилоксанов является наличие в молекулах олигомеров реакционноспособных по отношению к различным функциональным группам поверхностей твердых тел связей Si-H. Такие связи, взаимодействуя с функциональными группами поверхности, образуют на ней тонкую пленку силоксана [20]. Можно полагать, что содержание активного водорода в составе ОМГС позволит усилить взаимодействие между поверхностью углеродных нанотрубок и нанесенным слоем оксида кремния, что положительно скажется на свойствах получаемых УНТ- SiO₂композитов.

2. Методика эксперимента

Использованный в работе ОМГС имеет формулу:

$$(CH_3)Si - O - \begin{bmatrix} CH_3 \\ | \\ -Si - O - \\ | \\ H \end{bmatrix} - Si(CH_3)_3,$$

где n – меняется в пределах 4-80. Чистота ОМГС - 97 vol.%.

№ 1

2012

Углеродные нанотрубки были получены разложением пропан-бутановой смеси на 31%СоО-7% MoO₃-24% Fe₂O₃-Al₂O₃ катализаторе при 700 °C [21]. Электронная микроскопия позволила оценить их средние геометрические размеры. Внешний диаметр трубок изменялся в пределах 10-25 нм, в основном - 12-17 нм, их внутренний диаметр был в пределах 6-12 нм. Длина УНТ достигала 10⁴ нм. Содержание углеродных трубок с указанными характеристиками в их общей массе составляла около 95 мас.%. Для создания кислотных центров на поверхности УНТ и удаления остатков катализатора роста углеродных нанотрубок образцы обрабатывали в смеси кислот. С этой целью исходные УНТ заливали «царской водкой», нагревали до температуры кипения раствора и перемешивали в течение 30 мин. Затем раствор сливали. Углеродные нанотрубки промывали дистиллированной водной и сушили в муфеле при температуре 120 °С в течение 30 мин. Нанесение олигометилгидридсилоксана проводили из спиртового раствора. 5 г УНТ заливали 40 мл 10 мас.% раствора ОМГС в этиловом спирте. Раствор выпаривали при нагревании на магнитной мешалке. Полученный ОМГС-УНТ композит сушили при температуре 150 °C в течение часа. Вес УНТ после нанесения ОМГС увеличивался примерно на 35-40 %. Затем ОМГС-УНТ образцы нагревали в проточном кварцевом реакторе с весами Мак-Бена с чувствительностью по измерению массы 1х10⁻⁴ г в потоке аргона до температуры 720 °С и прокаливали при этой температуре в течение часа. Использование реактора с весами Мак-Бена позволяло контролировать изменение веса во время нагрева и прокаливания. Загрузка ОМГС-УНТ композита в реактор составляла 2,5 г. Основная потеря веса происходила при нагревании в интервале температур 350-600 °C. После прокалки при температуре 720 °C содержание оксида кремния в УНТ-SiO₂ композите составляло примерно 15 мас.%.

Кинетику окисления углеродных нанотрубок также исследовали в проточном кварцевом реакторе с весами Мак-Бена. Вначале образец нагревали до требуемой температуры (600-750 °C) в потоке аргона 75 л/ч. Окисление УНТ-SiO₂ композита проводили в среде кислорода, разбавленного аргоном в мольном соотношении O₂:A r = 10:75. Использовавшийся в работе аргон имел чистоту 99,99 об%, а кислород - 99,9 об%.

Рентгенографическое исследование образцов проводили на дифрактометре *D-500* (*Siemens*) с использованием CuK_а монохроматизированного излучения.

Снимки просвечивающей электронной микроскопии высокого разрешения (ПЭМВР) получали на электронном микроскопе *JEM-2010 (JEOL*, Япония) с разрешением по решетке 0.14 нм. Локальный энерго-дисперсионный рентгеновский микроанализ (EDX-анализ) осуществляли на спектрометре EDAX (EDAX Co.), оснащенном Si (Li) детектором с разрешением по энергии 130 эВ.

Измерения ИК спектров проводили методикой диффузного отражения на спектрометре *Shimadzu* 8300 оборудованным приставкой *DRS-8000* в диапазоне 400-4000 см⁻¹ с разрешением 4 см⁻¹. Для регистрации каждого спектра проводили усреднение по 400 сканам. Полученные спектры из шкалы отражения переводили в шкалу функции Кубелки-Мунка (Kubelka-Munk) $F(R) = (1-R)^2/2R$, где R - коэффициент отражения, и затем корректировали (спрямляли) базовую линию. Полученные спектры приведены в координатах волновое-число – значения функции F(R). В целях удобного представления спектр исходного органосиликатного соединения по шкале F(R) уменьшен в 30 раз. К сожалению, отношение сигнал/шум в диапазоне выше 2300 см⁻¹ оказался настолько значительным, что спектры в высокочастотной области оказались недостоверными и на представленных рисунках исключены.

3. Генезис фазового состава УНТ- SiO₂ композита после нанесения ОМГС ИК спектроскопическое исследование

На рис.1 представлен ИК спектр УНТ после их обработки в «царской водке» (1). ИК спектр характеризуется наличием слабоинтенсивных полос поглощения при волновых числах равных

Компози	ты и наноструктуры
COMPOSITES and	NANOSTRUCTURES

956 и 1087 см⁻¹, которые могут быть связаны с колебаниями графитовых колец и валентных колебаний С-О связей соответственно. Кроме того, в спектре (1) наблюдаются полосы поглощения при 1271 и 1645 см⁻¹, которые связаны с наличием карбоксилатных групп на поверхности УНТ.

Перед нанесением на УНТ был снят спектр чистого ОГМС. На рис.1 амплитуда спектра ОГМС (2) уменьшена в 30 раз. Моделирование колебательного спектра в программном пакете «Hyperchem» показало, что полоса при 553 см⁻¹ относится к деформационным колебаниям O-Si-O. Полоса при 700 см⁻¹ относится к колебаниям C-H связей. Группа полос при 786, 871, 917 и 1805 см⁻¹ относится к деформационным колебаниям O-Si-H связей. Полоса поглощения при 940 см⁻¹ может быть связана с деформационным колебаниям C-O групп. Полосы при 1166 и 1236 см⁻¹ обусловлены валентным колебаниям C-O групп. Полосы при 1166 и 1236 см⁻¹ обусловлены валентным колебаниям CH₃ групп. Полоса поглощения колебаниям CH₃ см⁻¹ может быть приписана к деформационным колебаниям CH₃ и 1410 см⁻¹ может быть приписана к деформационным колебаниям CH₃ и 2190 см⁻¹ соответствуют колебаниям Si-H связи [20].

На ИК спектре УНТ после нанесения на них ОГМС (3) отсутствуют полосы поглощения при 2120 и 2190 см⁻¹, соответствующие колебаниям Si-H связей. Из этого можно сделать вывод, что происходит взаимодействие Si-H групп в силоксане с кислотными OH группами на поверхности УНТ, возможно, по реакции:

$$C-OH + H-Si = C-O-Si + H_2$$
(1)

Рис. 1. ИК спектры диффузного отражения УНТ (1), ОГМС (2), УНТ после нанесения ОГМС (3) и УНТ после нанесения ОГМС и прокаливания при 720°С (4)

Diffuse reflectance IR spectra of CNT (1), OMHS (2), CNT after OMHS deposition (3) and CNT after OMHS deposition and calcination at 720 °C (4)

№ 1 2012 Кроме того, полоса поглощения при 1166 см⁻¹, связанная с образованием полисилоксановой Si-O-Si пространственной сетки, сдвигается в высокочастотную область 1184 см⁻¹, что свидетельствует о росте трехмерной структуры. На рис.1 спектра (4) полоса поглощения при 1166 см⁻¹, связанная с образованием полисилоксановой Si-O-Si пространственной сетки, сдвигается в ещё более высокочастотную область 1260 см⁻¹. Следовательно, прокалка полученного УНТ-SiO₂ композита при температуре 720 °C в инертной среде приводит к дальнейшему формированию пленки аморфного оксида кремния. Заметим, что частота Si-O валентных колебаний при 1260 см⁻¹ для образца, прогретого при температуре 720 °C, имеет несколько большее значение, чем типично для массивных оксидов кремния. Возможно, это может быть обусловлено как особенностями структуры (например, ограниченностью протяженности длины цепочек Si-O-Si-O), так и высокой диэлектрической проницаемостью углеродной подложки.

4. Результат электронно-микроскопического исследования

На рис. 2 представлен электронно-микроскопический снимок УНТ с нанесенным высокомолекулярным кремнийорганическим соединением после прокалки при температуре 720 °С в инертной среде. Видно, что прокалка кремнийорганических соединений, нанесенных на УНТ, приводит к образованию композита «УНТ-аморфный SiO₂». На рис. 3 представлено схематическое изображение УНТ-SiO₂ композита.

5. Влияние пленки оксида кремния на стойкость УНТ- SiO₂ композита к окислению кислородом

На рис. 4 представлены кинетические кривые окисления исходных УНТ в среде кислорода, разбавленного аргоном в мольном соотношении O_2 : Ar = 10:75, при различных температурах. Вид-

Рис. 3. Схематическое изображение УНТ-SiO, композита

Schematic drawing of a CNT-SiO₂ composite

но, что исходные УНТ довольно быстро окисляются в рассматриваемых условиях. В результате окисления вес уменьшается на 97 мас.%, причем недоокисленный остаток (3 мас.%) образца является «зольным» - это катализатор роста УНТ. Обработка УНТ в «царской водке» приводит к растворению части остатков катализатора роста УНТ, что приводит к снижению скорости окисления УНТ. На рис. 5 представлены кинетические кривые окисления исходных УНТ (1) и после их обработки в «царской водке» (2) в среде кислорода, разбавленного аргоном в мольном соотношении O_2 :Ar=10:75, при температуре 600 °C. На рис. 5 представлены также кинетические кривые окисления УНТ-SiO₂ композита в тех же условиях. Видно, что скорости окисления исходных УНТ и УНТ-SiO₂ различаются примерно на порядок.

*Рис. 4. Кинетические кривые окисления исходных УНТ в среде кислорода, разбавленного аргоном в мольном соотношении О*₂:Ar=10:75, при различных температурах</sub>

Oxidation kinetic curves of virgin CNT in oxygen diluted with argon in molar ratio O_2 : Ar = 10:75 at different temperatures

При повышении температуры окисления УНТ-SiO₂ композита скорость окисления углеродных нанотрубок возрастает. Однако значительное различие в скоростях окисления УНТ (рис.6) и УНТ-SiO₂ композита сохраняется и при более высоких температурах. Это свидетельствует о том, что значительная часть поверхности УНТ покрыта слоем оксида кремния, который эффективно влияет на взаимодействие молекул кислорода с поверхностью углерода.

-100

0

20

40

60

100

120

140

160

80

Time, min

Oxidation kinetic curves of virgin CNT (1), CNT after treatment in aqua regia (2) and CNT-SiO₂(3) in oxygen diluted with argon in molar ratio O₂:Ar = 10:75 at 600 °C

Рис.6. Кинетические кривые окисления УНТ- SiO_2 композита в среде кислорода, разбавленного аргоном в мольном соотношении O_2 : Ar = 10:75, при различных температурах

Kinetic oxidation curves of CNT-SiO₂ composite in oxygen diluted with argon in molar ratio O_2 : Ar = 10:75 at different temperatures

На рис. 7 представлен электронно-микроскопический снимок аморфного SiO₂, образующегося после выгорания УНТ из УНТ-SiO₂ композита. Как видно из рис. 7, в структуре оксида кремния имеются вытянутые каналы. Образование этих каналов обусловлено выгоранием УНТ, которые были покрыты пленкой оксида кремния т.е. после выгорания углеродных нанотрубок остаются реплики SiO₂. Насыпная плотность образца SiO₂ – 0,06 г/см³. Удельная поверхность – 850 м²/г. Таким образом, после выгорания углеродных нанотрубок из УНТ-SiO, композита получается SiO, аэрогельного типа.

