На правах рукописи

ЩЕПЕТИЛЬНИКОВ Антон Вячеславович

АНИЗОТРОПИЯ *g*-ФАКТОРА ЭЛЕКТРОНА В *GaAs/Al_xGa_{1-x}As* ГЕТЕРОСТРУКТУРАХ, ИЗМЕРЕННАЯ ПОСРЕДСТВОМ МЕТОДИКИ ЭПР.

511600 - прикладная математика и физика

Диссертация на соискание учёной степени

магистра

научный руководитель: член-корреспондент РАН И.В. Кукушкин.

Черноголовка – 2012

Оглавление

1	Введение		
	1.1	ЭПР в двумерных системах.	2
	1.2	Одночастичный g-фактор в $GaAs/Al_xGa_{1-x}As$ гетероструктурах	4
	1.3	Зависимость <i>g</i> -фактора электрона от магнитного поля	8
	1.4	Постановка задачи.	9
2	Me	годика измерений и образцы	10
	2.1	Образцы	10
	2.2	Методика измерений	11
3	Рез	ультаты и обсуждения	17
4	Вы	воды	24

Глава 1

Введение

Исследование физических явлений, связанных со спином, представляет значительный фундаментальный и практический интерес. Существует огромное число фундаментальных спин-зависимых явлений: спиновый эффект Холла[1],спиновый экситон [2], переход металл-изолятор [3]. Более того, электрон может находиться в двух спиновых состояниях, а значит, может быть использован для кодирования бита информации. Таким образом, управление спиновыми состояниями электрона позволит создавать сверхмалые логические элементы и массивы памяти с большой информационной емкостью и большим быстродействием[4]. Для решение такой задачи необходимо понимание, какие факторы (концентрация носителей заряда, симметрия "встроенного"потенциала гетероструктуры, внешние магнитные и электрические поля) влияют на величину спинового расщепления.

Величина спинового расщепления определяется значением *g*-фактора Ланде́. Существует большое число различных экспериментальных методов измерения *g*-фактора, при этом одной из наиболее точных является методика, основанная на явлении электронного парамагнитного резонанса (ЭПР). ЭПР был открыт Завойским в 1944 году[5].

1.1 ЭПР в двумерных системах.

Рассмотрим явление ЭПР в двумерных электронных системах (2 ДЭС), например, сформированных в $GaAs/Al_xGa_{1-x}As$ квантовых ямах. В таких структурах движение электрона вдоль направления роста заквантовано в уровни размерного квантования, а движение в плоскости ямы свободно. При приложении достаточно сильного магнитного поля вдоль направления роста спектр движения в плоскости ямы пред-

Рис. 1.2: Спектр спинового экситона при $\nu_{\uparrow} = 1, \nu_{\downarrow} = 0$, рассчитанный в работе[2]. $E - g\mu_B B$ измеряется в единицах e^2/l_B . На вставке схематично изображен спиновый экситон, состоящий из дырки на нижнем и электрона на верхнем спин-расщепленных уровнях Ландау. ставляет собой набор уровней Ландау, каждый из которых расщеплен по спину.

При ЭПР происходит резонансное поглощение фотона с энергией равной величине спинового расщепления электрона, электрон с нижнего отщепленного по спину подуровню Ландау переходит на верхний, при этом его спин переворачивается. Электрон с верхнего и дырка с нижнего подуровней образуют связанное состояние, называемое спиновый экситон. Такое возбуждение является нейтральной частицей, может двигаться в плоскости двумерной ямы, при этом из-за силы Лоренца его волновой вектор k и расстояние r между электроном и дыркой связаны:

Рис. 1.1: Схематичное изображение двумерной $GaAs/Al_xGa_{1-x}As$ квантовой ямы с 2ДЭС. Черной сплошной линией обозначена зона проводимости структуры, а красной пунктирной - уровень Ферми.

$$k = \frac{r}{l_B^2} \tag{1.1}$$

Здесь l_B - магнитная длина. Таким образом, в сопротивление могут вносить вклад только коротковолновые спиновые экситоны, поскольку именно в таких экситонах электрон и дырка практически разделены силой Лоренца и независимы.

