УДК 620.178.152:669.265.295

СВЯЗЬ СООТНОШЕНИЯ о-ФАЗЫ И ГЦК-ФАЗЫ С ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИЕЙ ЛИТЫХ ДВУХФАЗНЫХ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ

(получено 04.03.2015, принята в печать – 24.03.2015)

С.А.Фирстов, В.Ф.Горбань, Н.А.Крапивка, Э.П.Печковский, М.В.Карпец

Институт проблем материаловедения им. И.Н.Францевича НАН Украины, Киев, Украина

Изучены одиннадцать многокомпонентных двухфазных высокоэнтропийных сплавов (ВЭС) преимущественно эквиатомного состава, включающих 5-7 элементов из числа V, Cr, Mo, Mn, Fe, Co, Ni, Cu (энтропия смешивания - S_{смеш}=13.4-16.2 Дж/моль·К), и содержащих интерметаллидную поликомпонентную σ-фазу и ГЦК-твердый раствор замещения в количестве от 0 до 100 масс. %. Электронная концентрация Csd сплавов находится в пределах 6.9 – 8.2 эл/ат; при этом ее величина рассчитывается как среднеарифметическое валентных электронов всех элементов его химического шихтового состава.

Для изученных ВЭСов данного типа установлены закономерности связи между тремя характеристиками: химическим составом сплава, его расчетной величиной электронной концентрации Csd и экспериментально определенным количественным соотношением офазы и ГЦК-фазы.

Установлено, что величина электронной концентрации Csd ВЭСов данного типа отражает не только их химический и фазовый состав, но также и количественное соотношение σ-фазы и ГЦК-фазы в них. С использованием электронной концентрации индивидуальных элементов и термодинамических характеристик σ-образующих пар в сплавах предложено физическое обоснование их влияния на изменение количества σ-фазы и ГЦК-фазы в изученных ВЭСах данного типа.

Показано влияние количества σ-фазы в изученных ВЭСах и индивидуальных элементов в них на твердость, модуль упругости и упругую деформацию, определенных методом инструментального автоматического индентирования.

Ключевые слова: литые двухфазные высокоэнтропийные сплавы; **о**-фазы и ГЦК-фаза; электронная концентрация; механические свойства.

AN EFFECT OF RATIO OF σ-PHASE AND FCC-PHASE TO ELECTRONIC CONCENTRATION OF CAST TWO-PHASE HIGH-ENTROPY ALLOYS

S.A.Firstov, V.F.Gorban, N.A.Krapivka, E.P.Pechkovsky, M.V.Karpets

Frantsevich Institute for Problems of Materials Science of NASU, Kiev, Ukraine

Eleven multicomponent two-phase high-entropy alloys (HEAs) of mainly equiatomic composition are studied. The alloys include 5 to 7 elements V, Cr, Mo, Mn, Fe, Co, Ni, Cu (S_{mix} =13.4-16.2 J/mol·K). They contain intermetallic polycomponent σ -phase and FCC-substitutional solid solution in quantity from 0 up to 100 mass %. Electronic concentrations Csd of alloys are within 6.9 – 8.2 electron/atom.

Dependencies between three characteristics of alloys chemical composition, its calculated value of electronic concentration Csd and experimentally obtained ratio of σ -phase to FCC-phase are evaluated.

It is shown that the value of electronic concentration, Csd, for HEAs of a type under consideration reflects not only their chemical and phase structure, but also a quantitative ratio of σ -phase and the FCC-phase in them. Using

electronic concentration of individual elements and thermodynamic characteristics of σ -forming pairs in alloys, a physical interpretation of their effect on a change in quantity of σ -phase and FCC-phase in HEAs is suggested.

An effect of quantity of σ -phase in HEAs and individual elements in them on hardness, elastic modulus and elastic deformation is measured by method of tool automatic indentation.

Key words: cast two-phase high-entropy alloys; quantity of σ -phase and FCC-phase; electronic concentration; mechanical properties.

1. ВВЕДЕНИЕ

Металлические многокомпонентные высокоэнтропийные сплавы (ВЭСы) представляют собой новый класс материалов [1-16]. Известные высокоэнтропийные сплавы обычно включают 5 - 10 элементов (S_{mix}=13-19 Дж/моль·К), которые в шихтовом составе находятся, как правило, в эквиатомном соотношении. Высокая энтропия смешения элементов в сплаве рассматривается как мера вероятности сохранения их фазового и структурного состояния в виде системы взаимодействующих элементов [2]. Замедленная диффузия атомов элементов и их кооперативного перемещения затрудняют распад твердого раствора замещения и формирование новых фаз [5, 9, 12, 14]. Наличие разнородных атомов элементов с разными электронным строением, размерами и термодинамическими свойствами приводит к существенному искажению кристаллической решетки сплава [5, 9]. Все эти факторы в совокупности обеспечивают повышенную термическую стабильность фазового состава и структурного состояния, а, следовательно, свойств ВЭСов – механических, физических, химических [2-4, 6, 8, 10, 13, 16].

Как правило, ВЭСы содержат 1-2 фазы – твердые растворы замещения с ГПУ, ОЦК и ГЦК решетками. Как показал анализ термодинамических возможностей образования различных фаз в ВЭСах, а также полученные нами результаты, твердые растворы замещения могут быть не единственными фазами в ВЭ-Сах [4, 9, 13]. При определенных составах и условиях охлаждения расплавов ВЭСы могут дополнительно включать интерметаллидные фазы, содержащие все элементы шихтового состава, т. е. фактически представляют собой интерметаллидные многокомпонентные фазы.

В частности, двухфазные ВЭСы могут состоять из ГЦК-твердого раствора замещения и поликомпонентной σ-фазы. В связи с тем, что первая из них пластичная, а вторая прочная и хрупкая, для практического использования таких ВЭСов необходимо знать количественное соотношение этих фаз в ВЭСах. При этом важно установить, с помощью каких факторов можно регулировать их соотношение в сплаве, чтобы получать требуемые сочетания прочностных и пластических характеристик ВЭСов в заданных температурно-силовых условиях эксплуатации.

Принято считать [17-19], что одним из главных факторов, определяющих соотношение состав – структура – свойства конкретного сплава является его электронная структура. А одной из важных величин, отражающих его электронную структуру, является электронная концентрация. В свою очередь, электронная концентрация сплава определяется совокупным взаимодействием электронной структуры его элементов в зависимости от их расположения в Периодической системе элементов.