6. Термическая стабильность УНТ-SiO₂ композита

Образцы УНТ-SiO₂ композита, запаянные в кварцевые ампулы, прокаливали в инертной среде в муфельной печи при температурах 1100-1300 °С. Прокалка УНТ-SiO₂ композита при температуре 1100 °С в течение часа не приводила к каким-либо изменениям в морфологии и структуре пленки оксида кремния. Однако повышение температуры прокалки до 1300 °С приводило к частичному спеканию пленки оксида кремния с образованием сферических частиц аморфного SiO₂. На рис. 8 представлен электронно-микроскопический снимок УНТ-SiO₂ композита после прокалки без доступа воздуха при температуре 1300 °С в течение часа. На рис. 8 присутствуют УНТ и сферические частицы SiO₂ диаметром 60 нм.

Таким образом, УНТ-SiO₂ композит обладает термической стабильностью до температуры 1100-1200 °С. Повышение температуры прокалки до 1300 °С приводит к разделению УНТ-SiO₂ композита на отдельные составляющие: УНТ и частицы SiO₂.

7. Выводы

1. Разработан метод синтеза УНТ-SiO₂ композита с использованием олигометилгидридсилоксана (ОМГС) в качестве предшественника SiO₂. Наличие активного водорода в составе ОМГС

№ 1

2012

*Рис. 8. Электронно-микроскопический снимок УНТ-SiO*₂ композита после прокалки без доступа воздуха при температуре 1300 °C в течение часа

TEM micrograph of CNT-SiO, composite after calcination without access of air at 1300 °C for 1 h

позволило достичь химического взаимодействия между поверхностью углеродных нанотрубок и нанесенным слоем оксида кремния.

2. Исследовано влияние пленки оксида кремния на стойкость УНТ к окислению в кислородноаргоновой смеси. Установлено, что скорость окисления УНТ-SiO₂ композита уменьшается примерно на порядок по сравнению с исходными УНТ, не имеющими покрытия SiO₃.

3. Изучены морфология и структура аморфного оксида кремния, получающегося после окисления УНТ-SiO₂ композита и выгорания углерода. Насыпная плотность образца SiO₂ – 0,06 г/см³, удельная поверхность – 850 м²/г, что позволяет относить получающийся оксид кремния к SiO₂ аэрогельного типа.

4. Исследована термическая стабильность УНТ-SiO₂ композита в инертной среде. УНТ-SiO₂ композит обладает термической стабильностью до температур 1100-1200 °С. Повышение температуры прокалки до 1300 °С приводило к разделению УНТ-SiO₂ композита на отдельные составляющие: УНТ и частицы SiO₂.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований – проект 11-08-12104-офи-м-2011.

Сведения об авторах:

В.В.Чесноков: д-р хим. наук, ведущий научный сотрудник Института катализа им. Г.К. Борескова СО РАН, chesn@catalysis.ru, тел. +7 (383)326 97 92

А.С.Чичкань: мл. науч. сотрудник Института катализа им. Г.К. Борескова СО РАН, AlexCsh@yandex.ru, тел. +7 (383)326 97 92

В.И.Зайковский: канд. хим. наук, старший научный сотрудник Института катализа им. Г.К. Борескова СО РАН, viz@catalysis.ru, тел. +7 (383)326 97 81

Е.А.Паукштис: д-р хим. наук, заведующий лабораторией Института катализа им. Г.К. Борескова СО РАН, pau@catalysis.ru, тел. +7 (383) 330 96 85

№ 1

2012

В.Н.Пармон: академик, директор Института катализа им. Г.К. Борескова СО РАН, parmon@catalysis.ru тел. +7(383)330 82 69

Библиографический список

1. Triantafyllidis K.S., Karakoulia S.A., Gournis D., Delimitis A., Nalbandian L., Maccallini E., *Micropor Mesopor Mat.*, 2008, **110**, pp.128-140.

2. François Léonard, The Physics of Carbon Nanotube Devices, William Andrew Inc., 2009

3. Дьячков П.Н., Электронные свойства и применение углеродных нанотрубок, М., Бином, 2010, с. 488.

4. Coleman J.N., Khan U., Gun'Ko Y.K., Mechanical reinforcement of polymers using carbon nanotubes, *Adv. Mater.*, 2006, **18**, pp.689–706.

5. Morales G., Barrena M.I., Gómez de Salazar J.M., Merino C., Rodríguez D., Conductive CNF-reinforced hybrid composites by injection moulding, *Compos. Struct.*, 2010, **92**, pp.1416–1422.

6. Gómez de Salazar J.M., Barrena M.I., Merino C., Merino N., Preparation of CNF surface to coat with copper by electroless process, *Mater. Lett.*, 2008, **62**, pp. 494–497.

7. Dong S.R., Tu J.P., Zhang X.B., An investigation of the sliding wear behaviour of Cu-matrix composite reinforced by carbon nanotubes, *Mat. Sci. Eng. A-Struct.*, 2001, **313**, pp.83–87.

8. Kim B.-H., Kim C.H., Yang K.S., Kim K.-Y., Lee Y.-J., SiC/SiO₂ coating for improving the oxidation resistive property of carbon nanober, *Appl. Surf. Sci.*, 2010, 257, pp.1607–1611.

9. Yang Y., Qiu S., Cui W., Zhao Q., Cheng X., Li R.K.Y., Xie X., Mai Y.-W., A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates, *J. Mater. Sci.*, 2009, **44**, pp.4539–4545.

10. Balazsi C., Konya Z., Weber F., Biro L.P., Arato P., Preparation and characterization of carbon nanotube reinforced silicon nitride composites, *Mat. Sci. Eng. C-Bio. S.*, 2003, 23, pp.1133–1137.

11. Wang J., Kou H., Liu X., Pan Y., Guo J., Reinforcement of mullite matrix with multi-walled carbon nanotubes, *Ceram. Int.*, 2007, **33**, pp.719–722.

12. Ning J., Zhang J., Pan Y., Guo J., Fabrication and mechanical properties of SiO₂ matrix composites reinforced by carbon nanotube, *Mat. Sci. Eng. A-Struct.*, 2003, **357**, pp.392–396.

13. Xiang C.S., Shi X.M., Pan Y.B., Guo J.K., Fabrication and dielectric properties of CNTs/SiO₂ composites, *Key Eng. Mater.*, 2005, **280/283**, pp.123–127.

14. Ning J.W., Zhang J.J., Pan Y.B., Guo J.K., Surfactants assisted processing of nanotube-reinforced SiO₂ matrix composites, *Ceram. Int.*, 2004, **30**, pp.63–67.

15. Guo J.K., Ning J.W., Pan Y.B., Fabrication and properties of carbon nanotube/SiO₂ composites, *Key Eng. Mater.*, 2003, **249**, pp.1–4.

16. Hussain F., Hojjati M., Okamoto M., Gorga R.E., Review article: polymer–matrix nanocomposites, processing, manufacturing, and application: an overview, *J. Compos. Mater.*, 2006, **40**, pp.1511–1575.

17. Ermakova M.A., Ermakov D.Yu., Kuvshinov G.G., Fenelonov V.B. and Salanov A.N., Synthesis of high surface area silica gels using porous carbon matrices, *J. Porous Materials*, 2000, **7**, pp.435-441.

18. Barrena M.I., Gómez de Salazar J.M., Soria A., Matesanz L., Pre-hydrolysed ethyl silicate as an alternative precursor for SiO₂-coated carbon nanobers, *Applied Surface Science*, 2011, **258**, pp.1212–1216.

19. Шаранда Л.Ф., Огенко В.М., Волков С.В., Синтез наноразмерных структур на основе углеродных нанотрубок с использованием золь-гель технологии, Международный симпозиум «Фуллерены и наноструктуры в конденсированных средах» 14-17 июня 2011 года г. Минск, *Наноструктуры в конденсированных средах*, сб. науч. ст., редкол. : Н.А. Витязь (отв.ред.), Минск : Изд. центр БГУ, 2011,**381**, с. 42-47.

20. Соболевский М.В., Скороходов И.И., Гриневич К.П., Олигоорганосилоксаны. Свойства, получение, применение, М., Химия, 1985, с.221-226.

21. Чесноков В.В., Буянов Р.А., Чичкань А.С., Разработка катализатора и технологических основ приготовления наноразмерных углеродных трубок, *Кинетика и катализ*, 2010, **51**, №5, с.803-808.

620-22:546-4

ПОЛУЧЕНИЕ НАНОСТРУКТУРИРОВАННЫХ ПОКРЫТИЙ SnO₂ ЧЕРЕЗ НОВЫЕ ЛЕТУЧИЕ ПРЕКУРСОРЫ МЕТОДОМ АРСVD С ИНДУКЦИОННЫМ НАГРЕВОМ

(поступила в редакцию 16.04.2012, принята к печати 20.04.2012)

В.С.Попов, В.Г.Севастьянов, Н.Т.Кузнецов

Институт общей и неорганической химии им. Н.С.Курнакова РАН, Москва

Выполнены синтез и идентификация четырех летучих координационных соединений олова: [Sn(AcAc)₂Cl₂], [Sn(H₂O)₂Cl₄]·18K6, [Sn(18K6)Cl₄], [Sn(H₂O)₂Cl₄]·15K5. Синтезированные соединения использованы в качестве новых прекурсоров покрытий диоксида олова в химическом парофазном осаждении при атмосферном давлении (APCVD) на установке с индукционным нагревом в зоне деструкции. Полученные покрытия охарактеризованы комплексом физико-химических методов анализа. Исследована взаимосвязь морфологии покрытий и использовавшихся прекурсоров.

Ключевые слова: CVD, диоксид олова, летучие соединения олова

SYNTHESIS OF NANOSTRUCTURED SnO₂ COATINGS THROUGH NEW VOLATILE PRECURSORS BY APCVD WITH INDUCTION HEATING

V.S.Popov, V.G.Sevastynov, N.T.Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow

In this paper four volatile tin coordination compounds $[Sn(AcAc)_2Cl_2]$, $[Sn(H_2O)_2Cl_4] \cdot 18K6$, $[Sn(18K6)Cl_4]$, $[Sn(H_2O)_2Cl_4] \cdot 15K5$ were synthesized and identify. Synthesized compounds were used as new precursors for tin dioxide coatings in atmospheric pressure chemical vapor deposition (APCVD) at the facility with induction heating in destruction zone. The coatings were characterized with physicochemical methods of analysis. Relationship of coatings morphology and precursors was investigated.

Key words: CVD, tin dioxide, volatile tin compounds

1. Введение

Диоксид олова широко известен в качестве чувствительного материала для газовых сенсоров [1-4]. Среди методов получения тонких пленок SnO₂ химическое парофазное осаждение (CVD) при атмосферном давлении (APCVD) обладает рядом преимуществ [5-6]. Наиболее важными для хемосенсорики являются: удобство управления параметрами получаемых пленок, возможность нанесения покрытий на подложки со сложной топографией, высокая чистота получаемого покрытия и возможность получения материала с высокой удельной поверхностью. Ограничивает применение метода сравнительно небольшая номенклатура прекурсоров [7].

Использование наноструктурированных чувствительных материалов позволяет значительно повысить эксплуатационные характеристики газовых сенсоров [8,9]. Низкие температуры син-

теза - одно из необходимых условий получения наноматериалов, поэтому координационные соединения олова, переходящие в газовую фазу без термодеструкции при сравнительно низких температурах и при этом имеющие температуру разложения меньшую температуры плавления целевого материала, перспективны для синтеза нанокристаллического диоксида олова через газофазные процессы [6,10].

Неорганические и координационные соединения олова широко применяются в CVD технологии получения наноматериалов [6]. Наиболее распространенным из них является тетрахлорид олова (IV) [11], однако он имеет высокую гидролитическую активность, существенно затрудняющую работу с ним. Замещение двух атомов хлора на ацетилацетонатные лиганды (AcAc) должно приводить к большему экранированию центрального атома, а следовательно, понижению гидролитической активности при сохранении достаточной летучести. Структура соединения дихлоробис-ацетилацетонатоолово (IV) ([Sn(AcAc)₂Cl₂]) подробно изучена методами рентгеноструктурного анализа [12-14], однако данных о его летучести в литературе нами не обнаружено.

Координационные соединения олова, имеющие в своем составе полидентатный лиганд - краун-эфир, обладающий высокой экранирующей способностью и обеспечивающий насыщение координационной сферы, представляют повышенный интерес в качестве летучих прекурсоров покрытий диоксида олова [15].

Соединение $[Sn(H_2O)_2Cl_4]$ ·18К6 подробно изучено в работе [16], показана его летучесть и перспективность в качестве прекурсора оксидных покрытий в CVD процессе.