Спектр спинового экситона (см. 1.2) был рассчитан Kallin, Halperin в 1984 году[2]. В полном соответствии с теоремой Лармора энергия экситона при малых волновых векторах равна одночастичной энергии Зеемановского расщепления. В экспериментах, проведенных в рамках данной работы, характерный волновой вектор фотонов диапазона существенно меньше обратной магнитной длины, а значит, рождаемые при ЭПР спиновые экситоны являются длинноволновыми. Таким образом, методика ЭПР позволяет исследовать одночастичный, не усиленный обменно *д*-фактор.

Одночастичный *g*-фактор в $GaAs/Al_xGa_{1-x}As$ гетеро-1.2структурах.

Объемные полупроводники со структурой цинковой обманки (GaAs, Al_xGa_{1-x}As) обладают точечной группой T_d , при этом g-фактор электрона является скаляром, а величина спинового расщепления не зависит от направления магнитного поля. Подчеркнем, что в таких полупроводниках фактор Ланде́ может существенно отличаться от *q*-фактора свободного электрона.

 $Al_xGa_{1-x}As$ в зависимости от x был измерен Weisbuch в 1977 году([6]). Чем выше концентрация Al, тем больше величина запрещенной зоны, а значит, меньше подмешивания

Рис. 1.4: *g*-фактор электрона в симметричных $GaAs/Al_xGa_{1-x}As$ квантовых ямах. Сплошные линии -теоретический расчет из работы [8], символы - экспериментально измеренные значения [12](при x = 0.33). На вставке - схематичное изображение зоны проводимости и волновой функции электрона в таких ямах.

валентных зон в зону проводимости, а значит, и величина g-фактора ближе к значению g_0 свободного электрона. Теоретический расчет был выполнен Roth, Lax, Zwerdling в 1959 году([7]):

$$g = g_0 - \frac{2}{3} \frac{P^2}{m_0} \frac{\Delta_0}{E_0(E_0 + \Delta_0)} + C_l$$
(1.2)

Здесь $g_0 - g$ - фактор свободного электрона; E_0, Δ_0 - параметры зонной структуры полупроводника(см. 1.3); P - матричный элемент \hat{p} , взятый между зоной проводимости и валентной зоной; C_l - вклад дальних зон.

Понижение размерности электронной системы приводит, как правило, к понижению ее симметрии. Так симметричные $GaAs/Al_xGa_{1-x}As$ квантовые ямы, выращенные вдоль

направления [001] имеют точечную группу D_{2d} . При этом *g*-фактор электрона в таких структурах является тензором с двумя независимыми компонентами ($g_{\perp} \neq g_{\parallel}$). Такие структуры достаточно хорошо изучены как теоретически ([9, 8]), так и экспериментально [13, 15, 16, 17, 14, 12]. Измерение *g*-фактора в симметричных квантовых ямах (см. рис. 1.4)проводилось при помощи различных оптических методик (методики pump-probe, основанные на квантовых биениях в излучении[13, 14], поглощении[15], вращении поляризации света[16, 17]).Заметим, что исследованные симметричные квантовые ямы в данных работах были номинально незаряженными.

Компоненты тензора g-фактора в квантовых ямах (особенно в узких ямах) могут существенно отличаться от значения в объемном GaAs. Дело в том, что уровни размерного квантования в яме лежат выше дна зоны проводимости объемного GaAs, что уменьшает перемешивание зон, т.е. уменьшает вклад спин-орбитального взаимодействия в значение g-фактора. Более того, волновая функция электрона простирается в барьерную область, фактор Ланде́ в которой ,как правило, другой(так в $GaAs \ g = -0.44$, а в $Al_{0.3}Ga_{0.7}As$ g = +0.4), что также приводит к уменьшению эффективного g-фактора.

Асимметричные квантовые ямы с направлением роста [001] обладают точечной группой C_{2v} , а тензор \hat{g} фактора Ланде́ имеет три независимые компоненты ($g_x \neq g_y \neq g_z$), а спиновое расщепление проявляет анизотропию и в плоскости такой квантовой ямы.

Экспериментально тензор g-фактора исследовался в номинально незаряженных квантовых ямах. При этом асимметрия потенциала, ограничивающего движение электронов в гетероструктуре, вносилась при помощи приложения внешнего электрического поля([19]) или посредством вариации концентрации Al в квантовой яме([20]). Подробного исследования тензора g в асимметричных заряженных квантовых ямах до этой работы выполнено не было.

