
ISSN: 2782-5515

Информационный бюллетень перспективные технологии наноструктуры сверхпроводники фуллерены

Том 29, выпуск 7 июль 2022 г.

Carbon/kartinkin.net/

Черноголовка

перспективные технологии

наноструктуры сверхпроводники фуллерены

http://perst.issp.ac.ru

Том **29**, выпуск 7 В этом выпуске:

июль 2022 г.

МИКРОТЕХНОЛОГИИ

Не только производные: как рассчитать кривизну пластины

Новая отрасль микроэлектроники – стрейнтроника – в настоящее время активно развивается, всё больше разрабатывается устройств, использующих механические напряжения и деформации. Технологии стрейнтроники тесно связаны с методами выращивания кристаллов и их характеризации, и особое внимание в стрейнтронике уделяется кривизне поверхности. Поэтому статья [1], опубликованная в июльском номере журнала "Успехи физических наук" станет полезна широкому кругу исследователей, и тех, кто только начал погружаться в задачи деформационной инженерии, и тех, кто уже успешно работает с ними.

Российские учёные из Национального исследовательского университета "Московский институт электронной техники" и Института математических проблем биологии РАН [1] провели подробный обзор методик вычисления кривизны поверхности пластины по результатам исследования её рельефа. Объектом исследования стала круглая кремниевая пластина с пленкой оксида кремния SiO₂/Si, используемая для создания чипов в микроэлектронике. Авторы исследовали две пластины с различным рельефом: близким к сегменту сферы, и сложной формы. Рельеф поверхности построили с помощью метода сканирующей оптической интерферометрии. В результате получили набор значений функции высоты от горизонтальных координат. Соответствующие рельефы представлены на рис.1.

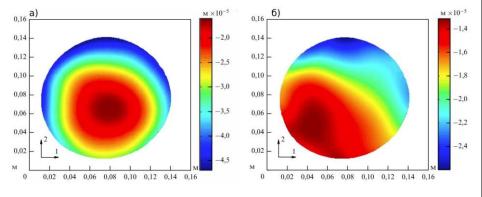


Рис. 1. Рельефы поверхностей пластин: \mathbf{a} — близкий к сегменту сферы; $\mathbf{б}$ — сложной формы (цветом обозначена высота относительно некоторого базового уровня).

И далее ...

ФУЛЛЕРЕНЫ И НАНОТРУБКИ

4 Фуллерен и антибиотик

ТОПОЛОГИЧЕСКИЕ МАТЕРИАЛЫ

5 О непостоянстве ширины запрещенной зоны в ван-дерваальсовом магнитном топологическом изоляторе

ВЕСТИ С КОНФЕРЕНЦИЙ

7 Девятая Всероссийская конференция с международным участием "Топливные элементы и энергоустановки на их основе"

КОНФЕРЕНЦИИ

Международная конференция "Современные проблемы теории конденсированных сред",
 17.10 - 22.10.2022, ОИЯИ, Дубна, Московский регион

Существуют три основных подхода к обработке этих данных, авторы статьи подробно описали каждый из них. Разница в подходах обусловлена тем, каким образом воспринимать цифровые данные о рельефе. В первом подходе это набор плоских кривых, во втором – функция двух координат, а в третьем – топографическая поверхность. Преимущества и недостатки каждого из подходов собраны в таблице.

Подход	1. Анализ профилей и плоских кривых	2. Анализ двумерной поверхности	3. Геоморфометрия – топографический подход
Плюсы	 Позволяет быстро сравнивать различные образцы по одному параметру Позволяет легко рассчитывать локальные механические напряжения 	 Позволяет учитывать анизотропию материала Позволяет рассчитывать некоторые глобальные характеристики пластины 	 Позволяет определить все глобальные характеристики пластины, связанные с кривизной Позволяет быстро локализовать области различного типа
Минусы	 Возникает вопрос выбора оптимального направления профиля Затруднено исследование пластины как целого, взаимного влияния областей 	 При расчёте в цилиндрических координатах возможны артефакты Необходимо вычитать линейный наклон 	• Сложный математи- ческий аппарат