Летучие соединения олова $[Sn(H_2O)_2Cl_4]$ ·18К6 и $[Sn(18K6)Cl_4]$, имеющие в своем составе краун-эфиры, были апробированы в качестве прекурсоров диоксида олова для хемосенсорики в CVD процессе с «аэрозольным помощником» (AACVD) [17]. Соединение $[Sn(18K6)Cl_4]$ обладает достаточной летучестью в интервале «температура плавления – температура деструкции» [17], что позволяет применить его в качестве стартового реагента и в APCVD процессе.

Соединение $[Sn(H_2O)_2Cl_4]$ ·15К5 описано в литературе только с точки зрения структурного анализа [18], однако схожесть его строения с летучим соединением $[Sn(H_2O)_2Cl_4]$ ·18К6 позволяет предположить подобие их свойств.

Среди различных видов аппаратурного оформления CVD процесса использование индукционной печи в зоне деструкции имеет ряд преимуществ [19]. ВЧ-установка позволяет нагревать непосредственно образец (подложку), находящийся в реакторе, при этом реактор нагревается в меньшей степени, разложение прекурсора и осаждение покрытия протекает преимущественно на подложке. В резистивной печи для наиболее эффективного и равномерного прогрева подложки её необходимо устанавливать вдоль реактора, что влечет за собой неравномерность поступления прекурсора, а следовательно, неоднородность покрытия подложки по длине. Ориентация подложки в индукционной печи играет значительно меньшую роль. Поэтому использование ВЧ-установки дает возможность расположения подложки перпендикулярно потоку газа-носителя, при этом создаются условия для осаждения более однородного покрытия.

Целью работы являлся синтез наноструктурированных покрытий диоксида олова на CVD установке с индукционной печью деструкции с использованием в качестве прекурсоров летучих координационных соединений олова, как с ацетилацетонатными лигандами, так и краун-эфирами (18К6, 15К5).

2. Экспериментальная часть

Методика синтеза соединений $[Sn(H_2O)_2Cl_4] \cdot 18K6$ и $[Sn(18K6)Cl_4]$ описана в [16] и [17], соответственно. Летучие продукты $[Sn(H_2O)_2Cl_4] \cdot 18K6$ и $[Sn(18K6)Cl_4]$ выделены индивидуально ме-

№ 1 2012

тодом сублимации при разрежении 10±1 Па и температуре 90-100 °C в виде поликристаллов, образующихся в холодной зоне.

Синтез соединения [Sn(AcAc)₂Cl₂] проводили при интенсивном перемешивании, добавляя навеску SnCl₂·2H₂O («Ч») в 0,1 М водный раствор соляной кислоты («ХЧ») с последующим добавлением ацетилацетона и диэтилового эфира. Целевой продукт образовывался на поверхности раздела вода-эфир. Отделенный фильтрацией продукт после высушивания подвергли возгонке при разрежении 10±1 Па и температуре 90-100 °C.

Соединение $[Sn(H_2O)_2Cl_4] \cdot 15K5$ синтезировали следующим образом. В 0,1 М водном растворе соляной кислоты («ХЧ») растворяли навеску SnCl_2·2H_2O («Ч») и при интенсивном перемешивании последовательно добавляли 15-Краун-5 (10%-избыток) (99% - Fluka), диэтиловый эфир («ЧДА») и ледяную уксусную кислоту («ХЧ»). Полученную реакционную смесь перенесли в кристаллизатор. В результате выдерживания при комнатной температуре в течение 4-х суток в кристаллизаторе образовались прозрачные игольчатые кристаллы, которые отделили от оставшейся реакционной смеси фильтрацией. Фильтрат высушили на воздухе. Стартовое мольное соотношение pearentoв 15K5:SnCl_2·2H_2O:CH_3COOH составило 1.1:1:2. Продукт, полученный в кристаллизаторе, подвергли возгонке при разрежении 10±1 Па и температуре 90-100 °C. Установлено, что соединение [Sn(H_2O)_2Cl_4]·15K5 сублимирует количественно, осаждаясь в холодной зоне в виде поликристаллов размером менее 0,1 мм, нелетучий осадок после контакта с воздухом темнеет.

Соединения идентифицированы методами колебательной спектроскопии (ИК Фурье-спектрометр «ИнфраЛЮМ ФТ-08» Люмэкс, Россия) и рентгенофазового анализа (РФА) (ДРОН-2 ЛОМО, Россия). Термохимическое поведение соединений исследовалось на совмещенном ТГА/ДТА/ДСК термоанализаторе (SDT Q600 TA Instruments, США).

Покрытия диоксида олова на подложках получали методом APCVD на лабораторной установке, схема которой приведена на рис. 1. Для контроля температуры в зоне испарения использова-

Рис.1. Схема установки для осаждения покрытий методом APCVD с индукционной печью деструкции. 1 - кварцевый реактор, 2 – резистивная печь (печь испарения), 3 – индукционная печь (печь деструкции), 4 – пирометр, 5 – термопара, 6 – цифровой регулятор подачи газа с выходом на ПК, 7 – баллон с газом-носителем, 8 – подложка, 9 – графитовый держатель-нагреватель

Scheme of APCVD tool with induction destruction furnace for deposition of coatings. 1 - quartz reactor, 2 - resistive furnace (evaporation), 3 - induction furnace (destruction), 4 - pyrometer, 5 - thermocouple, 6 - digital gas regulator with access to PC, 7 - balloon with carrier gas, 8 -substrate, 9 - graphite holder-heater

лась хромель-алюмелевая термопара (5), температура в печи деструкции измерялась с помощью ИК-пирометра (X-Line plRo 850 BOSCH, Германия) (4). Поток газа-носителя задавался с помощью газосмесительной установки (6) с цифровыми регуляторами потока (EL-Flow Bronkhorst, Нидерланды). Прекурсор в алюминиевой лодочке помещался в резистивную печь (2). В качестве печи деструкции (3) использовалась индукционная установка (Portable HF Induction Heating Machine SP-15, КНР). Для установки подложки (8) в положении, перпендикулярном потоку, использовался держатель, выполненный из графита (9). Существенным ограничением в данном подходе является необходимость использования подложки с достаточной проводимостью для её нагрева ВЧ электромагнитным полем. Используемый в качестве стандартных подложек полированный кремний при комнатной температуре обладает низкой проводимостью, поэтому примененный в установке графитовый держатель играет роль нагреватель. Проводимость кремния при нагревании возрастает и далее он уже самостоятельно нагревается в индукционной установке. Подложки представляли собой пластины полированного кремния размером в среднем 4x10x0,3 мм.

Условия проведения осаждения (табл. 1) выбирались на основании термохимических свойств соединений, установленных методом ДТА/ТГА (табл. 2). Температура осаждения выбрана для всех соединений одинаковой 510-530 °C, скорость газа-носителя (Ar) составляла 50 мл/мин.

Морфология полученных покрытий исследовалась методом сканирующей электронной (СЭМ) (NVision40 Carl Zeiss, Германия) и атомно-силовой микроскопии (ACM) (Solver ProM NT-MDT, Россия). Фазовый состав покрытия подтверждали методом РФА (ДРОН-2 ЛОМО, Россия).

Таблина 1

условия осаждения покрытии методом АРС V D		
Соединение Температура в печи-испарителе, °С		Температура осаждения покрытия, °С
$[Sn(AcAc)_2Cl_2]$	210-215	
[Sn(H ₂ O) ₂ Cl ₄] · 18K6	160-165	
[Sn(18K6)Cl ₄]	125-130	510-530
$[Sn(H_2O)_2Cl_4] \cdot 15K5$	210-215	

W MATCHAR Varanug agamagung nount

Таблица 2

Термохимические свойства соединений-прекурсоров

Соединение	Т _{пл} , °С	Т _{начала разл.} , °С	Т субл. (при Р=10±1 Па), °С
$[Sn(AcAc)_2Cl_2]$	200±5	270±5	80±1
$[Sn(H_2O)_2Cl_4] \cdot 18K6$	132±5	190±5	91±1
$[Sn(18K6)Cl_4]$	130±5	162±5	85±1
$[Sn(H_2O)_2Cl_4] \cdot 15K5$	212±5	287 ± 5	90 ±1

3. Результаты и обсуждение

Исследование соединений-прекурсоров. По данным колебательной спектроскопии для соединения $[Sn(AcAc)_2Cl_2]$ в области 1600-1500 см⁻¹ наблюдается интенсивное поглощение, которое соответствует сдвигу v(CO) 1620 см⁻¹ в ацетилацетоне в область меньших волновых чисел (1541 см⁻¹) свидетельствующее о бидентатной координации ацетилацетонатных групп [20].

Результаты ИК спектроскопии соединений $[Sn(H_2O)_2Cl_4] \cdot 18K6$, $[Sn(18K6)Cl_4]$, $[Sn(H_2O)_2Cl_4] \cdot 15K5$ (рис.2) свидетельствуют о координации краун-эфира. При сравнении колебательных спектров исходных молекул 18K6 и 15K5 и синтезированных комплексов в области 1450-800 см⁻¹ произошли существенные изменения, как в количестве, так и во взаимной интенсивности полос поглощения, что свидетельствует об изменении конформации 18-краун-6 и 15-краун-5 в процессе координации [21].

Рефлексы на рентгенограмме порошков $[Sn(AcAc)_2Cl_2]$ соответствуют карточке ICDD 34-1537 (рис. 3). Для соединений с краун-эфирными лигандами информации в базах порошковых рентгенограмм нами не было обнаружено. Поэтому при их идентификации по порошковым рентгенограмма использовался подход [16], заключающийся в сравнении экспериментально полученных порошковых рентгенограмм, с полученными расчетным способом с применением программного пакета Mercury CSD 2.3 на основе рентгеноструктурных данных, содержащихся в Кембриджском банке структурных данных (Cambridge Structural Database - CSD 5.31, 2012) (рис. 4). В результате сравнения экспериментальных и расчетных дифрактограмм выявлены совпадения в положении и относительной интенсивности рефлексов для соединений $[Sn(H_2O)_2Cl_4] \cdot 18K6$ [16], $[Sn(18K6)Cl_4]$ [22], $[Sn(H_2O)_2Cl_4] \cdot 15K5$ [18].

При сопоставлении (табл.. 2) температурных интервалов плавления и термодеструкции, определенных по данным синхронного ДТА/ТГА/ДСК анализа, установлено, что соединения [Sn(AcAc)₂Cl₂] и [Sn(H₂O)₂Cl₄]·15К5 характеризуется большими температурами плавления и начала разложения,

IR spectra for synthesized compounds

чем соединения $[Sn(H_2O)_2Cl_4]$ ·18К6 и $[Sn(18K6)Cl_4]$. Выявлено, что значения температур для соединения с 15К5 превышает соответствующие значения для близкого по строению соединения с 18К6 на 80-90°. При этом температуры сублимации всех синтезированных соединений при давлении 10 Па отличаются незначительно.

За время проведения экспериментов все синтезированные соединения не обнаружили чувствительности к влаге (не изменяли массу при длительном экспонировании при атмосферной влажности, после чего сублимировали без остатка).

Таким образом, как и предполагалось, соединения $[Sn(AcAc)_2Cl_2]$, $[Sn(H_2O)_2Cl_4] \cdot 15K5$ обладают достаточной летучестью и стабильностью при хранении, что подтверждает более полное насыщение координационной сферы и эффективное экранировании центрального атома ацетилацетонатными лигандами и краун-эфиром (15K5) по сравнению с тетрахлоридом олова. Все синтезированные соединения представляют интерес для использования в качестве прекурсоров диоксида олова в методе APCVD.

Характеризация покрытий. Количество и расположение рефлексов на рентгенограммах (рис. 5) подложек после CVD эксперимента указывает на то, что на поверхности подложек во всех случаях сформировано покрытие диоксида олова, соответствующее карточке ICDD 14-1445 (syn, касситерит). Рефлексы монокристаллического кремния имеют значительно меньшую интенсивность, чем рефлексы диоксида олова (рис. 5 a, c) или отсутствуют (рис. 5 b, d), что может свидетельствовать о полном и равномерном покрытии подложек диоксидом олова.