В связи с этим возникает интерес, в какой мере все эти связи отражены в поликомпонентных двухфазных ВЭСах, в которых одной из фаз является ГЦК-твердый раствор замещения всех элементов сплава, а другой – поликомпонентная сигма-фаза. В частности, можно ли, используя электронную концентрацию металлов и сплавов, определять не только фазовый состав сплавов, но и количественное соотношение таких двух фаз в сплаве.

Как известно [19-21], σ -фаза имеет частично или полностью упорядоченное расположение атомов в тетрагональной решетке с 30 атомами в элементарной ячейке (отношение осей c/a = 0,52). Атомы, размеры которых отличаются не более, чем на 8-10 %, расположены в узлах решетки. σ -фаза образуется как при кристаллизации из жидкого состояния, так и в твердом состоянии, обладает широкими областями гомогенности.

В настоящей работе изучена связь экспериментально определенного количественного соотношения фазы и ГЦК-твердого раствора замещения в двухфазных ВЭСах с расчетной величиной электронной концентрации Csd сплава (электрон/атом). При этом величина электронной концентрации Csd сплава определялась по его химическому шихтовому составу – как среднеарифметическое значение электронных концентраций его химических элементов с учетом концентрационного содержания в сплаве, т. е. как усредненное число их валентных электронов, приходящихся на один атом в сплаве [18].

2. МАТЕРИАЛЫ И МЕТОДЫ

<u>Металлы и сплавы</u>. В работе изучены ВЭСы следующего типа. Это – многокомпонентные двухфазные высокоэнтропийные сплавы, включающие элементы, которые находятся в пределах 4-го периода Периодической системы элементов V, Cr, Mn, Fe, Co, Ni, Cu, а также элемент 5-го периода Mo; в этих металлах валентными являются (sd)-электроны. Сплавы содержат интерметаллидную поликомпонентную σ -фазу и ГЦК-твердый раствор замещения в количестве от 0 до 100 масс. %. Электронная концентрация Csd сплавов находится в пределах Csd = 6,9-8,2 эл/ат. При этом величина электронной концентрации Csd сплава рассчитывается как среднеарифметическое значение валентных электронов всех индивидуальных элементов его химического шихтового состава. По количеству элементов в шихтовом составе рассчитывается и величина энтропии смешения сплава. Изучены 11 ВЭСов преимущественно эквиатомного состава, каждый из которых содержит 5-7 элементов (S_{смеш} = 13,4-16,2 Дж/моль·K). Составы сплавов, количество фаз в них, расчетные значения их электронной концентрации и другие характеристики приведены в **Табл. 1**.

Сплавы получены методом электродуговой плавки шихты массой 100 г в атмосфере очищенного аргона на медной водоохлаждаемой подине в лунке, имеющей геометрию полусферы. Слиточки переплавлялись 7-8 раз для гомогенизации состава. Охлаждение расплавов выполняли со скоростью 100-200 °С/сек.

<u>σ-образующие пары элементов в сплавах.</u> Сплавы содержат потенциально возможные <u>σ</u>-образующие пары из числа использованных в работе металлов [20]. Характеристики двойных <u>σ</u>-интерметаллидов представлены в **Табл. 2**.

Таблица 1

Характеристики эквиатомных двухфазных ВЭСов, содержащих о-фазу и ГЦК-твердый раствор замещения

Table 1

Characterisation of cast two-phase HEAs containing σ -phase and FCC-substitutional solid solution

Nº	Состав сплава эквиатомный	σ-образующие пары элементов в сплаве	Кол-во σ-фазы масс %	Кол-во ГЦК масс%	Csd сплава эл/атом	<i>а</i> , нм о- фазы	<i>с</i> , нм σ- фазы	c/a	<i>Н</i> іт ГПа	E _r ГПа	Ees %
1	V-Cr-Mn-Fe-Co	VMn VFe VCo CrMn CrFe CrCo	100	0	7.00	0.88450	0.45705	0.5167	12.2	154	2.44
2	V3-Cr-Mn-Fe-Co-Ni	VMn VFe VCo VNi CrMn CrFe CrCo	100	0	6.88	0.89370	0.46160	0.5165	9.7	150	1.99
3	V-Cr-Mn-Fe-Co-Ni0.5	VMn VFe VCo VNi CrMn CrFe CrCo	100	0	7.27	0.88531	0.45827	0.5176	11.0	164	2.06
4	V-Cr-Mo-Mn-Fe-Co-Ni	VMn VFe VCo VNi CrMn CrFe CrCo MoMn MoFe MoCo	100	0	7.29	0.89000	0.46100	0.5180	9.3	160	1.79
5	V-Cr-Mn-Fe-Co-Ni	VMn VFe VCo VNi CrMn CrFe CrCo	68	32	7.50	0.88850	0.46032	0.5181	9.1	153	1.83
6	V-Cr-Fe-Co-Ni	VFe V Co VNi CrFe CrCo	46	54	7.60				5.2	160	1.00
7	V-Cr-Mn-Fe-Co-Ni1.5	VMn VFe VCo VNi CrMn CrFe CrCo	16	84	7.69	0.87873	0.46644	0.5308	5.4	134	1.24
8	V-Cr-Mn-Fe-Co-Ni2	VMn VFe VCo VNi CrMn CrFe CrCo	0	100	7.86	0.36038	-	-	3.9	129	0.93
9	V-Cr-Co-Ni-Cu	VCo VNi CrCo	48	52	8.20	0.88758	0.45959	0.5178	7.5	150	1.54
10	V-Mo-Fe-Co-Ni-Cu	VFe V Co VNi MoFe MoCo	41	59	8.17	0.90698	0.47165	0.5200	7.5	148	1.56
11	V-Cr-Fe-Co-Ni-Cu	VFe V Co VNi CrFe CrCo	31	69	8.17	0.88558	0.45949	0.5189	5.0	135	1.14

Таблица 2

Характеристики интерметаллидных **б**-образующих пар элементов в изученных двухфазных ВЭСах (Табл. 1) 19-21

Table 2

Characterisation of intermetallic σ-phase-forming pairs of elements in studied two-phase HEAs (Table 1) 19-21