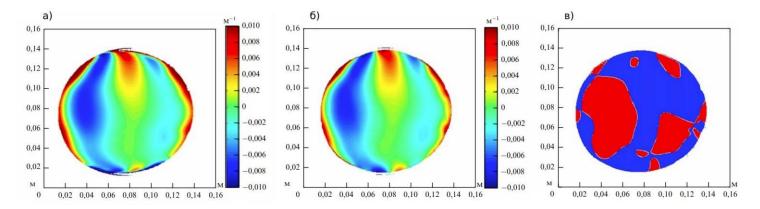


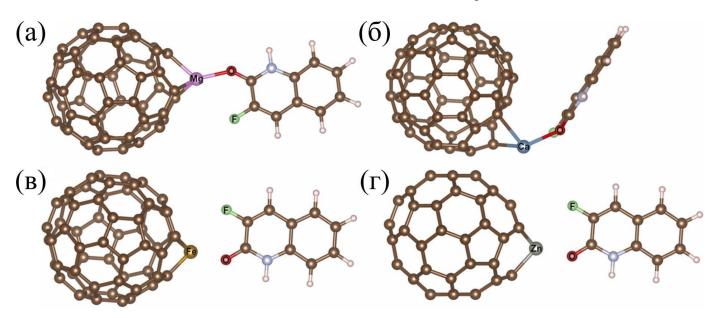
Рис. 2. Расчёты для рельефа сложной формы (рис.1б): **а)** – кривизна в направлении 1, подход 1; **б)** – вторая производная по x (то же направление 1), подход 2; **в)** – подход 3, области различного знака гауссовой кривизны: красный – положительный, синий – отрицательный. Гауссова кривизна является топологическим инвариантом поверхности, то есть сохраняется при изгибах без разрывов, что делает её важнейшим параметром для анализа поверхности.

На рис. 2 приведены некоторые примеры расчёта кривизны поверхностей с использованием разных подходов. Видно, что разные подходы при расчётах близких по смыслу параметров дают близкие результаты, что говорит об их надёжности в рамках области применения.

Анализируя плюсы и минусы различных подходов, авторы отдают предпочтение третьему подходу как наиболее общему и дающему максимум информации, и призывают исследователей не бояться сложной математики, тем более что основные алгоритмы уже реализованы в программном обеспечении. А первый подход

признаётся как устаревающий. Но всё же выбор конкретной методики остаётся за исследователем, исходя из его целей, задач и вычислительных возможностей.

3. Пятакова

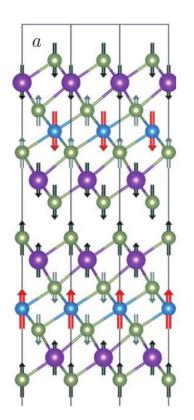

1. А.А.Дедкова и др., УФН 192, 757 (2022).

ФУЛЛЕРЕНЫ И НАНОТРУБКИ

Фуллерен и антибиотик

Авторы работы из Nevşehir Hacı Bektaş Veli Univ. (Турция) [1] заинтересовались детектированием фторхинолонов (ФХ). Дело в том, что фторхинолоновые антибиотики, которые активно применяются в медицине и ветеринарии при лечении различных бактериальных инфекций, не могут полностью разлагаться в организме человека и животных, поэтому проника-

ют в почву вместе со сточными водами. Накапливаясь, они начинают угрожать серьезными рисками не только для здоровья людей, но и для почвенной экосистемы и водных ресурсов. В связи с этим актуальной задачей является разработка и внедрение эффективных методов выделения ФХ из загрязненной среды. Исследователи [1] в качестве базового элемента будущей технологии идентификации фторхинолонов выбрали классический фуллерен С60 и его производные, легированные атомами Мg, Ca, Fe и Zn. Они внимательно изучили механизмы адсорбции антибиотика фуллереном с помощью теории функционала плотности (DFT). Все вычисления выполняли в программе **VASP** уровне теории B3LYP/ на 6-311G(d,p) с учетом поправок Гримме для слабого ван-дер-ваальсового взаимодействия.