По данным сканирующей электронной и атомно-силовой микроскопии пластин полированного кремния до и после CVD эксперимента, можно заключить, что на поверхности подложек сформировались сплошные поликристаллические покрытия. Суммарные данные по морфологии покрытий по данным СЭМ и АСМ приведены в табл. 3. На рис. 6 видно, что во всех случаях покрытие образовано частицами, отличающимися по морфологии, размеру и плотности расположения в зависимости от используемого прекурсора. Покрытия, полученные из координационных соеди-

Рис. 4. Экспериментальные рентгенограммы синтезированных соединений и ренгенограммы, эмулированные на основе структурных данных из CSD

нений, имеющих в составе 18К6, имеют лишь незначительные отличия по габитусу частиц. Покрытия, полученные при термолизе двух других соединений, обладают меньшей дисперсностью; при этом покрытие, полученное при деструкции [Sn(AcAc)₂Cl₂], представляет собой неплотно упакованные агрегаты размером 150-200 нм, образованные более мелкими частицами (10-25 нм), вследствие чего данное покрытие имеет наибольшую шероховатость. Покрытие, полученное при разложении [Sn(H₂O)₂Cl₄]·15К5, образовано наиболее плотно уложенными частицами и имеет наименьшую среднюю арифметическую шероховатость (8 нм), сопоставимую с шероховатостью кремниевой подложки (2-3 нм).

Рис. 5. РФА покрытий на поверхности полированного кремния, полученных методом АРСVD

XRD images of coatings deposited by APCVD on polished silicon

Как правило, подобные отличия в дисперсности связаны с различным давлением пара прекурсоров и кинетикой их разложения [23]. Столь значительные отличия в морфологии полученных материалов, по нашему мнению, связаны в первую очередь с природой прекурсора. В частности, из сопоставления Табл.. 1-3 видно, что при большей разнице температуры деструкции соединения-прекурсора и температуры осаждения на поверхности подложки образуются более крупные частицы.

4. Заключение

В работе проведен синтез и идентификация четырех летучих координационных соединений олова имеющих в своем составе ацетилацентонатные лиганды и краун-эфиры. Показано, что соединения $[Sn(AcAc)_2Cl_2], [Sn(H_2O)_2Cl_4] \cdot 15K5$ обладают достаточной летучестью и стабильностью при хранении. Синтезированные соединения использованы в качестве прекурсоров покрытий диоксида олова в CVD процессе при атмосферном давлении на установке с ВЧ-печью деструкции. Полученные покрытия характеризованы комплексом физико-химических методов анализа. Подтверждена возможность использования данных соединений в качестве перспективных прекурсоров в методе APCVD. Установлено, что при проведении процесса осаждения в идентичных условиях выбор прекурсора оказывает существенное влияние на морфологию покрытий диоксида олова. Предложенная линейка прекурсоров позволяет синтезировать как плотные, так и достаточно но рыхлые покрытия диоксида олова с высокой дисперсностью.

Композиты и наноструктуры	Nº 1
COMPOSITES and NANOSTRUCTURES	2012

Таблица 3

Соединение	Средний размер частиц по данным СЭМ, нм	Средняя арифметическая шероховатость покрытий (ISO 4287/1) по данным АСМ для площади 10х10 мкм ² , нм
[Sn(AcAc) ₂ Cl ₂]	10-25	24
[Sn(H ₂ O) ₂ Cl ₄]·18K6	100-240	19
[Sn(18K6)Cl ₄]	95-195	17
$[Sn(H_2O)_2Cl_4] \cdot 15K5$	30-90	8

Анализ морфологии покрытий, полученных методом АРСVD

Рис. 6. СЭМ покрытий, полученных методом APCVD при использовании в качестве прекурсоров: $a - [Sn(AcAc)_2Cl_2]$, $b - [Sn(H_2O)_2Cl_4] \cdot 18K6$, $c - [Sn(18K6)Cl_4]$, $d - [Sn(H_2O)_2Cl_4] \cdot 15K5$

SEM images of coatings deposited by APCVD using as precursors: **a** - [Sn(AcAc)2Cl2], **b** - [Sn(H2O)2Cl4]·18K6, **c** - [Sn(18K6)Cl4], **d** - [Sn(H2O)2Cl4]·15K5

Благодарности

Работа проведена при частичной поддержке программы фундаментальных исследований РАН (проект 9П3) и гранта РФФИ (10-03-01036).

Библиографический список

1. Watson J., The tin oxide gas sensor and its applications, Sensors and Actuators, 1984, v. 5 pp. 29-42.

2. Batzill M., Surface Science Studies of Gas Sensing Materials: SnO2, Sensors, 2006, v. 6, pp. 1345-1366.

3. Palzer S., Moretton E., Ramirez F.H., Romano-Rodriguez A., Wollenstein J., Nano- and microsized metal oxide thin film gas sensors, *Microsyst Technol*, 2008, v. 14, pp. 645–651.

4. Yamazoe N., Sakai G., Shimanoe K., Oxide semiconductor gas sensors, *Catalysis Surveys from Asia*, 2003, v. 7, pp. 63-75.

5. Choy K.L., Chemical vapour deposition of coatings, *Progress in Materials Science*, 2005, v. **48**, pp. 57–170.

6. Pierson H.O., Handbook of Chemical Vapor Deposition (CVD) - Principles, Technology and Applications (2nd Edition). - NY: Noyes Publications, 1999, 506 p.

7. Allendorf M.D., van Mol A. M. B., Gas-Phase Thermochemistry and Mechanism of Organometallic Tin Oxide CVD Precursors, *Precursor chemistry of advanced materials, Top. Organomet. Chem,* 2005, v. **9**, pp. 1–48.

Comini E., Metal oxide nano-crystals for gas sensing, *Analytica Chimica Acta*, 2006, v. 568, pp. 28–40.
 Korotcenkov G., Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, *Sensors and Actuators B*, 2005, v. 107, pp. 209–232.

10. Sharma K. R., Nanostructuring Operations in Nanoscale Science and Engineering. - McGraw-Hill, 2010, 292 p.

11. Malik M. A., O'Brien P., Organometallic and Metallo-Organic Precursors for Nanoparticles, *Precursor chemistry of advanced materials, Top. Organomet. Chem.*, 2005, v. **9**, pp. 173–204.

12. Miller G.A., Schlemper E.O., The crystal and molecular structure of dichiorobis(2, 4-pentanedionato)tin(IV), *Inorg. Chim.Acta*, 1978, v. **30**, pp. 131-134.

13. Webster M., Wood J.S. J. Chem. Res., 1981, v. 40, pp. 450-456.

14. Shahzadi S., Ali S., Jin G.-X., Synthesis, Characterization and Crystal Structure of bis (acetylacetonato) dichlorotin (IV), *J.Iran. Chem.Soc.*, 2006, v.**3**, N 4, pp. 323-326.

15. Кузнецов Н. Т., Севастьянов В.Г., Симоненко Е.П., Игнатов П.А. Попов В.С., Способ получения пленочных покрытий оксида олова на подложках, *Патент РФ № 2397572*.

16. Анцышкина А.С., Садиков Г.Г., Севастьянов В.Г., Попов В.С., Игнатов П.А., Чураков А.В., Симоненко Е.П., Кузнецов Н.Т., Сергиенко В.С., Синтез и строение аддуктов тетрахлорида олова с краун-эфиром. Кристаллическая структура. $[Sn(H_2O)_2Cl_4] \cdot 18K6 \ u \ [Sn(H_2O)_2Cl_4] \cdot 18K6 \cdot 2H_2O, \mathcal{K}.$ неорг. химии – 2011. N 4, с. 570 – 578.

17. Stoycheva T., Vallejos S., Pavelko R.G., Popov V.S., Sevastyanov V.G., Correig X., Aerosol assisted chemical vapour deposition of SnO₂ thin films for gas sensors application, *Chem. Vap. Deposition*, 2011, v. **17**, pp. 247-252.

18. Hough E., Nicholson D.G., Vasudevan A.K., X-Ray crystal structure of the complex of 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane) with diaquatetrachlorotin(IV) at 120 K, *J. Chem.Soc., Dalton Trans.*, 1986, v. **11**, pp. 2335-2337.

19. Xu Y., Yan X.-T., Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials. - London: Springer, 2010, 327 p. 20. Накамото К., ИК-спектры и спекты КР неорганических и координационных соединений. – М.: Мир, 1991, - 536 с.

21. Цивадзе А.Ю., Варнек А.А., Хуторский В.Е., Координационные соединения с краун-лигандами. - М.: Наука, 1991.- 398 с.

22. Bott S.G., Prinz H., Alvanipour A., Atwood J.L., Reaction of early transition metal complexes with macrocycles III. Synthesis and structure of 18-crown-6* MCl_4 (M = Ti, Sn)*J.Coord.Chem.*, 1987, v.**16**, pp. 303-309.

23. Serp P., Hierso J.-C., Kalck P., Surface Reactivity of Transition Metal CVD Precursors: Towards the Control of the Nucleation Step, *Top Organomet Chem.*, 2005, v. 9, pp. 147–171.

Сведения об авторах

В.С. Попов: аспирант Института общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия, popov.chem@gmail.com, тел +7(495) 955 48 30;

В.Г. Севастьянов*: член-корреспондент РАН, заведующий сектором сенсорных материалов Института общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия, v_sevastyanov@mail.ru, тел +7(495) 954 41 26;

Н.Т. Кузнецов: академик РАН, заведующий лабораторией энергоемких веществ и материалов Института общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия, ntkuz@igic.ras.ru, тел +7(495) 955 02 24.

УДК 541.64:539.2:547.995.12

ВЛИЯНИЕ УСЛОВИЙ ТВЕРДОФАЗНОГО ПОЛУЧЕНИЯ ПРИВИТЫХ СОПОЛИМЕРОВ ХИТОЗАНА И ПОЛИВИНИЛОВОГО СПИРТА НА ИХ СТРОЕНИЕ И РАСТВОРИМОСТЬ

(Поступила в редакцию 19.03.12, переработанный вариант - 02.04.12, принята к печати – 05.04.2012г.)

Л.В. Леснякова¹, Т.А.Акопова², Г.А.Вихорева¹, Н.С.Перов², А.Н.Зеленецкий²

¹Московский государственный текстильный университет им. А.Н.Косыгина, Россия, Москва, 117091, ул. Малая Калужская, д.1 ²Институт синтетических полимерных материалов им. Н.С.Ениколопова РАН, Россия, Москва, 117393, ул. Профсоюзная, д.70

В условиях воздействия давления и сдвиговых деформаций в опытно-промышленном двухшнековом экструдере получены водорастворимые привитые сополимеры хитозана и поливинилового спирта. На первой стадии обработке подвергалась реакционная смесь, состоящая из твёрдых NaOH и хитина. К полученному щелочному хитозану добавляли ПВА и повторно экструдировали. Влияние соотношения компонентов реакционных смесей и ММ исходного ПВА на структуру и свойства продуктов исследовалось методами элементного анализа, вискозиметрии, ИК-спектроскопии, протонно-магнитного резонанса и гельпроникающей хроматографии.

Ключевые слова : поливиниловый спирт, хитозан, привитые сополимеры хитозана и поливинилового спирта, сдвиговые деформации, твёрдофазные реакции

AN EFFECT OF CONDITIONS OF SOLID-STATE SYNTHESIS OF GRAFT COPOLYMERS CHITOSAN AND POLYVINYL ALCOHOL ON THEIR STRUCTURE AND SOLUBILITY

L.V. Lesnyakova¹, T.A. Akopova², N.S. Perov², G.A. Vikhoreva¹, A.N. Zelenetskii²

¹Moscow State Textile University. by A.N. Kosygin, Moscow, Russia, 117091, st. Malaya Kaluzhskaya, 1 ²Institute of Synthetic Polymeric Materials by N.S. Enikolopov Russian Academy of Sciences, Moscow, Russia, 117393, st. Profsoyuznaya, 70

Water-soluble graft copolymers of chitosan and polyvinyl alcohol were obtained in an experimental twinscrew extruder, in which pressure and shear strains were applied. On the first stage, the reaction mixture of solid NaOH and chitin was treated. To a product produced chitosan alkaline PVA was added and re-extruded. An effect of ratio of the components of reaction mixtures and MM PVA source on structure and properties of the products were examined by elemental analysis, measuring viscosity, IR spectroscopy, NMR and gel chromatography.

Keywords : polyvinyl alcohol, chitosan, graft copolymers chitosan-polyvinyl alcohol, shear deformation, solid-state reaction.