N⁰	о- пары	Атомная доля	Csd, эл/ат	<i>R</i> 1, нм	<i>R</i> 2, нм	$\Delta R,$ %	Тип реакции образования	Т _{обр.} , °С	ΔH _{oбp.} , kJ/mol	<i>а</i> , нм	<i>с</i> , нм	c/a
1	V-Mn	0.750 Mn	6.500	0.1309	0.1337	-2.14	Тв. – ОЦК / Конгруэнтн.	1000	-			
2	V-Fe	0.517 V	6.449	0.1309	0.1239	5.35	Тв. – ОЦК / Конгруэнтн.	1200	-2.97	0.8974	0.4633	0.5163
3	V-Co	0.681 V	6.276	0.1309	0.1254	4.20	Ж + ОЦК / Перитектика	1400	-19.35			
4	V-Ni	0.670 V	6.650	0.1309	0.1245	4.89	Ж + ОЦК / Перитектика	1250	~ -10	0.8966	0.4641	0.5176
5	Cr-Mn	0.750 Mn	6.750	0.1248	0.1337	-7.13	Ж + ОЦК / Перитектика	1300	-	0.8860	0.4590	0.5181
6	Cr-Fe	0.552 Cr	6.896	0.1248	0.1239	0.72	Тв. – ОЦК / Конгруэнтн.	831	-1.33	0.881	0.458	0.5199
7	Cr-Co	0.595 Cr	7.215	0.1248	0.1254	-0.48	Тв. – ОЦК / Конгруэнтн.	1283	-5.55	0.878	0.456	0.5194
8	Mo-Mn	0.650 Mn	6.650	0.1361	0.1337	1.76	Ж + ОЦК / Перитектика	1127	-	0.910	0.474	0.5209
9	Mo-Fe	0.534 Mo	6.932	0.1361	0.1239	8.96	Ж + ОЦК / Перитектика	1610	-14.33	0.9218	0.4813	0.5221
10	Мо-Со	0.634 Mo	7.098	0.1361	0.1254	7.86	Ж + ОЦК / Перитектика	1618	-11.44	0.9225	0.4814	0.5218

<u>Количество</u> σ -фазы и ГЦК-фазы в сплавах. Количество σ -фазы и ГЦК-фазы в сплаве определяли экспериментально – методом рентгенофазового анализа. Съемку проводили в монохроматическом СиК α излучении в фокусирующей геометрии Брегга-Брентано методом пошагового сканирования в диапазоне углов $2\Theta = 35-80^{\circ}$. Полученные результаты анализировали с помощью программного комплекса Powder Cell 2.4.

Электронная концентрация Csd сплава. Величину электронной концентрации Csd сплава определяли расчетным способом – как среднеарифметическое значение электронных концентраций его химических элементов с учетом концентрационного (относительного) содержания в шихте сплава, т. е. как усредненное число их валентных электронов, приходящихся на один разнородный атом элемента в сплаве.

<u>Способ анализа результатов.</u> Анализ связи количества каждой из двух фаз с их электронной концентрацией, а также с электронной концентрацией Csd сплава для изученных ВЭСов осуществляли методом последовательного сопоставления двух сплавов, отличающихся одним элементом. Отличие между такими парами сплавов состояло или в замене одного элемента другим или в отсутствии одного элемента или в присутствии «лишнего» элемента в одном из двух сплавов (Табл. 1). Линии на графиках зависимости количества **σ**-фазы в сплавах от их электронной концентрации Csd последовательно соединяют два сплава, отличающихся одним элементом.

<u>Механические свойства</u>. Твердость (H_{IT}), приведенный модуль упругости (E_r) и упругая деформация (ε_{es}), которая является частью общей деформации под индетором, изученных ВЭСов определены методом инструментального автоматического индентирования при комнатной температуре на установке «Микрон-гамма» [22] алмазной пирамидой Берковича в соответствии с международным стандартом ISO 14577-1:2002(E) [23]. Нагружение до F = 0,3 Н, выдержка и последующее разгружение осуществлялись автоматически с одновременной записью диаграммы внедрения в координатах F-h (нагрузка – глубина внедрения индентора). Обработку диаграмм и расчет величин твердости (H_{IT}), приведенного модуля упругости (E_r) и упругой деформации e_{es} выполняли по методике [24].

3. РЕЗУЛЬТАТЫ

В работе изучена взаимосвязь характеристик двухфазных ВЭСов, содержащих σ-фазу и ГЦК-фазу: химический шихтовой состав – электронная концентрация – фазовый состав – количественное соотношение двух фаз. Обработка полученных данных и анализ результатов выполнялись для сплава в целом и индивидуальных его элементов, а также двух фаз – интерметаллидной поликомпонентной **о**-фазы и ГЦК-твердого раствора замещения.

На **Рис. 1** и в Табл. 1 показано изменение фазового состава сплавов и количественного соотношения σфазы и ГЦК-твердого раствора замещения в зависимости от химического шихтового состава: от 100 масс. % σ-фазы (№1) до 100 масс. % ГЦК-твердого раствора замещения (№8). Этот переход осуществляется благодаря последовательному увеличению количества никеля в базовом сплаве №1 V-Cr-Mn-Fe-Co до 2х молей. Одновременное присутствие никеля и меди в сплавах этого типа (сплавы №9-11) обеспечивает образование двух фаз с максимальным содержанием σ-фазы до 48 масс. % и ГЦК-фазы – до 69 масс. %.

Связь количества σ-фазы и ГЦК-фазы в сплавах с величинами электронных концентраций сплавов показана на **Рис. 2**.

В рамках зависимостей «Количество σ-фазы – Csd сплава» и «Количество ГЦК-фазы – Csd сплава» (**Рис. 2**) выполнен анализ влияния состава каждого изученного ВЭСа, содержащихся в них элементов и величины их электронной концентрации на изменение количества σ-фазы и ГЦК-фазы в сплаве.

Изучено влияние количества σ-фазы в ВЭСах данного типа и индивидуальных элементов в них на твердость, модуль упругости и упругую деформацию, определенных методом инструментального автоматического индентирования при комнатной температуре (Табл. 1, **Рис. 3**).

Рис. 1. Дифрактограммы двухфазных ВЭСов, содержащих σ-фазу и ГЦК твердый раствор замещения (номера сплавов указаны в Табл. 1). Получены в монохроматическом СиКα излучении Fig. 1. X-Ray spectrums (in monochromatic CuKα) of two-phase HEAs containing intermetallic polycomponent σ-phase and FCC-substitutional solid solution (alloy numbers are specified in Table 1)

Рис. 2. Экспериментально-расчетные зависимости количества **б**-фазы (а) и ГЦК-твердого раствора замещения (б) в двухфазных ВЭСах от величины электронной концентрации Csd сплава (номера сплавов указаны в табл. 1). Представлены ВЭСы, содержащие 100 масс. % **б**-фазы и ГЦК-фазы, а также показано влияние отдельных элементов на изменение величины Csd сплавов и количества фаз в них

Fig. 2. Experimental - calculated dependences of quantities of σ -phase (a) and FCC-substitutional solid solution (b) in two-phase HEAs versus value of electronic concentration Csd of the alloy (alloy numbers are specified in Table 1). HEAs contain 100 mass % of σ -phase and FCC - phase. Also an effect of separate elements on a change in value of Csd of alloys and quantities of -phase in them is shown

Рис. 3. Влияние количества σ-фазы в ВЭСах (номера сплавов указаны в Табл. 1) и индивидуальных элементов в них на твердость H_{IT} (a) и модуль упругости Er (б), определенных методом инструментального автоматического индентирования.