Теоретическое объяснение возникновения плоскостной анизотропии g было произведено в работе [18]. Следуя этой работе, рассмотрим квантовую яму конечной ширины с направлением роста Oz(кристаллографическое направление [001]). Направим оси $O\xi$ и $O\zeta$ вдоль [100], [010] соответственно. Пусть к яме приложено небольшое магнитное поле, так что его плоскостная компонента H_{\parallel} направлена вдоль оси $O\xi$. Тогда H_{\parallel} замешивает "быстрое" движение вдоль направления роста структуры и движение в плоскости ямы, так что импульс электрона изменяется на небольшую величину; эта добавка $\delta \vec{p}$ направленна вдоль оси $O\zeta$. Изменение импульса электрона приводит к изменению спин-орбитальных магнитных полей, вызывающих прецессию электронного спина с угловыми скоростями $\overrightarrow{\Omega}_D$ и $\overrightarrow{\Omega}_R$:

$$\overrightarrow{\Omega_R}(\overrightarrow{p}) = \alpha/\hbar^2 \begin{pmatrix} p_{\zeta} \\ -p_{\xi} \\ 0 \end{pmatrix}, \overrightarrow{\Omega_D}(\overrightarrow{p}) = \beta/\hbar^2 \begin{pmatrix} -p_{\xi} \\ p_{\zeta} \\ 0 \end{pmatrix}$$
(1.3)

Здесь $\overrightarrow{\Omega}_R$ - угловая скорость прецессии спина, обусловленная спин-орбитальным полем Рашбы [10]. Её добавка $\delta \overrightarrow{\Omega}_R$, обусловленная изменением импульса электрона $\delta \overrightarrow{p}$, направлена вдоль оси $O\xi$, как и внешнее поле H_{\parallel} , т.е. спин-орбитальное взаимодействие Рашбы приводит к перенормировке диагональных компонент тензора \hat{g} .

 $\overrightarrow{\Omega}_D$ - угловая скорость прецессии спина, обусловленная спин-орбитальным полем Дрессельхауса[11], а ее добавка $\delta \overrightarrow{\Omega}_D$, в свою очередь, направлена вдоль оси $O\zeta$ перпендикулярно внешнему полю H_{\parallel} , т.е. спин-орбитальное взаимодействие Дрессельхауса приводит к появлению внедиагональных компонент тензора \hat{g} .

Подробный расчет дает формулу [18]:

$$g_{\xi\zeta} = g_{\zeta\xi} = \frac{2\gamma e}{\hbar^3 \mu_B} (\langle p_z^2 \rangle \langle z \rangle - \langle p_z^2 z \rangle)$$
(1.4)

Здесь γ - константа Дрессельхауза. Усреднение берется по волновым функциям электрона.

Можно показать (с учетом $g_{\xi\xi} = g_{\zeta\zeta}, g_{\xi\zeta} = g_{\zeta\xi}$), что главными осями тензора \hat{g} в асимметричных квантовых ямах являются кристаллографические направления [001], [110], [110].

Итак, в главных осях (пусть кристаллографическим направлениям [001], [110], [110], [110] соответствуют оси Ox, Oy и Oz) тензор \hat{g} диагонален. Пусть магнитное поле \overrightarrow{B} приложено к 2 ДЭС так, что угол между полем и нормалью к плоскости 2 ДЭС равен θ , а его плоскостная компонента составляет с осью Ox угол ϕ . Тогда *g*-фактор электрона и величина спинового расщепления $\hbar\omega$ будет иметь вид:

$$g = \sqrt{g_{zz}^2 \cos^2\theta + g_{xx}^2 \sin^2\theta \cos^2\phi + g_{yy}^2 \sin^2\theta \sin^2\phi}$$
(1.5)

$$\hbar\omega = \mu_B B \sqrt{g_{zz}^2 \cos^2\theta + g_{xx}^2 \sin^2\theta \cos^2\phi + g_{yy}^2 \sin^2\theta \sin^2\phi}$$
(1.6)

Таким образом, по зависимости частоты ЭПР от ориентации магнитного поля в образцах можно определить диагональные компоненты тензора *g*-фактора

1.3 Зависимость *g*-фактора электрона от магнитного по-

ЛЯ.