44

1. Введение

Твердофазный синтез, осуществляемый в отсутствие жидких сред, отличается экологической чистотой и является перспективным методом модифицирования природных полимеров целлюлозы и хитина, не растворяющихся в доступных растворителях. Большой практический интерес представляет получение их водорастворимых производных и сополимеров, поскольку такие продукты расширяют возможности использования полисахаридов в биомедицинских целях, например, при работе с чувствительными к органическим растворителям и изменению рН среды лекарственными препаратами. Как хитозан, продукт дезацетилирования хитина, так и поливиниловый спирт (ПВС) привлекают внимание исследователей как компоненты для создания материалов биомедицинского назначения в виде гелей, пленок, губок и других матричных форм, это связано с их биосовместимостью и уникальными комплексообразующими свойствами. Поэтому их привитые сополимеры интересны, в первую очередь, для эффективной стабилизации в нейтральных водных средах биоактивных молекул и нанодисперсий различной природы. Однако попытки использовать привитые структуры хитозана и ПВС в качестве систем для доставки терапевтических агентов, описанные в литературе, связаны, в основном, с использованием сшивающих агентов, приводящих к получению хорошо набухающих в воде нерастворимых полимерных композитов [1,2 и др.]. Для получения сополимеров применяют прививочную полимеризацию винилацетата к хитозану с последующим щелочным гидролизом ацетильных групп [2]. Можно полагать, что такие продукты, помимо самостоятельного значения, будут служить эффективными компатибилизаторами других полимерных смесей на основе хитозана, используемых в качестве загустителей пищевых, косметических, текстильно-отделочных композиций и художественно-реставрационных рецептур.

Ранее было показано [3, 4], что интенсивное перемешивание смеси твердых хитина и едкого натра в условиях сдвиговых деформаций и высокого давления в экструдере приводит к снятию диффузионных ограничений и протеканию реакции щелочного дезацетилирования полимера с образованием хитозана с высоким содержанием аминогрупп. Рентгеноструктурное исследование реакционной смеси, показало, что полимерная составляющая находится в аморфном состоянии и образует кристаллическую фазу только при выделении полимера промывкой водой и последующей сушке. Можно ожидать, что дополнительная экструзионная обработка аморфного хитозана в присутствии другого полимера будет приводить к межмолекулярным взаимодействиям, как это происходит при введении в реакционную смесь жесткоцепной целлюлозы [5]. Предварительные эксперименты показали, что экструдирование в тех же условиях смесей чистых ПВС и хитозана не приводит к образованию их сополимеров. Вместе в тем, при использовании в качестве исходных смесей хитина и поливинилацетата (ПВА) со щелочью наряду с эффективным дезацетилированием обоих полимеров протекают и реакции, приводящие к образованию их привитых структур [6, 7]. Очевидно, неспособность полученных полимеров к образованию собственной фазы в твердом состоянии при воздействии давления и сдвиговых напряжений способствует интенсивным межмолекулярным взаимодействиям в смесях. В этом случае появляется также возможность использовать неактивные в обычных условиях концевые альдегидные группы ПВС, образование которых «in situ» в ходе механохимического воздействия на ПВА повышает их реакционную способность по отношению к аминогруппам хитозана.

Целью настоящей работы являлось исследование влияния условий твердофазного синтеза, в частности соотношения компонентов реакционных смесей и ММ исходного ПВА на фракционный состав, растворимость, молекулярно-массовые характеристики, пленко- волокнообразующие свойства получаемых продуктов.

2. Экспериментальная часть

В работе использовался ПВА с ММ 500 кДа и 100 кДа (Sigma-Aldrich), хитин панцирей краба с молекулярной массой 600 кДа (Восток-Бор, Владивосток) и NaOH микрогранулированный марки «для анализа» (Merck). В качестве сравнительного образца использовался лабораторный образец ПВС, полученный твердофазным способом [7]. Реакции проводились в двухшнековом экструдере фирмы Berstorff с регулируемым обогреванием и набором кулачков, обеспечивающим высокую эффективность механического воздействия. На первой стадии получение хитозана с высокой степенью дезацетилирования (более 85 %) проводилось при мольном соотношении NaOH: хитин равном 5, продолжительности 5-10 мин, температуре 180 °C. На второй стадии к реакционной смеси добавлялся ПВА и изопропанол в количестве 1 мл/г реакционной массы, оставляющем ее твердой, но способствующем равномерному распределению ПВА. После этого обработка в экструдере повторялась при 60 - 80 °C в течение 5-10 мин.

Очистка продуктов проводилась экстракцией смесью этилацетата, этилового спирта и воды [8], в ходе которой удаляется не вступивший в реакцию ПВА, растворимый в этилацетате, а избыток NaOH омыляет этилацетат с образованием этанола и ацетата натрия, растворимого и удаляемого смесью спирта с водой.

Фракционный состав продуктов исследовался методом последовательного растворения в воде при комнатной (20-24 °C) и повышенной (80-90 °C) температурах и 2%-ном растворе CH₃COOH. Растворимые фракции отделялись от осадка центрифугированием и выделялись из раствора лиофилизацией или осаждением ацетоном и 1 М раствором NaOH, промывались деионизованной водой для удаления ацетата натрия и сушились в вакуумном эксикаторе над P_2O_5 до постоянной массы. Фракции, растворимые в воде при комнатной и повышенной температуре, обозначались символами A и B, соответственно; растворимые в 2%-ной CH₃COOH – символом C, нерастворимые – Д. В качестве образцов сравнения использовалась растворимая в горячей воде фракция (гомополимер ПBC) - 5В и гомополимер хитозана- 6С.

Для определения содержания гомополимера ПВС водные растворы фракций A и B пропускались через колонку с катионитом (Н-форма), который сорбировал хитозансодержащие компоненты, а гомополимер ПВС и частично омыленный водорастворимый ПВА из раствора выделяли сублимацией.

Для исследования состава продуктов использовалась качественная реакция на аминогруппы с нингидрином, гельпроникающую хроматографию (ГПХ), ИК-спектроскопию, элементный анализ и ЯМР. Данные, характеризующие состав, содержание и ММ фракций приведены в Таблице 1.

ИК-спектры (Рис. 1) записывались на спектрометре *Bio-Rad (Digilab) FTS-40* при разрешении 4 см¹. Регистрация и обработка спектров проводилась с помощью пакета программ *Win-IR* v.4 (Bio-Rad, Digilab Division). Для проведения исследований готовились тонкие пленки (5-7 мкм) методом полива. Пленки, содержащие хитозан в виде уксуснокислой соли, выдерживались в 1 *M* NaOH в течение 1 ч, тщательно промывались деионизованной водой и сушились. Удаление воды из воздушно-сухих образцов проводилось прогревом при 120 °C в течение 15-30 мин. В ходе измерений камера спектрометра продувалась интенсивным потоком сухого азота¹.

В ИК-спектрах фракции 2В продуктов полосы деформационных колебаний первичных аминогрупп (1600 см⁻¹) и метиленовых (850 см⁻¹) групп [9, 10] подтверждают наличие в них хитозана и ПВС. Спектр модельной смеси с содержанием хитозана 16 мас% идентичен спектру привитого

¹Авторы благодарны Л.В. Владимирову за снятие ИК-спектров и плодотворное обсуждение результатов.

№ 1	
2012	

Таблица	1
	-

Состав продуктов твердофазного дезацетилирования хитина, ПВА и их смесей								
Мольное соотношение	Обозначение фракций	Выход фракций, %	Содержание гомополимера ПВС во	Соотношение звеньев ПВС:хитозана в сополимере по данным				
хитин, ш D A		11	фракциях, %	С, N - анализа	ЯМР			
	1A (26) ***	14	15	27	27,3			
1.0.0	1B	21	48 (36)***	14,76	12			
1:0.8	1C	60	-	-	0,4			
	1Д	5	-	-	-			
	2A (35) ***	20	5	22,75	22			
	2B (37) *** 25 30 (33) **		30 (33) ***	11	10,8			
1:1.4	2C (29) ***	52	52 -		0,2			
	2Д	3	-	-	-			
	3A	11	1	29	30			
	3B	13	31	20	19,9			
1:1,4*	3C	72	-	-	0,4			
	3Д	4	-	-	-			
	4A(23) ***	16	88 (26) ***	-	7			
1 1 444	4B	20	70 (43) ***	-	14			
1:1,4**	4C	60	-	-	0,4			
	4Д	5	-	-	-			
0:1	5B (40) ***	50.5	100	0	0			
1:0	6C (60) ***	90	-	- 100				

*) Образец после стадии получения хитозана отмыли от избытка щёлочи.

**) ММ ПВА 100 кДа, в остальных случаях ММ ПВА 500 кДа.

***) В скобках указана ММ в кДа.

Рис. 1. ИК-спектры: модельной смеси хитозан-ПВС с содержанием хитозана 16 мас% (1); привитого сополимера (фракции 2B), полученного твердофазным синтезом (2)

FT-IR spectra: model mixture of chitosan and PVA with chitosan content 16 wt% (1), graft copolymer (fraction 2B), obtained by solid state synthesis (2)

сополимера, соответственно содержание хитозана во фракции 2В найдено правильно и оно составляет 16 мас% (6,5 мол%).

Элементный анализ проводился на автоматическом элементном анализаторе EA11112 «Thermo Finiga». Данные элементного анализа приведены в Таблице 2.

Таблица	2
---------	---

The second the second s								
Фракции	Содержание,%							
	Ν	С	Н					
1A	0,36	50,84	9,2					
1B	0,89	49,88	9,03					
2A	0,98	49,14	8,87					
2B	1,01	49,6	8,87					
3A	0,97	49,39	8,84					
3B	0,69	49,54	8,69					

Состав фракций по данным элементного анализа

Расчет состава фракций проводился по соотношению C/N.

Спектры ЯМР ¹H, ¹³C (Рис. 2-3) и HSQC регистрировались на спектрометре *Bruker Avance* 300 в D_2O при 25 °C (относительно хим. сдвига растворителя -4.7). Анализ интегральной интенсивности сигналов в спектре ЯМР ¹H позволяет наиболее точно оценить соотношение звеньев в сополимерных продуктах. Поскольку в протонном спектре сигналы ПВС и хитозана частично пере-

крываются, то для уточнения вклада каждого компонента и корректного расчета соотношений снимались спектры HSQC (Рис. 4). Спектр ЯМР 1H (δ , м.д.): 1.5–1.7 (м, 2 H, H₂C, ПВС); 2,7 (д.д., 1 H, HC (2), хитозан); 3.7–4.1 (м, 1H, HC, ПВС, 5 H, C(3, 4, 5, 6), хитозан); 4.9 (д, 1 H, HC(1), хитозан). Спектр ЯМР 13C (δ , м.д.): хитозан–97.4, C(1); 55.7, C(2); 69.4, C(3); 76.2, C(4); 74.7, C(5); 59.9, C(6); ПВС–67.6, 66.2, 65.9, 64.8, 64.7, 64.5 (СНОН); 44.7, 44.5, 44.1, 43.8, 43.4 (H₂C). Соотношение интегральных интенсивностей сигнала δ H 2,7 м.д. к сигналу δ H 1.5–1.7 м.д. в ЯМР 1H, найденное из спектров фракций 2A и 2B (обозначение фракций см. в Таблице 1) составляет 1 : 73,2 и 1 : 45,3, соответственно. Спектры фракций приведены на рисунках 2 - 4.

¹H-NMR spectrum of fraction 2A soluble in cold water

№ 1

2012

HSQC spectrum of fraction 2A

Гель-хроматограммы получали на хроматографе Милихром с колонкой UHG500 (Рис. 5) и на хроматографе Clarity Chrom, калиброванном по декстрану с колонкой Phenomenex Bio Sep – SEC-2000 температура 30 °C, элюент: вода +поливинилформамид (ПВФА), скорость потока – 1 мл/мин, объём пробы – 20 мкл, детектор рефрактометрический² (Рис. 6). Для анализа использовали 0,2% раствор образца в элюенте.

²Анализ выполнен в лаборатории д.ф.-м.н. В.Е. Юдина (ИВС РАН), которому авторы признательны за предоставление результатов и их обсуждение.