Fig. 3. Hardness (a) and elastic modulus (b) of the alloys described in Table 1 versus quantities of σ -phase in HEAs.

4. ОБСУЖДЕНИЕ

Начиная с расплавленного состояния химических элементов, заложенных в шихтовом составе, в сплаве происходит термодинамически согласованное протекание двух процессов: формирование интерметаллидной поликомпонентной σ-фазы и ГЦК-твердого раствора замещения, вероятнее всего, в виде кристаллоподобных кластеров [25].

В результате в многокомпонентных двухфазных ВЭСах все элементы химического состава сплава входят как в σ-фазу, так и в ГЦК-фазу, формируя их количественное соотношение (Табл. 1), которое зависит от электронной концентрации индивидуальных элементов и характеристик σ-образующих пар элементов.

Так, наличие в сплавах элементов, обладающих высокими значениями электронной концентрации Csd и способных иметь ГЦК-модификацию – Mn, Fe, Co, Ni, Cu, содействует образованию ГЦК-фазы. В то же время, эти элементы, взаимодействуя с ОЦК-металлами V, Cr, Mo, имеющими более низкие значения электронной концентрации, проявляют способность к образованию поликомпонентной σ-фазы (Табл. 1, 2).

В результате в зависимости от конкретного химического состава ВЭСа, а также условий охлаждения расплава формируется конкретное количественное соотношение этих двух фаз в твердом состоянии.

Первопричиной же изменения количества каждой фазы в сплаве при изменении химического состава является изменение его электронной структуры, что отражается в изменении электронной концентрации Csd [18]. В связи с этим можно считать правомерной поставленную в работе следующую задачу: установить, можно ли с помощью электронной концентрации сплава Csd оценивать количественное соотношение поликомпонентной σ-фазы и ГЦК-твердого раствора замещения в ВЭСах изученных составов.

Влияние электронной концентрации двухфазных ВЭСов и их состава на количественное соотношение офазы и ГЦК-фазы

В рамках зависимости «Количество σ-фазы (и ГЦК-фазы) – Csd сплава» (**Рис. 2**) выполнен сравнительный анализ влияния состава каждого изученного ВЭСа, конкретного элемента в нем и величины их электронной концентрации (Табл. 1), а также термодинамических характеристик σ-образующих пар элементов (Табл. 2) на изменение количества σ-фазы и ГЦК-фазы в сплаве. На его основе предложено физическое обоснование влияния этих факторов на изменение количества σ-фазы и ГЦК-фазы в сплаве.

Анализ связи количества каждой фазы с величиной электронной концентрации сплава осуществлялся, как отмечено в разделе «Материалы и методы», методом последовательного сопоставления двух сплавов, отличающихся одним элементом. При наличии нового элемента в сплаве возникает новое соотношение его элементов, которое определяет, формированию какой из фаз (σ-фаза или ГЦК-фаза) оно способствует, т. е. в сторону какой фазы изменяется их количественное соотношение в сплаве.

Использование этого метода позволило непосредственно установить влияние индивидуальных элементов в изученных сплавах данного типа на электронную концентрацию и количество каждой фазы в них. Последовательно изменяя один элемент в каждом последующем сплаве, получили набор составов с плавов с изменяющейся величиной электронной концентрации и соответствующим количественным соотношением σ-фазы и ГЦК-фазы.

Остановимся подробно на результатах анализа влияния электронной концентрации Csd индивидуальных элементов V, Cr, Mo, Mn, Fe, Co, Ni, Cu, использованных в работе, а также их σ -образующих пар на электронную концентрацию Csd изученных двухфазных ВЭСов и, соответственно, на экспериментально определенное количество поликомпонентной σ -фазы в них и ГЦК-твердого раствора замещения (**Рис. 2**). При этом принимали во внимание три следующие характеристики σ -образующих пар элементов, которые определяют их активность (способность) к формированию σ -фазы (Табл. 2). Это – тип реакции образования (ее протекание по перитектическому типу, т. е. непосредственно из расплава с участием жидкой и твердой фаз или только в твердом состоянии), температура образования и величина энтальпии образования.

ВЭСы, содержащие 100 % о-фазы. Марганец

Электронная концентрация Csd ВЭСов №1-4, содержащих 100 масс. % о-фазы, изменяется в пределах Csd = 6,88-7,29 эл/ат (Табл. 1). Интересно отметить, что все элементы этих сплавов (кроме молиб-

дена) находятся в одном (4-ом) периоде, а содержащийся в них марганец имеет электронную концентрацию Csd = 7,00 эл/ат. При этом слева от него располагаются ОЦК-металлы ванадий и хром, а справа – металлы железо и кобальт, способные приобретать ГЦК-модификацию, а также ГЦК-никель.

Пятикомпонентный сплав №1 V-Cr-Mn-Fe-Co (в работе использован как базовый сплав), который содержит «симметричное» расположение двух ОЦК- и ГЦК-металлов относительно марганца, имеет такое же значение электронной концентрации, как и у марганца – Csd = 7,00 эл/ат. К тому же параметр *a* тетрагональной решетки σ-фазы в этих сплавах (Табл. 1) очень близок к параметру сложной ОЦК решетки αмарганца, которая существует при температурах ниже 710°C (*a* = 0,8914 нм) [19, 20].

При значениях электронной концентрации ВЭСов Csd>7,3 эл/ат отмечается образование ГЦК-фазы (Табл. 1, Рис. 1, 2) – тем в большем количестве, чем больше электронная концентрация сплава (соответственно снижается количество σ-фазы). При этом, как видно, наличие марганца в сплаве не обязательно (сплавы № 6, 9-11).

Никель. Молибден. Марганец

При попарном рассмотрении сплавов, как отмечалось выше, влияние нового элемента в сплаве проявляется в изменении электронной концентрации сплава и его способности взаимодействовать с другими элементами сплава, в том числе и способствовать образованию двухкомпонентных **о**-интерметаллидов, обладающих различной активностью (Табл. 2). В результате представляется возможным установить, формированию какой фазы – ГЦК-твердого раствора замещения или **о**-фазы – он способствует, т. е. увеличение или уменьшение количества какой фазы он может обеспечить.