В 2 ДЭС, сформировавшихся в $GaAs/Al_xGa_{1-x}As$ гетероструктурах, спектр носителей заряда непараболичен, что приводит к зависимости *g*-фактора электрона от магнитного поля. Из теоретического рассмотрения [24] следует, что при магнитном поле перпендикулярном плоскости двумерных электронов зависимость *g*-фактора от поля кусочно-линейна с разрывами вблизи четных факторов заполнения:

$$g = g_0 + aB \tag{1.7}$$

Здесь g_0 -значение g-фактора вблизи дна подзоны размерного квантования, а a-константа, определяющаяся параметрами образца (шириной квантовой ямы, концентрацией алюминия в барьере и концентрацией электронов в яме). Более того, линейная по магнитному полю поправка a зависит от номера соответствующего уровня Ландау N $(a \sim (N + 1/2))$. Такое поведение g(B) наблюдалось и на эксперименте[25, 26].

Линейные по магнитному полю поправки образуют тензор $a_{\alpha\beta\gamma} = \partial g_{\alpha\beta}/\partial B_{\gamma}$. При этом нет никаких оснований полагать, что тензор \hat{a} диагонален в главных осях тензора \hat{g} . Тогда для произвольной ориентации магнитного поля (задаваемой как ранее было указано углами ϕ и θ) можно переписать формулу 1.5, отбросив члены высшего порядка по В:

$$g(B) = g(B = 0) + a^*B \tag{1.8}$$

$$a^* = \frac{1}{g(B=0)} \sum_{i,j,k} g_{ij} a_{ijk} n_i n_j n_k \tag{1.9}$$

Здесь \overrightarrow{n} - единичный вектор, направленный вдоль магнитного поля \overrightarrow{B} :

$$n_x = \sin\theta \cos\phi, n_y = \sin\theta \sin\phi, n_z = \cos\theta \tag{1.10}$$

Заметим, что теоретически предсказано существование только одного ненулевого элемента тензора $a - a_{zzz}$. Подчеркнем, что экспериментального анализа тензора линейных по магнитному полю поправок \hat{a} ранее произведено не было.

1.4 Постановка задачи.

Как было указано выше, тщательного исследования тензора $g_{\alpha\beta}$ в симметричных и асимметричных заряженных квантовых ямах до этой работы выполнено не было. Более того, структура тензора линейных по магнитному полю поправок к g не была установлена. Стоит подчеркнуть, что именно $GaAs/Al_xGa_{1-x}As$ гетероструктуры являются потенциально основой для многочисленных приборов спинтроники.

Целью данной работы было тщательное исследование g-фактора в $GaAs/Al_xGa_{1-x}As$ квантовых ямах при помощи чрезвычайно точной методики ЭПР: определение главных осей тензора, выявление структуры тензора линейных поправок \hat{a} , выявление влияния симметрии квантовой ямы на тензора $g_{\alpha\beta}$ и $a_{\alpha\beta\gamma}$.

Глава 2

Методика измерений и образцы

2.1 Образцы.

Таблица 2.1: Характеристики исследованных образцов (подвижность и концентрация указаны при гелиевой температуре).

	heterojunction(#1)	AQW $(#2)$	AQW(#3)	AQW(#4)	SQW(#5)
width, nm	-	25	25	20	20
$n, 10^{11} cm^{-2}$	1.4	4.0	3.6	4.4	4.8
$\mu, 10^6 \frac{cm^2}{Vs}$	3.0	1.0	0.7	0.6	0.5