Реакция с нингидрином использовалась для качественного определения свободных аминогрупп в образцах. В тест-пробирку вносился образец в количестве примерно 50мг. Далее в пробирку с образцом и чистую, контрольную, наливали 5 мл 1% раствора нингидрина в воде и 1 мл 10% раствора К₂CO₃. Затем обе пробирки нагревались в течение 1 часа при 95 °C. Наличие синей или красноватосиней окраски свидетельствовало о присутствие в образце первичных аминогрупп хитозана.

№ 1

2012

Nº 1	Композиты и наноструктуры
2012	COMPOSITES and NANOSTRUCTURES

10%-ные формовочные растворы для получения пленок из сополимера и модельных композитных пленок готовились путем растворения фракций В в горячей (85-90 °C) воде или смешения раствора ПВС в воде и раствора хитозана в 2%-ной уксусной кислоте. Формовочные растворы выливались на пластиковую подложку и сушились при комнатной температуре. Для удаления избытка кислоты пленки выдерживалис в вакуумном эксикаторе над КОН в течение недели.

Механические испытания проводились на универсальной испытательной машине AG-E (Shimadzu, Japan) при скорости растяжения 5 мм/мин. Перед проведением испытаний все пленки выдерживались в эксикаторе при постоянной влажности 44% над насыщенным раствором K_2CO_3 в течение недели. Результаты механических испытаний пленок приведены в Таблице 3.

3. Обсуждение результатов

Реакции, протекающие в ходе твердофазного синтеза сополимера хитозана и ПВС, предположительно отражает следующая схема (1).

Концевая альдегидная группа в ПВС образуется вследствие обрыва цепи за счет диспропорционирования на стадии свободно-радикальной полимеризации винилацетата, с последующим гидролизом и изомеризацией винилового спирта (схема 2).

Вследствие низкого содержания макромолекул с такой концевой группой в продуктах реакции должны присутствовать гомополимеры ПВС. Согласно ИК-спектроскопическому и рентгенографическому анализам нерастворимые фракции при твердофазном синтезе хитозана представляют собой хитин с высокой степенью кристалличности, доля которого в очищенном продукте не превышает 3-5% [11]. Следует отметить, что при получении ПВС твердофазным щелочным дезацетилированием ПВА в отсутствие хитина вклад радикальных процессов значителен и приводит к потере растворимости полученного ПВС (до 50% от общей массы продуктов). Образование свободных радикалов и новых концевых групп в ходе механодеструкции ПВС было предположено Барамбоймом при гомолитическом разрыве связи «голова к голове» с последующим диспропорционированием образовавшихся радикалов в клетке по схеме 2 [12]. Образование дополнительных концевых альдегидных групп в ходе механодеструкции приводит, в свою очередь, к протеканию прививки по вышеуказанной схеме 1. Присутствие полисахарида, который может служить слабым ингибитором свободно-радикальных процессов, очевидно, препятствует рекомбинации

макрорадикалов, образующихся при гомолитическом разрыве связей ПВС, и способствует их стабилизации за счет образования концевых альдегидных групп.

Образование в узлах прививки азометиновых связей косвенно подтверждается способностью их к гидролизу при длительном выдерживании продуктов в воде (1-2 месяца), в результате которого хитозан частично выпадает в осадок. В кислых водных средах гидролиз ускоряется и, согласно данным ИКспектрального анализа, в продуктах снижается относительное содержание хитозана.

Доказательством образования сополимера является поведение полимерной системы при растворении, в частности, наличие в продукте фракции A, растворимой в воде при нейтральных значениях pH при комнатной температуре, что не характерно ни для хитозана, ни для ПВС. Согласно данным элементного анализа (Таблица 1) и ЯМР (Рис. 2), данная фракция содержит и хитозановые фрагменты (~ 10-13 %) и поливилспиртовые (87-90%). Указанный состав фракции A не изменяется при переосаждении из водного раствора в ацетон. Отметим, что растворимость этой фракции не является результатом того, что полимерные макромолекулы, образующие ее, сильно деструктированы. Согласно данным гель-хроматографии (Рис. 6), средняя ММ фракции A образца 2 составляет 35 кДа. При этом кривые ММР представляют собой широкую огибающую нескольких пиков, что указывает на полидисперсность полученных нами образцов. Можно предположить, что обе фракции (A и B) содержат сополимер хитозана и ПВС со структурой, в которой к хитозановой цепи присоединена одна цепь ПВС. В случае фракций, растворимых в воде при комнатной температуре (A), привитые фрагменты ПВС более короткие, не способные к образованию кристаллической фазы.

При исследовании закономерностей получения привитых сополимеров большой интерес представляет оценка содержания гомополимеров. Попытка выделить гомолимер хитозана осаждением его едким натром из водных растворов фракций А и В была безуспешной, что позволило сделать вывод об отсутствии в них несвязанного хитозана. В свою очередь, переосаждение кислоторастворимых фракций продуктов показало отсутствие в них гомополимера ПВС. Выделение гомополимера ПВС из фракций, растворимых в воде при нейтральных значениях pH, было проведено с использованием катионита в H-форме, на который в подобранных условиях сорбировали аминосодержащий сополимер, а гомополимер ПВС собирали в элюенте. Нингидринная проба подтвердила отсутствие в выделенном из элюента продукте хитозановых фрагментов. Хроматографический анализ гомополимеров ПВС показал унимодальный характер их ММР (Рис. 5, кривая 2) и изменение ММ в пределах 26-43 кДа, что соответствует молекулярной массе ПВС, полученного твердофазным способом. Как видно из Таблицы 1, содержание гомополимера ПВС во фракциях 1А, 2А и 3А невелико (до 15 %), что согласуется с данными о растворимости и строении данной фракции.

Закономерно, что во фракциях 1В, 2В и 3В, растворимых в горячей воде, содержание гомополимера ПВС, как и его MM заметно выше (30-48% и 32-43 кДа, соответственно), хотя брутто-состав этих фракций мало отличается от такового для фракций серии А (Таблицы 1,2). Расчет строения сополимера, присутствующего во фракциях серии В, проведенный с учетом наличия в них гомополимера, показал, что массовое содержание хитозановых фрагментов составляет примерно 30%, а MM 37 кДа. Таким образом, можно заключить, что фракции В, растворимые в горячей воде, представляют собой смесь гомополимера ПВС и его привитого сополимера с хитозаном, в котором частичная кристаллизация относительно длинных привитых цепей ПВС не позволяет продуктам растворяться в воде при комнатной температуре.

Кислоторастворимые фракции продуктов С содержат преимущественно гомополимер хитозан (90 – 98%) с ММ порядка 30 кДа, и доля этой фракции в очищенном продукте доминирующая (50 – 60%). Важно, что полученные продукты содержат очень мало (не более 5%) нерастворимых в водных средах обогащенных исходным хитином фракций Д.

Как видно из данных Таблицы 1, изменение соотношения компонентов в исходных реакционных смесях и частичное удаление NaOH перед проведением второй стадии практически не приводят к интенсификации процесса прививки. Поскольку прививка происходит за счет взаимодействия аминогрупп хитозана с концевыми альдегидными группами ПВС, содержание которых зависит от его ММ, представляло интерес использовать в качестве исходного компонента ПВА с меньшей ММ. Однако полученные данные (опыт 4 в Таблице 1) показали, что снижение ММ ПВА не приводит к увеличению выхода сополимера и содержания в нем хитозана. Это хорошо согласуется с общей теорией механохимии, согласно которой число разрывов цепи полимера резко возрастает с увеличением его исходной ММ. Кроме того, число «дефектов» полимерной цепи вследствие присоединения мономера винилацетата «голова к голове» также увеличивается с ростом степени полимеризации, что облегчает разрыв цепи и приводит к образованию дополнительных концевых альдегидных групп при щелочном гидролизе ПВА, как указано в предполагаемой нами схеме прививки. Таким образом, для эффективной прививки ПВС на хитозан целесообразно использовать ПВА с высокой MM. Как показали исследования авторов, наибольший выход водорастворимых фракций, содержащих сополимер хитозана с ПВС, получен при мольном соотношении в исходной смеси хитина : ПВА, равном 1:1.4, без выделения полупродукта хитозана из реакционной смеси.

Каждая из выделенных фракций продуктов последовательно-совместного твердофазного дезацетилирования хитина и ПВА может представлять практический интерес, однако, наиболее интересны водорастворимые фракции A и B. В рамках данной статьи показана возможность переработки их в пленки путем сухого формования.

Как видно из данных Таблицы 3, пленки из растворов фракции 2В с содержанием хитозановых фрагментов ~14 % имеют физико-механические характеристики, близкие к таковым для смесевых пленок аналогичного состава и достаточные для использования пленок в качестве разделительных мембран, раневых покрытий или оболочек микрокапсул с включенными лекарственными веществами. Отметим при этом, что сформованы они из водных растворов при нейтральных значениях pH в отличие от смесевых пленок, в формовочных растворах которых присутствует кислота.

4. Заключение

Исследован фракционный состав продуктов последовательно-совместного твердофазного щелочного дезацетилирования хитина и ПВА и молекулярно-массовые характеристики выделенных фракций. Показано, что наиболее интересные для практического применения водорастворимые фракции составляют 35-45% от суммарного продукта и представляют собой преимущественно привитой сополимер хитозана и ПВС, который играет роль компатибилизатора композита на основе природного и синтетического полимеров.

Обнаруженные хорошие пленкообразующие свойства синтезированных продуктов (разрывное напряжение ~ 80 МПа, удлинение ~5%) потенциально расширяют возможности их практического использования.

Большой интерес, проявляемый в настоящее время к нанотехнологиям и нанобиотехнологиям, обусловливает целесообразность исследования возможности переработки данных водорастворимых сополимеров, в том числе наполненных биоактивными компонентами, в нановолокна методом электроформования. Это является отдельным предметом наших дальнейших исследований.

Библиографический список

1. M. Prabaharan, J. Biomater. Appl., 2008, 23, P. 5

2. Don T. M., King C. F., Chiu W. Y., Peng C. A., Preparation and characterization of chitosan-g-poly(vinyl alcohol)/ poly(vinyl alcohol) blends used for the evaluation blood-contacting compatibility, *Carbohydr. Polym.*, 2006, **63**, P.331

3. Акопова Т.А., Роговина С.З., Вихорева Г.А., Зеленецкий С.Н., Гальбрайх Л.С., Ениколопян Н.С., Образование хитозана из хитина в условиях сдвиговых деформаций, *Высокомолек. соед.*, Сер. Б., 1991, **33**, № 10, С. 735

4. Вихорева Г.А., Роговина С.З., Акопова Т.А., Зеленецкий С.Н., Гальбрайх Л.С. Изучение фракционного состава хитозана, полученного твёрдофазным и суспензионным методами, *Высокомолек. соед.*, 1996, **Б38**, №10, С.1781-1785

5. Роговина С. З., Акопова Т. А., Вихорева А. Г., Горбачева И. Н., Жаров А.А., Зеленецкий А.Н., Исследование целлюлозно-хитозановых смесей, полученных в условиях сдвиговых деформаций, *Высокомолек. соед.*, 2000, **Т.А42**, № 1, С.10-15

6. Озерин А.Н., Зеленецкий А.Н., Акопова т.А., Вихорева Г.А., Чернышенко А.О., Метод получения привитых сополимеров хитозана и ПВС, *Патент РФ №. 2292354*, 2007

7. Леснякова Л.В., Чернышенко А.О., Акопова Т.А., Владимиров Л.В., Вихорева Г.А., Зеленецкий А.Н., Гальбрайх Л.С., Исследование твёрдотельного щелочного дезацетилирования поливинилацетата в условиях воздействия давления и сдвиговых деформаций, *Пластические массы*, 2011, №1. (в печати)

8. Чернышенко А.О., Вихорева Г.А., Гальбрайх Л.С., Способ выделения очищенного хитозана, Патент РФ №2286352, БИ №30, 2006.

9. Наканиси К., Инфракрасные спектры и строение органических соединений, М.: Мир, 1965, 210 с.

10. Смирнов Л.В., Куликова Н.И., Платонова Н.В., Инфракрасные спектры поливинилового спирта. 1967, *Т.А 9*, №11, С. 2515-2520

11. Е. Л. Могилевская, Т. А. Акопова, А. Н. Зеленецкий, А. Н. Озерин, *Высокомолекуляр. соединения*, Сер. А, 2006, 48, С.216 12. Н. К. Барамбойм, *Механохимия высокомолекулярных соединений*, Химия, Москва, 1978, 384 с.