Увеличение электронной концентрации ВЭСа, связанное с дополнительным введением ГЦК-никеля в сплав № 1 V-Cr-Mn Fe-Co, содержащий 100 % σ-фазы, т. е. переход к сплаву № 5 V-Cr-Mn-Fe-Co-Ni (Табл. 1, Рис. 1, 2), приводит к увеличению Csd сплава с 7,00 до 7,50 эл/ат и возрастанию количества ГЦК-фазы до 32 масс. % за счет снижения количества σ-фазы, соответственно, до 68 масс. %. Здесь проявилось влияние активного ГЦК-образующего элемента никеля, который имеет высокое значение электронной концентрации Csd = 10 эл/ат, и в сочетании с ГЦК-модификациями содержащихся в сплаве металлов Mn, Fe, Co способствует усилению процесса формирования ГЦК-фазы [20].

Но к составу сплава № 5 V-Cr-Mn-Fe-Co-Ni с теми же Csd и количественным соотношением фаз можно перейти, если у сплава № 4 V-Cr-Mo-Mn-Fe-Co-Ni со 100% σ-фазы «изъять» молибден. Молибден же, как известно [20] (Табл. 1, 2), является активнейшим σ-образующим элементом: его двойные σ-интерметаллиды образуются с участием жидкой фазы при температуре выше 1600 °C с высокой энтальпией образования – на уровне $\Delta H_{oбp} = -13$ кДж/моль. Поэтому естественным является эффект снижения количества σ-фазы в сплаве № 4 при удалении молибдена из его состава.

Далее. Если из сплава №5 V-Cr-Mn-Fe-Co-Ni удалить σ-образующий элемент марганец (переход к сплаву №6 V-Cr-Fe-Co-Ni), это активизирует формирование ГЦК-фазы: увеличивается ее электронная концентрация до Csd = 7,60 эл/ат и, соответственно, количество в сплаве – до 54 масс. % (Табл. 1, Рис. 1, 2).

Последующее возвращение марганца в сплав №6, сопровождаемое повышением содержания никеля до 1,5 моля (переход к сплаву №7 V-Cr-Mn-Fe-Co-Ni1,5 (Табл. 1) еще в большей мере способствует увеличению электронной концентрации сплава – до Csd = 7,69 эл/ат и значительному возрастанию количества ГЦК-фазы – до 84 масс. % (Рис. 2).

Наконец, доведение содержания никеля до 2 молей в таком сплаве (переход к сплаву № 8 V-Cr-Mn-Fe-Co-Ni2 (Табл. 1, Рис.1, 2) обеспечивает получение однофазного ВЭСа, содержащего 100 масс. % ГЦК-твердого раствора замещения, и достигшего соответствующего высокого значения электронной концентрации Csd = 7,86 эл/ат.

Таким образом, путем последовательного перехода от одного ВЭСа к другому, когда каждый последующий сплав отличается от предыдущего одним элементом, осуществлен переход от сплава, содержащего 100 % σ-фазы (№ 1 V-Cr-Mn Fe-Co), к сплаву, содержащему 100 % ГЦК-фазы (№ 8 V-Cr-Mn-Fe-Co-Ni2) (Табл. 1, Рис. 1, 2).

При сопоставлении этих двух «граничных» ВЭСов следует обратить внимание на следующее обстоятельство. Исчезновение σ-фазы в сплаве № 8 произошло несмотря на то, что количество σ-образующих пар, обеспечивших образование 100 % σ-фазы в сплаве №1, не только не уменьшилось, но и увеличилось за счет активной σ-образующей пары VNi (Табл. 1, 2). Следовательно, можно предположить, что обеспечению 100 % ГЦК-фазы в сплаве №8 способствовало повышенное количество никеля (до 2-х молей) в формировании ГЦК-фазы: благодаря высокому значению его электронной концентрации (Csd=10 эл/ат) и дополнению к ГЦК-образующим элементам Mn, Fe, Co было обеспечено повышенное значение электронной концентрации ВЭСа Csd=7,86 эл/ат (против Csd=7,00 эл/ат у сплава №1).

Сопоставление рассмотренных выше сплавов №1-8 между собой показывает, какую важную роль может играть различие в их составе в один элемент для проявления термодинамического эффекта нового сочетания элементов, которое обеспечивает формирование нового количественного соотношения σ-фазы и ГЦК-фазы.

Медь. Молибден

Дополнительное присутствие меди (Csd = 11 эл/ат) в сплавах, содержащих никель, №9-11 (Табл. 1, Рис. 1, 2), демонстрирует увеличение эффективности совокупного наличия этих ГЦК-металлов в повышении электронной концентрации сплавов (до Csd = 8,2 эл/ат). Кроме того, медь не является σ-образующим элементом, т. е. не расходуется на образование σ-фазы и таким образом еще и косвенно должна способствовать образованию ГЦК-фазы.

Так, если в сплав №6 V-Cr-Fe-Co-Ni ввести медь (переход к сплаву №11 V-Cr-Fe-Co-Ni-Cu), электронная концентрация Csd возрастает с 7,60 до 8,17 эл/ат, а количество ГЦК-фазы – с 54 до 69 масс. % (соответственно уменьшается количество σ-фазы) (Табл. 1, Рис. 2). Однако, возрастание количества ГЦК-фазы произошло, как видим, не до 100 масс. %, как можно было судить по характеристикам сплава №8 (величина его электронной концентрации Csd = 7,86 эл/ат обеспечивает 100 % ГЦК-фазы – Табл. 1, Рис. 1, 2). Это может быть связано с тем, что присутствие в сплаве №11 σ-образующих элементов ванадия и хрома не позволило в полной мере реализоваться ГЦК-образующему элементу меди, введенному в сплав в дополнение к ГЦК-металлам.

Это предположение подтверждается, если хром в сплаве №11 V-Cr-Fe-Co-Ni-Cu заменить более активным о-образующим элементом молибденом (Табл. 2) (переход к сплаву №10 V-Mo-Fe-Co-Ni-Cu). В этом случае количество ГЦК-фазы снижается с 69 до 59 масс. % (соответственно увеличивается количество о-фазы) (Табл. 1, Рис.2).

С другой стороны, если из сплава №11 V-Cr-Fe-Co-Ni-Cu «изъять» железо, которое в присутствии трех ГЦК-металлов способствует формированию ГЦК-фазы [20] (переход к сплаву №9 V-Cr-Co-Ni-Cu), т. е. уменьшить ГЦК-образующую способность оставшихся элементов, количество ГЦК-фазы в сплаве снижается с 69 до 52 масс. % (соответственно возрастает количество σ-фазы) (Табл. 1, Рис. 2).