Для исследования был отобран ряд образцов. Все они были выращены с помощью метода MBE в направлении [001]. Концентрация Al в образцах варьировалась от 30% до 33%. Первый из них представлял собой одиночный δ -легированный кремнием $GaAs/Al_xGa_{1-x}As$ гетеропереход с концентрацией $n \approx 1.3 \times 10^{11} cm^{-2}$ и подвижностью $\mu \approx 3 \times 10^6 cm^2/Vs$ при гелиевых температурах. Остальные образцы представляли собой $GaAs/Al_xGa_{1-x}As$ квантовые ямы с различными ширинами и разной симметрии. Образцы 2,3 - асимметрично δ -легированные кремнием квантовые ямы шириной 25*nm*, с концентрацией $n \approx 4 \times 10^{11} cm^{-2}$ и подвижностью $\mu \approx 10^6 cm^2/Vs$. Образцы 4 и 5 асимметрично и симметрично δ -легированные квантовые ямы с примерно одинаковой концентрацией и подвижностью ($n \approx 4.5 \times 10^{11} cm^{-2}$, $\mu \approx 0.6 \times 10^6 cm^2/Vs$). На всех образцах, кроме третьего, были приготовлены стандартные мостики Холла с истоком, стоком и четырьмя потенциометрическими контактами. На третьем образце были изготовлены два взаимно перпендикулярных мостика Холла, так что линия сток исток каждого из них была параллельно кристаллографическим направлениям [110] и [110] соответственно.

2.2 Методика измерений.

Стандартные методики измерения ЭПР[28], основывающиеся на изменении добротности микроволнового резонатора, практически не пригодны для изучения спиновых явлений в двумерных электронных системах (2ДЭС), так так число спинов в таких структурах достаточно мало. Однако, в 1983 году Stein, von Klitzing, Weinman предложили альтернативный способ детектирования ЭПР[26]: дело в том, что продольное сопротивление образца в режиме квантового эффекта Холла крайне чувствительно к электронному парамагнитному резонансу, когда уровень Ферми находится между двумя спин-расщепленными подуровнями Ландау. Поглощение микроволнового излучения детектировалось по изменению продольного сопротивления δR_{xx} .

Для измерения этого изменения была собрана стандартная схема двойного синхронного детектирования(см. рис. 2.2). Через образец пропускался переменный ток ($f \approx 2kHz$, $I_{rms} = 5\mu A$). Образец освещался СВЧизлучением, модулированным по амплитуде с частотой модуляции $\approx 40Hz$ и глубиной практически 100%.При этом первый синхронный детектор был настроен на частоту переменного тока, измерял сигнал пропорциональный продольному сопротивлению образца R_{xx} . Второй синхронный детектор брал сигнал с выходы первого и был настроен на частоту модуляции СВЧ-излучения, таким образом измерял добавку к продольному сопротивлению образца δR_{xx} , обусловленную поглощением микроволнового излучения.

Типичный вид зависимости $R_{xx}(B)$ и $\delta R_{xx}(B)$ на образце 2 приведен на рис. 2.3. Вид дифференциального

Рис. 2.1: Мостик Холла, приготовленный на образце. Углы θ и ϕ задают ориентацию магнитного поля.

сигнала вдали от пика ЭПР обусловлен разогревом электронной системы из-за нерезонансного поглощения СВЧ-излучения. Вид его практически не зависит от частоты. При изменении частоты пик ЭПР смещается по магнитному полю. Характерный вид пиков и их сдвиг при изменении частоты показан на рис. 2.5. Таким образом можно измерить зависимость частоты ЭПР f, а значит, и g-фактора электрона от магнитного поля.

Измерения проводились при развороте магнитного поля и постоянной частоте излучения.Однако, можно зафиксировать поле и разворачивать частоту, при этом получаемые результаты (положение и ширина пика не изменяются [21]). Однако удобнее разворачивать магнитное поле.

Измерения проводились в диапазоне температур от 1.5К до 4К и в магнитных полях вплоть до 10Т. Сигнал ЭПР наблюдался вблизи факторов заполнения 1,3,5,7.

Образец был закреплён на вращающейся подставке (так что можно было менять углы θ , ϕ) и погружен в полутораградусную камеру криостата. Значения углов измерялись при помощи трехмерного датчика Холла, жестко связанного с вращающейся подставкой. Для этого было спроектированы и собраны две вставки(см. рис. 2.4). Вращение от сервопривода, закрепленного на теплой части волновода, передавалось на ролик с помощью ременного привода. К ролику жестко прикреплены непосредственно подставка под образец(рис. 2.4 б)), обеспечивающая изменение угла θ или шестерёнка, передающая вращение на другую шестерню, закреплённую на оси под углом в 45° к направлению магнитного поля. На второй шестеренке располагался образец. Заметим, что в оси имелся специальный слот под 3D-датчик Холла.