Молекулярные комплексы фуллеренов, легированных атомами: а) - Mg, б) - Ca, в) - Fe и г) - Zn, с адсорбированными молекулами фторхинолонов, оптимизированные на уровне теории B3LYP/6-311G(d,p)

В результате они получили комплекс параметров и квантово-химических дескрипторов, характеризующих взаимодействие молекулы фторхинолона с фуллеренами, в том числе энергии связи, HOMO-LUMO щели, химическую жесткость, индексы электрофильности, малликеновские заряды и, конечно, энергии адсорбции. Кроме этого, ученые рассчитали УФ и видимые спектры, воспользовавшись нестационарной теорией функционала плотности (TD-DFT) с тем же базисным набором 6-311G(d,p), но уже другим функционалом САМ-ВЗLYР, поскольку немодифицированный ВЗLYР зачастую занижает энергии возбужденных состояний. Результаты, полученные в работе, демонстрируют, что легирование атомами металла фуллереновой клетки повышает химическую активность и чувствительность последней к антибиотику. При этом молекула ΦX способна закрепляться на поверхности фуллерена как при помощи ковалентного связывания, так и физсорбции (см. рис.). Авторы установили, что величина энергии адсорбции достигает максимума для фуллерена, допированного кальцием. Кроме того, присоединение антибиотика на C_{59} Са заметно уменьшает НОМО-LUMО щель с 2.06 до 1.43 эВ и смещает УФвидимый спектр фуллерена в красную область, позволяя точнее идентифицировать ΦX . В конечном итоге авторы пришли к выводу, что

чувствительность сенсоров на основе фуллеренов может быть в принципе значительно улучшена путем введения в каркас примеси кальция, а совокупность энергетических и электронных характеристик делает такой металлофуллерен одним из лучших нанобиосенсоров для фторхинолона.

1. İ.Muz, Mater. Today Comm. 31, 103798 (2022).

М. Маслов

ТОПОЛОГИЧЕСКИЕ МАТЕРИАЛЫ

О непостоянстве ширины запрещенной зоны в ван-дер-ваальсовом магнитном топологическом изоляторе

Магнитные топологические изоляторы чем-то напоминают магнитные сверхпроводники: на первый взгляд, между магнетизмом и топологическим состоянием существует антагонизм. В случае топологических изоляторов магнитное упорядочение приводит к нарушению симметрии обращения времени, снятию вырождения по спину и открытию энергетической запрещенной зоны в точке Дирака.

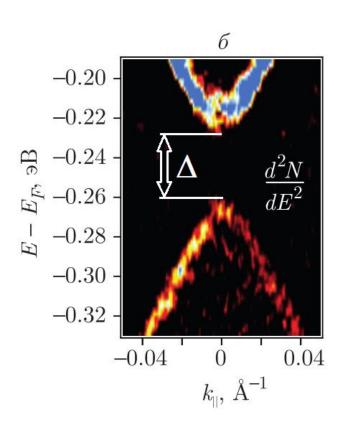
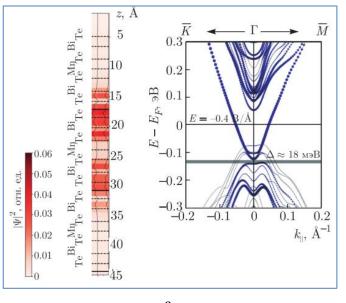


Рис. 1. а - Структура антиферромагнитно-упорядоченного топологического изолятора MnBi₂Te₄ (атомы марганца отмечены, синим, висмута – фиолетовым, теллур – цвета хаки): б – результаты измерения дисперсионных зависимостей методом фотоэлектронной спектроскопии сверхвысокого углового разрешения (цветом показана вторая производная от числа электронных состояний по энергии, обоюдоострой стрелкой показана энергетическая щель Δ).