Сведения об авторах

1. Леснякова Лидия Владимировна - аспирант кафедры ТХВ и Н, Московский государственный текстильный университет, kolaevalv@gmail.com, +79165620521

2. Акопова Татьяна Анатольевна ⁻ Институт синтетических полимерных материалов им. Н. С. Ениколопова РАН, старший научный сотрудник, кандидат химических наук, +7 4953325873, akopova@ispm.ru

4. **Перов Николай Сергеевич** Институт синтетических полимерных материалов им. Н. С. Ениколопова РАН, старший научный сотрудник, кандидат химических наук, +74953325813 peropost@yandex.ru

5. Вихорева Галина Александровна - Московский государственный текстильный университет, профессор кафедры ТХВ и H, доктор химических наук, vihorevag@mail.ru, +7 4959553324

6. Зеленецкий Александр Николаевич - Институт синтетических полимерных материалов им. Н. С. Ениколопова РАН, заведующий лабораторией, доктор химических наук, профессор, +7 4953325873, an-zel@mail.ru

УДК 667.494

О ГРАФИТИРУЕМОСТИ УГЛЕРОДНЫХ ВОЛОКОН ИЗ ПОЛИАКРИЛОНИТРИЛЬНЫХ ВОЛОКОН

(Поступила в редакцию 20.02. 2012, принята к печати – 29.03.2012г.)

В.Я.Варшавский¹, В.А.Морозов²

¹ ЗАО Холдинговая компания «Композит» ² Московский государственный университет им. М.В. Ломоносова, Москва

Методом Риетвелда (полнопрофильного анализа) исследованы структуры графитированных углеродных волокон, содержащих соединения внедрения бора. Метод Риетвелда подтвердил способность борсодержащих углеродных волокон к графитации при высокой температуре и позволил выявить, что структура волокон лучше описывается в ромбоэдрической модели структуры графита.

Ключевые слова: углеродное волокно, кристаллическая структура, графитация.

ON GRAPHITISING PAN-CARBON FIBRES

X-ray powder diffraction patterns of boron-containing carbon fibres were analysed using the Rietveld method. Rietveld refinements confirm possibility of carbon fibers contained boron to graphitization at high temperature. A age of the Rietveld refinement technique allows revealing that the structure of carbon fibres is better described by the rhombohedral model of graphite structure.

Keywords: carbon fibers, crystal structure, graphitization.

1. Введение

Углеродное волокно (УВ), как и большинство других волокнистых материалов, построено из чередующихся участков с упорядоченной и неупорядоченной структурой. В отличие от кристаллитов, формирующихся в полимерных волокнах, образование графитоподобной структуры в углеродном волокне происходит не в результате фазового перехода при отверждении расплава или осаждении из раствора. В случае УВ графитоподобные структуры образуются путем твердофазной структурной перестройки предграфитных (турбостратных) углеродистых структур при их нагреве до температур, превышающих 2000 °С.

Вопрос о графитируемости углеродистых соединений восходит к классическим работам Franklin [1, 2] и В.И.Касаточкина [3, 4]. В этих работах на основании результатов рентгеноструктурных исследований сформулированы соображения о влиянии вида исходного кокса на его способность к графитации. На основании способности к графитации коксы были разделены на два вида - «мягкие» и «твердые». К «мягким» коксам отнесены такие предграфитовые структуры, которые не имеют прочных межслоевых связей, препятствующих сближению слоев в ходе графитации. В «твердых» коксах, напротив, наличие таких связей может препятствовать сближению плоскостей до образования структуры, аналогичной структуре монокристалла графита. Тот факт, что УВ, полученные в ходе карбонизации полимерных волокон, содержат межплоскостные связи, а потому относятся к «твердым» коксам, позволил авторам сделать вывод о неспособности таких УВ к графитации. Исходя из полученных ранее результатов рентгеноструктурных исследований, было принято [5], что упорядоченные участки УВ (даже после термообработки до температур выше 2500 °C) имеют турбостратную структуру, содержащую большое количество структурных дефектов, и не представляют собой трехмерно упорядоченных кристаллитов со структурой графита.

Проблема графитируемости УВ подробно рассмотрена в работе [6] на основе данных об изменениях в упорядоченных и неупорядоченных участках структуры, а также с использованием термодинамических подходов. В частности, анализ изменения энтальпии сгорания образцов УВ с разной температурой обработки показал, что процесс графитации УВ может быть представлен как размытый фазовый переход [7]. В то же время, в волокнах, термообработанных до температур, превышающих температуры графитации «мягких» коксов, не были обнаружены кристаллиты с параметрами структуры, соответствующими кристаллическому графиту.

Такое несоответствие было объяснено в работе [6] особенностями молекулярного механизма графитации, связанного с твердофазной природой процесса карбонизации полимерных волокон. Графитация в твердом теле протекает благодаря стягивающим усилиям плоскостей, поляризованных за счет подвижности π -электронов. Величина стягивающих усилий зависит от общего числа углеродных атомов, образующих плоскость, в то время как наличие межслоевых связей пропорционально числу краевых углеродных атомов.

В случае УВ процесс образования графитоподобных плоскостей характеризуется важной особенностью – он протекает в объеме наследованных от полимерных волокон микро- и макрофибрилл, которые играют в данном случае роль матрицы. В результате матричного эффекта образующиеся плоскости имеют ярко выраженную анизотропию формы. По сравнению с равноосными плоскостями удлиненные имеют большее относительное содержание краевых атомов углерода, а потому и межплоскостных связей, которые противодействуют сближению плоскостей, необходимому для формирования кристаллитов графита.

Вместе с тем в работе [6], исходя из того, что протекание какого-либо процесса (в данном случае, графитации) нельзя оценивать только по его конечному результату, сделан вывод о том, что графитация при термообработке УВ выше 2000 °С имеет место, хотя и не приводит к формированию трехмерной структуры графита. В данной работе для выяснения возможности формирования кристаллических участков структуры при графитации УВ были исследованы образцы волокон, в которые до высокотемпературной обработки были введены соединения бора.

2. Экспериментальная часть

Введение соединений бора не может оказать влияние на образование межплоскостных боковых связей. Однако, формирование в составе плоскостей соединений замещения части атомов углерода атомами бора, приводит к заметному росту поляризации плоскостей, а потому способствует повышению интенсивности их стягивающего взаимодействия [6]. Усиление такого взаимодействия по сравнению с прочностью межслоевых связей должно привести к формированию структур с трехмерной упорядоченностью, аналогичных структуре кристалла графита.

Для подтверждения такого предположения в данной работе проводилось исследование методом полнопрофильного рентгеноструктурного анализа (методом Риетвелда) двух образцов УВ, полученных при термообработке на различном оборудовании до температуры 2600 °С в присутствии соединений бора. Рентгенограммы образцов получены на порошковом дифрактометре Thermo ARL X-TRA (геометрия на отражение (Bregg-Brentano), CuK_аизлучение, $\lambda = 1.5418$ Å, полупроводниковый Peltier детектор). Интервал съемки составлял $2\theta = 10-60$ °, скорость съемки 1 °/мин.

Композиты и наноструктуры
COMPOSITES and NANOSTRUCTURES

Рентгенограммы обоих образцов идентичны и имеют вид, приведенный на рис. 1, - показаны положения и интенсивности рефлексов, соответствующих структурам гексагонального (PDF-2, 75-1621) и ромбоэдрического (PDF-2, 75-2078) графитов. Как видно на рис. 1, отличительной особенностью ромбоэдрического графита по сравнению с гексагональным является перераспределение интенсивностей рефлексов на рентгенограмме в области 40-48 ° 2 θ . Сравнение с рефлексами монокристаллов графита показывает, что полученные рентгенограммы волокон характерны для структуры графита. В то же время на них отсутствуют рефлексы, характерные для карбида бора, что указывает на включение в структуру УВ атомов бора только по механизму замещения. Другой возможной причиной может быть слишком малый размер областей когерентного рассеяния (размер кристаллитов) карбида бора, что делает невозможным обнаружение их методом рентгеновской дифракции.

С использованием программы PROFAN и программного пакета CSD проведена обработка рентгенограмм методом полнопрофильного анализа для уточнения параметров элементарной ячейки, характерной для кристаллической решетки гексагонального графита, и вычисления размера областей когерентного рассеяния (кристаллитов). Параметры элементарных ячеек уточняли методом наименьших квадратов (МНК). Результаты уточнения приведены в таблице 1 в сравнении с данными, приведенными в базе данных Powder Diffraction File (PDF-2).

Идеальные решетки графита могут быть представлены двумя структурами - гексагональной и ромбоэдрической. В гексагональной структуре расположение плоскостей атомов углерода повто-

X-ray diffraction pattern of carbon fiber. The vertical lines denote the peak positions and peak in-tensity of possible Bragg reflections for hexagonal (solid line) and rhombohedral (dash lines) gra-phite structures

№ 1

2012

Таблица 1

Параметры элементарных ячеек исследованных УВ и данных, приведенных в базе данных PDF-2

NºNº	Пространственная	a, Å	c, Å	$V, Å^3$	с, г/см ³
образцов	группа				
		Данные для	УВ		
1	Рбзтс	2,431	6,783	34,72	2,298
2	P6 ₃ mc	2,441	6,797	35,07	2,275
База данных Powder Diffraction File (PDF-2)					
[23-0064]	P63mc	2,465	6,721	35,37	2,256
[41-1487]	P6 ₃ mc	2,470	6,724	35,54	2,245
[75-1621]	$P6_3mc$	2,470	6,790	35,88	2,224

Unit cell parameters for studied carbon fibers in the comparison with data from PDF-2 Database

ряется через один слой, представляясь последовательностью *ABABAB*, а в ромбоэдрической - через два слоя *ABCABCABC*.

Для выявления, в каком типе структуры графита (гексагональной или ромбоэдрической), наблюдается кристаллизация в исследованных УВ, структуры были уточнены методом Риетвельда в программе RIETAN 97 по массивам экспериментальных данных, используя известные структурные параметры гексагональной (пространственная группа $P6_3mc$) и ромбоэдрической (пространственная группа R-3m) фаз графита. Результаты уточнения структур приведены на рис. 2 и 3. Сводные результаты показаны в табл. 2.

Рис. 2. Фрагмент экспериментальной (+), вычисленной (сплошная линия), разностной (1) и штрих (2) рентгенограмм для углеродного волокна при использовании гексагональной моде-ли в уточнении

Experimental (+), calculated (solid line) and difference (1) X-ray powder diffraction patterns for carbon fiber using the hexagonal model of graphite structure for the refinement. Tick marks (2) de-note the peak positions of possible Bragg reflections

Рис. 3. Фрагмент экспериментальной (+), вычисленной (сплошная линия), разностной (1) и штрих (2) рентгенограмм для углеродного волокна при использовании ромбоэдрической модели в уточнении

Experimental (+), calculated (solid line) and difference (1) X-ray powder diffraction patterns for carbon fiber using the rhombohedral model of graphite structure for the refinement. Tick marks (2) denote the peak positions of possible Bragg reflections

Как видно на рис. 2-3, лучшее описание профиля рентгенограмм наблюдается при уточнении структуры в ромбоэдрической модели. При этом наблюдаются меньшие значения факторов достоверности (табл. 2).

Размер кристаллитов определялся по формуле Шеррера:

 D_{111} (ромб) = D_{002} (гекс) = $K\lambda/\beta cos\theta$,

где:

*D*₁₁₁ (ромб) и *D*₀₀₂ (гекс) - размеры кристаллитов в направлениях (111) для ромбоэдрической и (002) для графитовой структур, нм.

К-геометрический фактор Шеррера,

 λ - длина волны, нм,

β - общее уширение линии за вычетом инструментального уширения (ширина линии на половине высоты соответствующего рефлекса)

 θ - угол рефлекса на рентгенограмме, град.