Мощность падающего на образец излучения контроллировалась, так чтобы динамическое ядерное намагничивание было пренебрежимо мало. Дело в том, что вблизи ЭПР создается неравновесная заселенность верхнего спин-отщепленного уровня Ландау. Существует несколько каналов релаксации спина электрона(т.е. переход электрона на нижний подуровень Ландау)[29, 21], одним из которых основан на сверхтонком взаимодействии спинов электронов и ядер [27]: при перевороте спина электрона ядерный спин также переворачивается. Таким образом, вблизи ЭПР выстраивается динамическая ядерная поляризация, искажающая магнитное поле, воздействующее на спины электронов (сдвиг Оверхаузера [30]), что в свою очередь приводит к смещению и даже искажению пиков ЭПР. Стоит отметить, что с помощью этого метода можно изучать время релаксации ядерных спинов[27].

Рис. 2.2: Схема установки. По образцу, выполненному в виде стандартного мостика Холла, пропускается ток, создаваемый внутренним источником первого синхронного детектора Princeton Applied Research 5301A, измеряющего продольное сопротивление образца R_{xx} . Образец освещается модулированным по амплитуде CBЧ-излучением, генерируемым AnritsuMG3696 и передаваемым по волноводу или по коаксиальной линии. Второй синхронный детектор Stanford Research Systems SR830 настроен на частоту модуляции CBЧизлучения, измеряет добавку δR_{xx} , обусловленную поглощением микроволнового излучения. Вблизи образца расположен термометр(заранее прокалиброванное сопротивление), контролирующее температуру образца.

Рис. 2.3: Типичный вид зависимости $R_{xx}(B)$ и $\delta R_{xx}(B)$. Зависимости измерены на образце 2. $\theta = 30^{\circ}, \phi = 0^{\circ}$. Стрелкой указан конутр ЭПР.

Рис. 2.4: 3D модели вставок, собранных для последовательного изменения θ , при фиксированном ϕ (рисунок а)), и для изменения ϕ при постоянном $\theta = 45^{\circ}$. Изделия закреплялись на волноводе и погружались в полутораградусную камеру криостата. Вращение при помощи ременной передачи передавалось на ролик, приводивший в движение непосредственно подставку с образцом(рисунок а))или шестерню(рисунок б)). Шестерня закручивала другую шестерню, закрепленную на оси, направленную под углом в 45° к вектору магнитного поля. В оси был предусмотрен слот для 3D датчика Холла. Образец закреплялся на второй шестерне.

Рис. 2.5: Характерный вид пиков ЭПР, снятых при облучении образца CBЧ -излучением различной частоты при развороте поля. Пики сняты на образцах 1(сверху) и 2(снизу) при 1.5K.

Глава 3

Результаты и обсуждения

Рис. 3.1: Зависимости f(B) и g(B), снятые на образце 1 в перпендикулярном поле(рисунок б)) и образце 3 в наклонном магнитном поле(рисунок а)).

В данной работе мы измеряли g-фактор вблизи дна подзоны размерного квантования, т.е. g-фактор, получаемый экстраполяцией зависимости g(B) в нулевые поля. Как было указано ранее, в случае перпендикулярного поля g(B) кусочно-линейна. Мы проверили, что подобная зависимость сохраняется и при произвольной ориентации магнитного поля. Для этого вблизи различных факторов заполнения($\nu = 1, 3, 5, 7$) на двух различных образцах в наклонном и перпендикулярном поле были сняты f(B) и g(B). Видно(см. рис. 3.1), что как в наклонном, так и в перпендикулярном поле вблизи всех факторов заполнения $f(B) = f_0 + (g_0 - aB)B$, причем величина f_0 пренебрежимо мала, а $a \sim (N + 1/2)$, где N - номер соответствующего уровня Ландау, а значит, g(B) линеен по магнитному полю.

В первой серии экспериментов для различных фиксированных ориентаций плоскостных компонент магнитного поля последовательно изменялся угол θ , при этом снималась зависимость частоты ЭПР f(B) и g(B). Действуя таким способом, можно показать, что главными осями тензора \hat{g} являются кристаллографические направления [001], [110] и [110]. При этом, f(B) для различных углов θ , но одного и того же угла ϕ не ложатся на одну кривую (см. 3.2a)), демонстрируя таким образом явное различие между компонентами g_{\parallel} и g_z . Еще отчетливее это заметно, если построить зависимости $g(B) = \frac{hf}{\mu_B B}$ для нескольких различных θ (см. 3.26)).