Эти результаты показывают, что в ВЭСах данного типа, несмотря на то, что медь имеет более высокое значение электронной концентрации (Csd = 11 эл/ат), чем никель (Csd = 10 эл/ат), она по сравнению с никелем является менее активным ГЦК-образующим элементом. Это может быть связано с ее повышенной способностью к ликвации, обусловленной положительными значениями энтальпии смешения со всеми элементами в изученных ВЭСах [26].

Таким образом, показано, что регулировать соотношение количества σ -фазы и ГЦК-фазы в двухфазных ВЭСах данного типа можно как непосредственно с помощью элементов, способствующих формированию σ -образующих пар, так и с помощью элементов, способствующих формированию ГЦК-твердого раствора замещения. А также путем одновременного использования этих факторов – в зависимости от активности взаимодействия нового элемента в сплаве с остальными элементами. Во всех рассмотренных случаях контролирующим фактором проявления активности элементов является их электронная концентрация, которая в значительной мере определяет электронную концентрацию Csd сплава и обусловленное ею количественное соотношение σ -фазы и ГЦК-твердого раствора замещения.

Механические свойства

В работе изучено влияние количества σ -фазы и элементов в ВЭСах данного типа на твердость $H_{\rm IT}$, модуль упругости $E_{\rm r}$ и упругую деформацию $\varepsilon_{\rm es}$, определенных методом инструментального автоматичес-кого индентирования (Табл. 1, **Рис. 3**).

Как и следовало ожидать, увеличение количества σ-фазы в ВЭСах (соответственно уменьшается количество ГЦК-фазы) приводит к повышению как твердости, так и модуля упругости, а также упругой деформации. Использованный в работе набор элементов для изготовления сплавов обеспечил сравнительно высокий уровень этих характеристик. Метод сопоставления двух сплавов, отличающихся одним элементом, позволил установить непосредственное влияние индивидуальных элементов на величину вклада в изменение этих характеристик.

Так, последовательное уменьшение молярной доли никеля в сплавах №8 – 7 – 5, обеспечивающее увеличение количества σ-фазы от 0 до 68 масс. %, приводит к значительному возрастанию твердости – с 3,9 до 9,1 ГПа, а также повышению модуля упругости – со 129 до 153 ГПа и упругой деформации – с 0,93 до 1,83 %. Отсутствие никеля в ВЭСах этого типа (сплав №1 V-Cr-Mn-Fe-Co), обеспечивающее 100 % σ-фазы, приводит к максимально высокому значению твердости 12,2 ГПа в группе изученных сплавов (Табл. 1, Рис.3).

Замена марганца в сплаве №5 V-Cr-Mn-Fe-Co-Ni медью (переход к сплаву №11 V-Cr-Fe-Co-Ni-Cu), приводящая к более, чем двукратному уменьшению количества σ-фазы (с 68 до 31 масс. %), приводит и к значительному снижению твердости – с 9,1 до 5,0 ГПа. В то же время замена в сплаве №11 хрома молибденом (сплав №10 V-Mo-Fe-Co-Ni-Cu) обеспечивает возрастание твердости до 7,5 ГПа. А вот дополнительное введение в сплав №10 хрома и замена меди марганцем (переход к семикомпонентному сплаву №4 V-Cr-Mo-Mn-Fe-Co-Ni, который содержит 100 % σ-фазы), приводит к еще большему возрастанию твердости – до 9,3 ГПа (Рис. 3).

Таким образом, на основании полученных экспериментальных данных для изученной системы двухфазных ВЭСов, содержащих σ-фазу и ГЦК-фазу, представляется возможным не только регулировать количественное соотношение этих фаз, но и на его основе получать требуемый уровень величин твердости, модуля упругости и упругой деформации.

5. ВЫВОДЫ

1. Изучены одиннадцать многокомпонентных двухфазных высокоэнтропийных сплавов (ВЭС) преимущественно эквиатомного состава (S_{смеш}=13,4-16,2 Дж/моль·К), включающих 5 - 7 элементов из числа V, Cr, Mo, Mn, Fe, Co, Ni, Cu, и содержащих интерметаллидную поликомпонентную σ-фазу и ГЦК-твердый раствор замещения в количестве от 0 до 100 масс. %. Величина электронной концентрации Csd сплавов находится в пределах Csd=6,9-8,2 эл/ат.

2. Показано, что величина электронной концентрации Csd изученных ВЭСов, представляющих собой 100 % интерметаллидной поликомпонентной σ-фазы, находится в пределах Csd=6,9-7,3 эл/ат. Увеличение содержания никеля в этих сплавах до двух молей приводит к повышению электронной концентрации до Csd=7,9 эл/ат и образованию 100 % поликомпонентной ГЦК-фазы. Дополнительное введение меди в ВЭСы изученных составов приводит к повышению электронной концентрации до Csd=8,2 эл/ат и содержанию σ-фазы на уровне 30-50 масс. %.

3. Установлено, что наиболее активным σ-образующим элементом в изученных ВЭСах является молибден, в то время как элементами, активно способствующими образованию ГЦК-фазы, являются никель и медь.

4. Показано, что повышение количества никеля в сплавах со 100 % σ -фазы, приводящее увеличению количества ГЦК-фазы до 100 %, способствует снижению их твердости $H_{\rm rr}$ с 12,2 до 3,9 ГПа, а модуля упругости E_r – со 164 до 129 ГПа.

5. С использованием химических составов изученных ВЭСов данного типа и величин их электронной концентрации, а также установленных закономерностей формирования количества σ-фазы и ГЦК-твердого раствора замещения представляется возможным конструировать новые составы ВЭСов с заданным количественным соотношением этих фаз и, соответственно, механических свойств.

Библиографический список

1. Ranganathan S., Alloyed pleasures: Multimetallic cocktails, *Current Science*, 2003, **85**, N 10, pp 1404-1406. 2. Yeh J.W., Chen Y.L., Lin S.J. and Chen S.K., High-Entropy Alloys – A New Era of Exploitation, *Materials* Science Forum, 2007, 560, pp 1-9.

3. Фирстов С.А., Горбань В.Ф., Крапивка Н.А., Печковский Э.П., Даниленко Н.И., Карпец М.В., Механические свойства литых многокомпонентных сплавов при высоких температурах, *Современные проблемы физического материаловедения*, 2008, **17**, С. 126-139.