Однако, несмотря на исчезновение конуса Дирака, уникальное сочетание магнитных и топологических свойств само по себе интересно, и все чаще становится предметом научных исследований. В частности, внимание исследователей привлекает квантовый аномальный эффект Холла, а также топологический квантовый магнитоэлектрический эффект, напрямую связанный с такой фундаментальной константой, как постоянная тонкой структуры.

До недавнего времени практиковался один, не самый изящный, способ получения магнитных топологических изоляторов - легирование атомами магнитных металлов. Однако неоднородность распределения магнитных примесей приводила к значительной вариации ширины запрещенной зоны по поверхности образца. В этой связи настоящим подарком для исследователей стали топологические изоляторы на основе ван-дер-ваальсовых структур - слоеные пироги из двумерных графеноподобных материалов [1]. Так, $MnBi_2Te_4$ разбивается на блоки из семи слоев (по числу атомов в элементарной ячейке), при этом ионы марганца образуют ферромагнитно упорядоченный слой (рис. 1а). Семислойные блоки Te-Bi-Te-Mn-Te-Bi-Te разделены ван-дер-ваальсовыми промежутками, что не мешает обменному взаимодействию между слоями Mn, которое носит антиферромагнитный характер с довольно высокой (по сравнению с магнитно-легированными топологическими изоляторами) температурой Heens - 24 K.

Впрочем, и такая слоеная структура не избавляет от всех проблем: ширина запрещенной зоны, которая, согласно теоретическим расчетам, составляет 85 мэВ, в экспериментах демонстрировала примечательное непостоянство: варьировалась от образца к образцу, уменьшаясь вплоть до нуля ("бесщелевая" дисперсия). Выяснить, в чем же дело, взялась команда исследователей из Санкт-Петербургского и Новосибирского университетов, Российского квантового центра, а также институтов РАН:

Института общей физики в Москве, Института физики молекул и кристаллов в Уфе, Институт геологии и минералогии и Институт физики полупроводников в Новосибирске [2]. Методом фотоэлектронной спектроскопии сверхвысокого углового разрешения были измерены дисперсионные зависимости образцов MnBi₂Te₄ (рис. 1б), действительно, показавшие различные величины запрещенной зоны: 40 мэВ, 30 мэВ и 20 мэВ.

Далее методом теории функционала плотности электронные были рассчитаны состояния. Результаты расчетов свидетельствовали об изменениях в ширине запрещенной зоны при вариации напряженности и знака приложенного электрического поля (рис. 2). Такое поле возникает на поверхности кристалла вследствие обрыва периодической решетки и действует на магнитные моменты ионов, причем не ионов марганца, глубоко запрятанных внутри семислойных блоков, а приповерхностных ионов висмута и теллура, намагниченность которых обусловлена взаимодействием марганца.

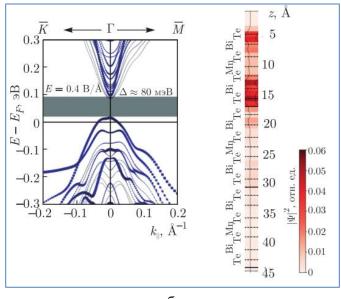


Рис. 2. Результаты расчета дисперсионных зависимостей (в качестве примера приведена электронная структура для двух значений поля, отличающиеся по знаку): а -E=-0.4 В/Å, б -E=+0.4 В/Å. По бокам от каждого рисунка показано распределение по слоям ван-дер-ваальсовой структуры плотности вероятности электронных состояний, соответствующих нижней границе запрещенной зоны. Заметно перераспределение плотности вероятности в верхний блок при положительном знаке электрического поля.