Для полученных экспериментальных данных формула Шеррера сможет быть записана следующим образом:

 $D_{hkl} = 0.15418 / \beta \cos{((\theta * \pi)/180)},$

где:

 $\beta = (B_{hkl}^2 - B_{cr}^2)^{1/2},$

В - ширина рефлекса на его полувысоте,

Таблица 2

Результаты уточнения рентгенограмм образцов углеродных волокон в различных моделях структуры графита

Crystallographic data, experimental conditions and refinement results for structures of carbon fibre samples
in various models

Температура	24 °C						
Интервал, 20 (град.)		10 -	60				
Шаг сканирования, 20 (град.)	0,02						
Номер образца]	1	2	1			
Интенсивность, Ітах	282	290	222	16			
Пространственная группа	P6 ₃ mc	<i>R-3m</i>	P6 ₃ mc	<i>R-3m</i>			
Число форм единиц, Z	4	2	4	2			
Предпочтительная							
ориентация:							
hkl,	001	111	001	111			
коэффициент функции							
March-Dollase	0,67 (1)	0,801 (8)	0,70(1)	0,831 (9)			
Параметры элементарной							
ячейки							
a (Å)	2,431(3)	3,669 (9)	2,44 (3)	3,671 (9)			
b (Å)							
c(A)	6,783(2)		6,797 (2)				
αČ		39,44		39,34 (10)			
$\beta()$							
$\gamma()$	24.72	17.04 (9)	25.07	17.00 (9)			
$V(A^{2})$	34,72	17,94 (8)	35,07	17,90(8)			
	Факторы достоверности, %						
R _{WP}	17,76	13,75	16,49	12,20			
R _P	14,15	9,47	13,12	8,79			
RI	3,79	1,66	3,66	1,68			
R _F	1,94	0,99	1,81	0,91			

 $B_{_{\rm CT}}$ - ширина для стандарта ${\rm LaB}_6,$ которая составляет 0.065° или 0.00113 рад.

Размер кристаллитов в структуре образцов УВ приведен в табл. 3.

3. Выводы

Проведенные исследования структуры кристаллитов в углеродных волокнах позволяют подтвердить вывод, что УВ на основе ПАН-волокон способны к графитации вплоть до образования в ходе термообработки трехмерной решетки с параметрами, характерными для ромбоэдрической структуры графита. Эта способность проявляется в результате усиления интенсивности взаимодействия плоскостей при их сближении путем частичного замещения атомов углерода в плоскостях атомами бора. Образование ромбоэдрического варианта структуры графита объясняется зат-

Таблица 3

Размер кристаллитов в образцах УВ (hkl приведены для гексагональной структуры)

№ образца	hkl	<i>В</i> ₀₀₁ , град.	в, рад.	и, град.	и, рад.	D _{hkl} , нм
1	002	0,861	0,01498	13,126	0,2291	9,5
1	004	1,800	0,03140	26,864	0,46887	5,0
					$D_{cp} = C$	7,3 ± 2,2 нм
2	002	0,983	0,01712	13,111	0,22883	8,3
Z	004	1,822	0,03178	26,773	0,46727	4,9
					$D_{cp} =$	6,6± 1,7 нм

The size of crystallites in carbon fiber samples (hkl for the hexagonal structure)

руднениями, остающимися при укладке плоскостей в трехмерную структуру несмотря на присутствие в них атомов бора. Полученный результат подтверждает вывод [6] о том, что графитируемость углеродистых материалов определяется не наличием или отсутствием в их структуре межплоскостных связей, а соотношением между прочностью этих связей и интенсивностью стягивающего взаимодействия плоскостей.

Библиографический список

1. Franklin R.E., Acta Cistallogr., 1951, V.4, Part 3, P.253.

2. Franklin R.E., Proc. Roy. Soc., London, Part A., 1951, V.209, P.196.

- 3.Касаточкин В.И., КаверовА.Т., Докл. АНСССР, 1957, Т.117, № 5, 837.
- 4. Касаточкин В.И., Финкельштейн Г.Б., Докл. АН СССР, 1963, Т.143.
- 5. Конкин А.А., Углеродные и другие жаростойкие волокна, М.: Химия, 1974, 376.
- 6. Варшавский В.Я., Углеродные волокна, Изд. 2, М., 2007, с. 500.
- 7. Козыкина М.А., Файнберг Э.З., Папков С.П., Варшавский В.Я., Радимов Н.П., Конкин А.А.,

В сб. Термодинамика органических соединений. Вып. 5, Горький: ГТУ, 1976, с. 79.

Сведения об авторах:

Варшавский В.Я.: д-р. техн.наук, Советник Генерального директора ЗАО <Холдинговая компания <Композит>, г. Москва, Россия, avtor <mailto:avtor@cnt.ru>@cnt.ru, тел. +8 9153618335.

Морозов В.А.: канд. хим.наук, ведущий научный сотрудник Московского государственного университета им. М.В. Ломоносова, г. Москва, Россия, morozov111vla@mail.ru, тел. +8 (495) 794-24-22.

Опечатки в журнале № 3 2011 г. в статье

СТРУКТУРНО-МЕХАНИЧЕСКИЕ СВОЙСТВА ВЫСОКОПРОЧНЫХ УГЛЕРОДНЫХ ВОЛОКОН В.Б. Литвинов¹, Л.П. Кобец¹, М.С. Токсанбаев¹, И.С. Деев², Л.М.Бучнев³

¹ОАО Научно-производственный концерн «Композиционные материалы и технологии», ²ФГУП «ВИАМ», ³ФГУП «НИИГрафит»

1. Cmp. 39.

В заголовках столбцов таблиц допущены опечатки. Для удобства читателя ниже приведены таблицы полностью.

Таблица 1

Тип волокна	Кол-во образ- цов	Диаметр, мкм	Коэф ф-т вари ации ди аметра, %	у, MПа	Коэфт вариации предела прочн., %	Е, ГПа	Коэф-т вариации модуля упругости, %
AS4	100	6,6	7,6	4317	24,8	208	11,1
AS4*		6,6-7,2		42 78		228	-
HTS	100	6,8	5,9	5084	21,9	227	11,9
HTS*		6,8		3950		238	-
УКН	109	5,4	5,6	5826	18,6	272	9,1

Результаты испытаний на растяжение различных углеродных волокон

*) данные фирмы-производителя

2. Стр. 41. Последнее предложение первого абзаца следует читать:

Поэтому в настоящей работе для УВ величина Ψ принималась постоянной во всем диапазоне изменений λ , что согласуется с исследованиями их микроструктуры, с высокими ее значениями, а ρ_{ϕ} с целью упрощения последующих расчетов приравнивается к ρ , поскольку различия между этими величинами невелики. Тогда $\Psi E_T = E_{\text{прел}}$, $\Psi \rho_T = \rho_{\text{прел}}$ и уравнение (1) можно переписать в следующем виде:

$$E = (1 - \Psi) E_{\rm M} + \Psi E_{\rm IIPEJ} \lambda^2 \left(\rho/\rho_{\rm IIPEJ}\right)$$
(2)

3. Стр. 42. Первое предложение первого абзаца следует читать:

По сравнению с традиционным показателем ориентационной вытяжки, представляющим отношение текущих значений длины L волокна к случайному начальному значению (кратность вытяжки), величина λ , рассчитываемая по соотношению (4), является универсальной, изменяющейся в диапазоне $0\div1$ и сравнительно легко определяемой величиной.

4. Подпись к рис. 5 следует читать:

Рис. 5. Зависимость среднеинтервальных величин модуля упругости от параметра ($S^2 \rho$)⁻¹ для углеволокон AS4 (a), HTS и УКН (б): 1- УКН; 2, 3 -HTS; 2 – волокна с пластической вытяжкой; 3 – волокна без пластической вытяжки (числа у точек – количество испытанных образцов).

Dependencies of the mean volues of the Young's modulus over the modul intervals on parameter $(S^2 \rho)^{-1}$ for carbon fibres AS4 (a), HTS and YKN (6): 1- YKN; 2, 3 -HTS; 2- fibers with plastic stretching; 3 - fibers without plastic stretching. Number at the points show quantities of the samples tested).

5. Cmp. 43.

На стр. 43 первое предложение первого абзаца следует читать:

В Табл. 3 сведены результаты определения различных параметров, полученных из анализа распределения E(S). Из рис. 5 видно, что при экстраполяции параметра $(S^2 \rho)^{-1} \rightarrow 0$ (или, что одно и то же $\lambda \rightarrow 0$) зависимость модуля упругости для AS4 и УКН отсекает на оси ординат отрезки $E_{\text{нач}}$, равные соответственно 30 и 20 ГПа.

Таблица 3

Тип волокна	<i>S</i> , мкм ²	ρ, κΓ /m ³	$ρ_{\Pi PEA}$, κγ/m ³	Е _{пред,} Г Па	$E_{\rm HAY}$, $\Gamma\Pi a$	$S_{\Pi P E I}$, MKM ²	λ	λпл
AS4	34,2	1750	1860	459,0	30	22,8	0,71	-
HTS	36,3	1760	1900	510,0	-	23,9	0,73	0,054
УКН	22,9	1770	2000	642,6	20	13,6	0,67	-

Результаты анализа распределения Е - S для исследованных углеродных волокон*

*) приведены средние значения параметров

6. Cmp. 46

Подпись к рис. 8 следует читать:

Рис. 8. Зависимости прочности высокопрочной (1) и низкопрочной (2) части волокон AS4 (a), HTS (б) и УКН (в) от параметра ω (числа у точек – количество испытанных образцов).

Dependence of the strength of fibres AS4 (a), HTS (δ) and YKN (B) on parameter ω for high- and low-portions of the fibres (curves 1 and 2, respectively). Numbers at the points show quantities of the samples tested.

7. Cmp. 46-47.

Абзац в конце стр. 46, продолжение на стр. 47 следует читать:

Для расчета указанных коэффициентов строили зависимость $\ln \sigma = f(\omega)$, используя среднеинтервальные значения предела прочности и степени ориентационной вытяжки, которые дают среднеинтервальные величины коэффициента ω_{l} . Среднее значения σ_{T} берется равным 109 ГПа (теоретическая прочность монокристалла графита в направлении «а» [8]). Тогда $\sigma_{\text{прел}}$ составляет 49,05 – для AS4, 54,5 – для HTS и 68,67 ГПа – для УКН. На рис. 8 показаны результаты математической обработки экспериментальных кривых σ - S (рис. 6), представленные в координатах $\ln \sigma - \omega$. Эти зависимости с достаточной точностью аппроксимируются отрезками прямых, один из которых относится к высокопрочной (1), второй – к низкопрочной (2) группе волокон. Для AS4 прямой 2 описываются 24% волокон ($\beta = 4,75$), для HTS – 35% ($\beta = 4,58$), для УКН -9% ($\beta = 4,36$) (рис. 8). Более того, 6% волокон HTS характеризуются угловым коэффициентом β , равным 7 (прямая на рис. 8 не показана). Из табл.4 видно, что каждой группе волокон соответствует фиксированное значение коэффициента β . Экстраполяция прямых Рис. 8 к нулевому значению ω позволило определить величины предельно достижимой прочности ($\sigma_{\text{пред.лост}}$) для каждого типа волокна (см. табл.4). Полученные значения предельно достижимой прочности исследованных волокон оказались ниже значений предельной – теоретической. Положительная разность между предельной (теоретической) и предельно достижимой прочностью, не описывается формулой (8), что можно объяснить наличием стохастических, не зависящих от структуры УВ дефектов. Заметная концентрация напряжений от этих дефектов отражается коэффициентом μ . Расчеты его по формуле $\sigma_{\text{пред.дост.}} = \sigma_{\text{пред. doct.}} \exp(\mu)$ представлены в табл.4.

Таблица 4

Результаты анализа распределения σ-S для исследованных углеродных волокон*

Тип волокна	<i>σ</i> пред, ГПа	У пред до ст., ГПа	ω	β* *	μ
AS4	49,05	30,64	0,46 0,35	4,03(76%) 4,75(24%)	0,47
HTS	54,50	26,90	0,35 0,38 0,41	7 (6%) 3,86(58%) 4,58(36%)	0,71
УКН	68,67	32,90	0,50 0,49	3,43(91%) 4,36(9%)	0,74

*) приведены средние значения параметров; **) в скобках показано процентное содержание волокон, которому соответствуют значения β и ω.

8. Cmp.48.

Таблица 5

Результаты статистической обработки параметров, определяющих прочность углеродного волокна УКН

Волокно	μ	β	С _β , %	щ	<i>C</i> _ω , %	С ₅ , ^{расч} %	<i>С</i> ^{жспер} , %
УКН	0,74	3,52	1,41	0,50	5,52	18,1	18,6