Рис. 3.2: Зависимости f(B)(рисунок а)) и g(B) (рисунок б)), снятые на образце 2 при $\phi = 90^{\circ}$ и различных углах θ . На рисунке б) указаны значения *g*-фактора, получаемые при линейной экстраполяции указанных зависимостей.

Из формулы 1.5 следует, что для двух ориентаций плоскостной составляющей магнитного поля (вдоль [110](Ox) и вдоль $[1\overline{10}](Oy)$):

$$g^2 = g_{zz}^2 \cos^2\theta + g_{xx}^2 \sin^2\theta, B_{\parallel} \parallel Ox$$
(3.1)

$$g^2 = g_{zz}^2 \cos^2\theta + g_{yy}^2 \sin^2\theta, B_{\parallel} \parallel Oy$$
(3.2)

Видно, что квадрат *g*-фактора линеен по $cos^2\theta$ (см. рис. 3.3) и экстраполяция этих зависимостей при соответствующей ориентации магнитного поля в нулевые значения $cos^2\theta$ позволяет измерить диагональные компоненты тензора \hat{g} (см. рис. 3.3). Стоит подчеркнуть, что компонента g_{zz} измерялась из независимых экспериментов в перпендикулярном магнитном поле. Полученные экспериментально значения указаны в таблице 3.1. Общеизвестно, g-фактора электрона в широких ямах является отрицательным и в наших экспериментах не проверялся.

Таблица 3.1: Экспериментально измеренные в первой части экспериментов \hat{g} компоненты $(Ox \parallel [110], Oy \parallel [1\overline{10}]$ и $Oz \parallel [001])$

	AQW $(#2)$	AQW $(#4)$	SQW(#2)
g_{xx}	-0.289	-0.292	-0.340
g_{yy}	-0.359	-0.347	-0.340
g_{zz}	-0.410	-0.403	-0.414

Подчеркнем, что элемнты \hat{g} в асимметричных ямах шириной 20 и 25 nm отличаются слабо. Дело в том, что зависимость g от ширины ямы выходит на насыщение в достаточно широких ямах (и стремится к "объёмному"значению -0.44в бесконечно широких ямах).

В рамках данной работы было проверено, что значение *g*-фактора электрона определяется исключительно ориентацией магнитного поля относительно кристаллографических осей и не зависит от направления протекания электрического тока по образцу. Для этого на образце 3 и были приготовлены два взаимно перпендикулярных мостика Холла (см. вставку к рис. 3.4), линии сток-исток которых ориентированы вдоль направлений [110] (меза А) и [110] (меза В) соответственно. На каждом из двух мостиков были сняты зависимости *g*-фактора от магнитного поля для трех различных конфигураций поля(см. рис. 3.4):магнитное поле перпендикулярно к плоскости квантовой ямы, магнитное поле наклонено ($\theta = 58^{\circ}$), а плоскостная составляющая ориентирована вдоль направлений [110] и [110] последовательно. Для каждой ориентации поля измеренные на разных мостиках *g*(*B*) совпадают, а значит, направление протекания тока не оказывает влияния на значение *g*.

Рис. 3.3: Зависимость квадрата g вблизи дна подзоны размерного квантования от $cos^2\theta$ при двух различных ориентациях плоскостной компоненты магнитного поля, снятые на образце 2(рисунок а)) и на образцах 4,5(рисунок б)). Символы - экспериментально полученные данные, линии - линейная аппроксимация данных зависимостей. Пересечение линий с вертикальной осью дает значения g_{xx} , g_{yy} согласно 3.1, 3.2. Видно, что в асимметричных ямах g сильно анизотропен, а в симметричных - анизотропии практически нет.