Если бы плотность топологических состояний была бы равномерно распределена между двумя антиферромагнитно-упорядоченными блоками, то открывающее запрещенную зону эффективное магнитное поле обнулялось бы, и эффекта не было бы. Однако, как показывают расчеты авторов [2], электрическое поле при-

водит к перераспределению плотности топологических состояний между двумя семислойными блоками (рис. 2). При подаче отрицательного электрического поля электронные состояния, оставшиеся от нижней половинки конуса Дирака, смещаются в нижний семислойный блок, антиферромагнитно упорядоченный по

отношению к верхнему. В результате эффективное магнитное поле практически полностью компенсируется при напряженности - 0.5 В/Å и запрещенная зона уменьшается до нуля (рис. 2a). Напротив, при обратной полярности все электронные состояния оказываются локализованы в верхнем блоке, компенсирующий эффект антиферромагнитного упорядочения не проявляется, и ширина щели близка к максимальной (рис. 2б).

А как же магнитоэлектрический эффект, фундаментально присущий магнитным топологическим изоляторам, какова его роль в изменении ширины запрещенной зоны? Как показали расчеты, магнитные моменты, действительно, меняются под действием электрического поля, однако, эти изменения противоположны на границах верхнего блока, что сильно уменьшает эффект и не может быть причиной вариации ширины запрещенной зоны. Авторы [2] посчитакже влияние вариации орбитального взаимодействия приповерхностных атомов висмута и теллура и получили картины перераспределения волновой функции, весьма схожие с теми, которые наблюдали при действии электрического поля, что может свидетельствовать о взаимосвязи двух эффектов.

А. Пятаков

- 1. M.M.Otrokov et al., Nature **576**, 416 (2019).
- 2. А.М.Шикин и др., ЖЭТФ 161, 126 (2022).

ВЕСТИ С КОНФЕРЕНЦИЙ

Девятая Всероссийская конференция с международным участием "Топливные элементы и энергоустановки на их основе"

Девятая Всероссийская конференция с международным участием "Топливные элементы и энергоустановки на их основе" и Шестая школа молодых ученых "Современные аспекты высокоэффективных топливных и электролизных элементов", состоявшиеся с 20 по 23 июня 2022 года в ИФТТ РАН им. Ю.А. Осипьяна, с успехом продолжили традиции предыдущих конференций, которые не только заинтересовали ученых и исследователей, работающих в области разработок твердооксидных топливных элементов (ТОТЭ), топливных элементов с протонообменной мембраной (ПОМТЭ) и водородной энергетики, но и привлекли внимание специалистов промышленных и инжиниринговых компаний.

В задачи конференции входило обсуждение новых научных результатов и разработок энер-

гетических и электролизных установок на твердооксидных топливных и электролизных элементах и других типах топливных элементов, а также корректировка планов текущих работ и формирование новых коопераций для выполнения крупных комплексных проектов.

Научную программу конференции открыл доклад представителя АО "Русатом Оверсиз" Елены Александровны Пашиной, в котором она проинформировала участников о проектах ГК "Росатом" по декарбонизации российских промышленных предприятий, развитию транспорта на водородных топливных элементах, созданию водородных кластеров и т. д. О целях и задачах, стоящих перед коллективом недавно созданного Центра НТИ "Водород как основа низкоуглеродной экономики", рассказал его руководитель Павел Валерьевич Снытников.

На конференции были представлены оригинальные результаты фундаментальных научных исследований, перспективные разработки и инновационные решения для альтернативной энергетики. Владимир Иванович Матренин представил разработанный и созданный в ООО "НПО "Центротех" генератор водорода – анионообменный электролизер планарной конструкции с динамической подачей воды, который в настоящее время проходит промышленные испытания. Екатерина Алексеевна Агаркова представила результаты успешного сотрудничества науки (ИФТТ РАН) и промышленности (АО "НЭВЗ-Керамикс"), итогом которого стала технология изготовления анодных подложек для твердооксидных топливных элементов (ТОТЭ). Вопросы хранения и транспортировки водорода были рассмотрены в докладах сотрудников ИПХФ РАН Бориса Петровича Тарасова и Павла Владимировича Фурсикова. Большое число докладов было посвящено разработкам катализаторов для топливных элементов и электроустановок на их основе (Анастасия Анатольевна Алексеенко из ЮФУ, Дмитрий Игоревич Потемкин из ИК СО РАН и другие). Для решения экологических задач по утилизации свалочного газа с полигонов твердых коммунальных отходов России и сбросного промышленного водорода Данила Викторович Матвеев (ИФТТ РАН) предложил использовать ТОТЭ, перспективность подхода была подтверждена экспериментально.