4. Фирстов С.А., Горбань В.Ф., Крапивка Н.А., Печковский Э.П., Упрочнение и механические свойства литых высокоэнтропийных сплавов, *Композиты и Наноструктуры*, 2011, №2, С. 5-20.

5. Sheng Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, *Progress in Natural Science: Materials International*, 2011, **21**, pp 433-446.

6. Senkov O.N., Scott J.M., Senkova S.V., Miracle D.B., Woodward C.F., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, *Journal of Alloys and Compounds*, 2011, **509**, N 20, pp 6043-6048.

7. Фирстов С.А., Горбань В.Ф., Крапивка Н.А., Печковский Э.П Карпец М.В., Пономарев С.С., Ковыляев В.А., Распределение элементов в литых многокомпонентных высокоэнтропийных однофазных сплавах с

ОЦК кристаллической решеткой, *Композиты и Наноструктуры*, 2012, №3, С. 48-64. 8. Фирстов С.А., Рогуль Т.Г., Крапивка Н.А., Пономарев С.С., Ткач В.Н., Ковыляев В.В., Горбань В.Ф., Карпец М.В., Твердорастворное упрочнение высокоэнтропийного сплава AlTiVCrNbMo, *Деформация и*

разрушение материалов, 2013, №2, С. 9-16.

9. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P., Microstructures and Properties of High-entropy Alloys, *Progress in Materials Science*, 2013, doi: http://dx.doi.org/10.1016/j.pmatsci.2013.10.001.

10. Фирстов С.А., Милейко С.Т., Горбань В.Ф., Крапивка Н.А., Печковский Э.П., Модуль упругости высокоэнтропийных однофазных сплавов с ОЦК кристаллической решеткой, *Композиты и Наноструктуры*, 2014, **6**, №1, С. 3-17.

11. Фирстов С.А., Горбань В.Ф., Крапивка Н.А., Печковский Э.П., Еременко А.Л. Определение температуры перехода к диффузионным механизмам деформации в однофазных ОЦК-ВЭСах эквиатомного состава, *Композиты и Наноструктуры*, 2014, **6**, № 3, С. 125-136.

12. Ming-Hung Tsai & Jien-Wei Yeh, High-Entropy Alloys: A Critical Review, *Materials Research Letters*, 2014, 2:3, pp 107-123, DOI: 10.1080/21663831.2014.912690.

13. Daniel B. Miracle, Jonathan D. Miller, Oleg N. Senkov, Christopher Woodward, Michael D. Uchic and Jaimie Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, *Entropy*, 2014, **16**, pp 494-525; doi:10.3390/e16010494.

14. B. Gorr, M. Azim, H.-J. Christ, T. Mueller, D. Schliephake, M. Heilmaier, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, *Journal of Alloys and Compounds*, 2015, **624**, pp 270–278.

15. Xiaotao Liu, Wenbin Lei, Lijuan Ma, Jing Liu, Jinling Liu, Jianzhong Cui, On the microstructures, phase assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys, *Journal of Alloys and Compounds*, 2015, **630**, pp 151–157.

16. Chun-Ming Lin, Chien-Chang Juan, Chia-Hsiu Chang, Che-Wei Tsai, Jien-Wei Yeh, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, *Journal of Alloys and Compounds*, 2015, **624**, pp 100–107.

17. Григорович В.К. Периодический закон Менделеева и электронное строение металлов. М.: Наука, 1966, 287 с.

18. Трефилов В.И., Мильман Ю.В., Фирстов С.А., Физические основы прочности тугоплавких металлов. К.: Наукова думка, 1975, 315 с.

19. Энциклопедия неорганических материалов. Ответственный редактор Федорченко И.М., Киев: Главная редакция УСЭ, 1977, т. 2, С. 158-162.

20. Барабаш О.М., Коваль Ю.Н., Структура и свойства металлов и сплавов. Справочник. Кристаллическая структура металлов и сплавов, Киев: Наукова думка, 1986, 598 с.

21. Тихонов Л.В., Кононенко В.А., Прокопенко Г.И., Рафаловский В.А., Структура и свойства металлов и сплавов. Справочник. Механические свойства металлов и сплавов. – Киев: Наукова думка, 1986, 567 с.

22. Aznakayev E., «Micron-Gamma» for Estimation of Physico-mechanical Properties of Micro-materials //

Proceedings of the International Conference «Small Talk – 2003», San Diego, California, USA, 2003. – TP.001. – pp 8-10.

23. ISO 14577-1:2002(E). Instrumental indentation test for hardness and materials parameters – Part 1: Test method. Date: 2002-09-22.

24. Фирстов С.А., Горбань В.Ф., Печковский Э.П., Новая методология обработки и анализа результатов автоматического индентирования материалов, Киев: Изд-во «Логос», 2010, 82 с.

25. Приходько Э.В., Эффективность комплексного легирования сталей и сплавов. К.: Наукова думка, 1995, 292 с.

26. Sheng Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, *Progress in Natural Science: Materials International*, 2011, **21**, pp 433-446.

REFERENCES

1. Ranganathan S., Alloyed pleasures: Multimetallic cocktails, Current Science, 2003, 85, N 10, pp 1404-1406.

2. Yeh J.W., Chen Y.L., Lin S.J. and Chen S.K., High-Entropy Alloys – A New Era of Exploitation, *Materials Science Forum*, 2007, **560**, pp 1-9.

3. Firstov S.A., Gorbanj V.F., Krapivka N.A., Pechkovskiyj En.P., Danilenko N.I., Karpec M.V., Mechanical properties of cast multicomponent alloys at high temperatures, *Sovremennihe problemih fizicheskogo materialovedeniya - Modern problems of physical materials*, 2008, no 17, pp. 126-139. (In Russian).

4. Firstov S.A., Gorbanj V.F., Krapivka N.A., Pechkovskiyj En.P. Work-hardening and mechanical properties of the cast high-entropy alloys. Kompozitih i Nanostrukturih - Composites and Nanostructures, 2011, no. 2, pp. 5-20. (In Russian).

5. Sheng Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, *Progress in Natural Science: Materials International*, 2011, **21**, pp 433-446.

6. Senkov O.N., Scott J.M., Senkova S.V., Miracle D.B., Woodward C.F., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, *Journal of Alloys and Compounds*, 2011, **509**, № 20, pp 6043-6048.

7. Firstov S.A., Gorbanj V.F., Krapivka N.A., Pechkovskiyj En.P., Karpec M.V., Ponomarev S.S., Kovihlyaev V.A. Distribution of elements in the cast multicomponent high-entropy monophase alloys with BCC crystalline lattice, Kompozitih i Nanostrukturih - Composites and Nanostructures, 2012, no. 3, pp. 48-64 (In Russian).