Всего в работе конференции и школы молодых ученых приняли участие более 190 человек, в том числе более 120 человек в очном формате и

более 70 коллег в on-line формате посредством платформы Zoom. На научных сессиях было заслушано 23 приглашенных и 53 устных докладов, обсуждалось 35 стендовых сообщений. Выступления участников включали вопросы разработки и создания ТОТЭ и ПОМТЭ, возобновляемых источников энергии и катализаторов, "зеленой" и водородной энергетики, экологии и низкоуглеродной экономики. Результаты научных исследований, новые технологические разработки, представленные на конференции, неизменно привлекают представителей реального сектора экономики. В этом году к традиционно участвующим в работе конференции представителям предприятий, успешно реализующим совместные проекты с научными организациями (ГК "Росатом"; АО "ТВЭЛ"; ПАО "КАМАЗ"; ГК "ИнЭнерджи" и др.), присоединились представители крупных производственных компаний, таких как ООО "ФПК "Космос-Нефть-Газ"; ООО "Газпром недра"; ПАО "Горно-металлургическая компания "Норильский никель" и т.д.

За время работы конференции была проведена оценка уровня исследований в области альтернативной энергетики, были подняты вопросы импортозамещения и импортонезависимости, состоялся профессиональный обмен мнениями. Активному обсуждению и представлению новых идей способствовала дружеская творческая атмосфера, отличные условия работы: одновременная трансляция презентаций on-line через платформу Zoom с подключением всех зарегистрированных участников конференции и Школы к on-line трансляции докладов, представляемых в очной форме; проведение стендовой сессии в формате Beer Party.

Участникам конференции была предоставлена возможность ознакомиться с научной и производственной базой ИФТТ РАН (экскурсии в лаборатории спектроскопии дефектных структур, технологий твердооксидных электролизных и топливных элементов, а также материалов для электрохимических технологий).

Ежегодный формат проведения конференции продиктован возрастающим интересом к разработкам в области альтернативной энергетики. С каждым годом наблюдается рост числа участников конференции и расширяется их география, что подтверждает высокий научный уровень конференции и актуальность ее тематики.

О. Камынина

КОНФЕРЕНЦИИ

Международная конференция "Современные проблемы теории конденсированных сред", 17.10 - 22.10.2022, ОИЯИ, Дубна, Московский регион

Конференция "Современные проблемы теории конденсированных сред" организована Лабораторией теоретической физики им. Н.Н. Боголюбова Объединенного института ядерных исследований (ОИЯИ).

Тематика конференции посвящена широкому кругу теоретических исследований в области физики конденсированных сред:

- комплексные материалы (высокотемпературные сверхпроводники, сверхпроводящие гибридные структуры, фрактальные структуры, функциональные материалы);
- наноструктуры и наноматериалы;
- модели статистической физики сложных систем;
- методы квантовой теории поля в сложных системах.

На конференции будут представлены как устные, в том числе пленарные и приглашенные, так и стендовые доклады. Публикация трудов конференции планируется в рецензируемом издании.

Регистрация участников и прием аннотаций докладов на конференцию открыты с 1 июня 2022 г. и продлятся до 1 сентября 2022 г. Обращаем внимание, что количество участников ограничено.

Caйт: https://indico.jinr.ru/event/3065/

Информационный бюллетень ПерсТ издается информационной группой ИФТТ РАН

Главный редактор: И.Чугуева, e-mail: ichugueva@yandex.ru
Научные редакторы К. Кугель, Ю. Метлин
В подготовке выпуска принимали участие О. Алексеева, М. Маслов, А. Пятаков, З. Пятакова
Выпускающий редактор: И. Фурлетова
Адрес редакции: 119296 Москва, Ленинский проспект, 64