8. Firstov S.A., Rogulj T.G., Krapivka N.A., Ponomarev S.S., Tkach V.N., Kovihlyaev V.V., Gorbanj V.F., Karpec M.V., Solid-solushion work-hardening of high-entropy alloy of AlTiVCrNbMo, Deformaciya i razrushenie materialov - Deformation and destruction of materials, 2013, no. 2, pp. 9-16. (In Russian).

9. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P., Microstructures and Properties of High-entropy Alloys, *Progress in Materials Science*, 2013, doi: http://dx.doi.org/10.1016/j.pmatsci.2013.10.001.

10. Firstov S.A., Milejko S.T., Gorbanj V.F., Krapivka N.A., Pechkovskiyj En.P., elastic modulus of high-entropy single-phase alloys with bcc crystalline lattice, Kompozitih i Nanostrukturih - Composites and Nanostructures, 2014, **6**, no. 1, pp. 3-17. (In Russian).

11. Firstov S.A., Gorbanj V.F., Krapivka N.A., Pechkovskiyj En.P., Eremenko A.L., Determination of transition temperature to diffusion deformation mechanisms in single-phase BCC-HEAs equiatomic composition, Kompozitih i Nanostrukturih - Composites and Nanostructures, 2014, **6**, no. 3, pp. 125-136. (In Russian).

12. Ming-Hung Tsai & Jien-Wei Yeh, High-Entropy Alloys: A Critical Review, *Materials Research Letters*, 2014, 2:3, pp 107-123, DOI: 10.1080/21663831.2014.912690.

13. Daniel B. Miracle, Jonathan D. Miller, Oleg N. Senkov, Christopher Woodward, Michael D. Uchic and Jaimie Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, *Entropy*, 2014, **16**, pp 494-525; doi:10.3390/e16010494.

14. B. Gorr, M. Azim, H.-J. Christ, T. Mueller, D. Schliephake, M. Heilmaier, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, *Journal of Alloys and Compounds*, 2015, **624**, pp 270–278.

15. Xiaotao Liu, Wenbin Lei, Lijuan Ma, Jing Liu, Jinling Liu, Jianzhong Cui, On the microstructures, phase

assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys, *Journal of Alloys and Compounds*, 2015, **630**, pp 151–157.

16. Chun-Ming Lin, Chien-Chang Juan, Chia-Hsiu Chang, Che-Wei Tsai, Jien-Wei Yeh, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, *Journal of Alloys and Compounds*, 2015, **624**, pp 100–107.

17. Grigorovich V.K. Periodicheskiyj zakon Mendeleeva i ehlektronnoe stroenie metallov [Periodic law of Mendeleyev and electronic structure of metals]. Moskow, Nauka, 1966, 287 p. (In Russian).

18. Trefilov V.I., Miljman Yu.V., Firstov S.A. Fizicheskie osnovih prochnosti tugoplavkikh metallov [Physical bases of strength of refractory metals]. Kiev: Naukova dumka, 1975. 315 p. (In Russian).

19. Ehnciklopediya neorganicheskikh materialov. Otvetstvennihyj redaktor Fedorchenko I.M.

[Encyclopaedia of inorganic materials. Managing editor of Fedorchenko I.M.], Kiev: Glavnaya redakciya USEh, 1977, vol. 2, pp. 158-162. (In Russian).

20. Barabash O.M., Kovalj Yu.N., Struktura i svoyjstva metallov i splavov. Spravochnik. Kristallicheskaya struktura metallov i splavov [Structure and properties of metals and alloys. Reference book. Crystalline structure of metals and alloys]. Kiev: Naukova dumka, 1986, 598 p. (In Russian).

21. Tikhonov L.V., Kononenko V.A., Prokopenko G.I., Rafalovskiyj V.A., Struktura i svoyjstva metallov I splavov. Spravochnik. Mekhanicheskie svoyjstva metallov i splavov [Structure and properties of metals and alloys. Reference book. Mechanical properties of metals and alloys]. Kiev: Naukova dumka, 1986, 567 p. (In Russian).

22. Aznakayev E., «Micron-Gamma» for Estimation of Physico-mechanical Properties of Micro-materials // *Proceedings of the International Conference «Small Talk – 2003»*, San Diego, California, USA, 2003. – TP.001. – pp 8-10.

23. ISO 14577-1:2002(E). Instrumental indentation test for hardness and materials parameters – Part 1: Test method. Date: 2002-09-22.

24. Firstov S.A., Gorbanj V.F., Pechkovskiyj En.P. Novaya metodologiya obrabotki i analiza rezuljtatovavtomaticheskogo indentirovaniya materialov [New methodology of treatment and analysis of results of automatic indentation of materials], Kiev: Izdatelstvo «Logos», 2010, 82 p. (In Russian).

25. Prikhodjko E.V., Efektivnostj kompleksnogo legirovanija stalej i splavov [Efficiency of complex alloying of steel and alloys]. Kiev: Naukova dumka, 1995, 292 p. (In Russian).

26. Sheng Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, *Progress in Natural Science: Materials International*, 2011, **21**, pp 433-446.

Сведения об авторах

С.А. Фирстов: академик Национальной академии наук Украины, д.ф-м.н., проф., зам. директора, зав. отделом Института проблем материаловедения им. И.Н. Францевича НАН Украины, Киев, Украина, fsa@ipms.kiev.ua, тел. (044) 424-33-60.

В.Ф. Горбань: д-р техн. наук, вед. научный сотрудник Института проблем материаловедения им. И.Н. Францевича НАН Украины, Киев, Украина, gvf@ipms.kiev.ua , тел. (044) 424-00-51.

Н.А. Крапивка: канд. техн. наук, ст. научный сотрудник Института проблем материаловедения им. И.Н. Францевича НАН Украины, Киев, Украина, ерр@ipms.kiev.ua, тел. (044) 424-00-51.

Э.П. Печковский (контактное лицо): д-р. физ.-мат. наук., вед. научный сотрудник Института проблем материаловедения им. И.Н. Францевича НАН Украины, Киев, Украина, ерр@ipms.kiev.ua; engpp@mail.ru; тел. служеб. (044) 424-00-51, моб. 095-336-11-01.

М.В. Карпец: д-р. физ.-мат. наук., вед. научный сотрудник Института проблем материаловедения им. И.Н. Францевича НАН Украины, Киев, Украина, epp@ipms.kiev.ua; тел. (044) 424-00-51.