Чтобы исследовать более подробно плоскостную анизотропию *g*-фактора, была проведена другая серия экспериментов. Угол $\theta = 45^{\circ}$ был зафиксирован и последовательно изменялся угол ϕ , при этом вращение образца производилось без термоциклирования. Используя значение g_{zz} , полученное в независимом эксперименте при $\theta = 0^{\circ}$, согласно формуле 1.5 можно получить плоскостную составляющую *g*-фактора: $g_{\parallel}(\phi) = \sqrt{2g^2(\theta = 45^{\circ}, \phi) - g_{zz}^2}$, как показано на рис. 3.5 а). Из формулы 1.5 следует зависимость $g_{\parallel}(\phi)$:

$$g_{\parallel}^{2}(\phi) = g_{xx}^{2} \cos^{2}\phi + g_{yy}^{2} \sin^{2}\phi$$
(3.3)

Результат аппроксимации (сплошная линия) по формуле 3.3 данных для асимметричных и симметричных квантовых ямах явно демонстрирует, что главными осями тензора \hat{g} являются кристаллографические направления [001], [110] и [110] соответственно. Стоит отметить, что в симметричных квантовых ямах наблюдается небольшая плоскостная ани-

Рис. 3.4: Зависимость *g*-фактора от магнитного поля, снятого на образце с двумя мезами(образец 3). Пустые и полные символы отвечают мезам A и B соответственно. Квадраты - зависимости при $B \parallel Oz$, остальные данные получены при $\theta = 58^{\circ}$ (кружки и треугольники отвечают ориентации плоскостной компоненте B_{\parallel} параллельной осям x и y соответственно.)

зотропия *g*-фактора, вызванная, по-видимому, небольшой остаточной асимметрией двухстороннего легирования квантовой ямы. Экспериментально полученные значения элементов \hat{g} указаны в таблице 3.2. Заметим, что небольшое отличие полученных значений в таблицах 3.1 и 3.2, вероятно, обусловлены небольшим изменением концентрации из-за термоциклирований в первой части экспериментов.

Обсудим возможность измерить компоненты тензора \hat{a} линейных по магнитному полю поправок к $g_{\alpha\beta}$, используя экспериментально полученные значения :

$$a^* = \frac{dg}{dB} = \frac{1}{g(B=0)} \sum_{i,j,k} g_{ij} a_{ijk} n_i n_j n_k$$
(3.4)

Квадратичные поправки в данной формуле отброшены. Одну компоненту â можно из-

Таблица 3.2: Полученные во второй части экспериментов компоненты \hat{g} И \hat{a} ($Ox \parallel [110]$, $Oy \parallel [1\overline{10}]$ и $Oz \parallel [001]$)

 L J	11 []/		
	AQW $(#4)$	SQW $(\#5)$	
g_{xx}	-0.292 ± 0.05	-0.343 ± 0.04	$a_{xxz}(T^{-1}$
g_{yy}	-0.347 ± 0.05	-0.350 ± 0.04	$a_{yyz}(T^{-1}$
g_{zz}	-0.403 ± 0.01	-0.414 ± 0.01	$a_{zzz}(T^{-1}$

	AQW $(#4)$	SQW $(\#5)$
$a_{xxz}(T^{-1})$	0.002 ± 0.001	0.0075 ± 0.0005
$a_{yyz}(T^{-1})$	0.012 ± 0.001	0.0090 ± 0.0005
$a_{zzz}(T^{-1})$	0.017 ± 0.0001	0.016 ± 0.0001

мерить непосредственно при $\theta = 0^{\circ}$,а именно a_{zzz} . Положим, что остальные элементы \hat{a} равны нулю, тогда формула 3.4 принимает вид:

$$a^* = \frac{g_{zz}a_{zzz}n_z^3}{g(B=0)} = \frac{g_{zz}a_{zzz}\cos^3\theta}{g(B=0)}$$
(3.5)

При этом a^* не зависит от угла ϕ . На рис. 3.5б), построены полученные в эксперименте значения $a^* - \frac{g_{zz}a_{zzz}\cos^3\theta}{g(B=0)}$ как функция угла ϕ . Видно, что эти зависимости для симметричной и асимметричной квантовых ямах не равны нулю и демонстрируют явную анизотропию (как и $g(\phi)$). При этом, как и в случае $g(\phi)$, анизотропия \hat{g} существенно меньше в симметричной гетероструктуре. Отсюда можно сделать вывод, что в \hat{a} присутствуют ненулевые элементы помимо a_{zzz} . Поскольку g_{ij} , при $i \neq j$, только члены вида $g_{ii}a_{iik}n_i^2n_k$ вносят вклад в a^* . Более того, как следует из 3.5, только два члена из оставшихся, а именно $g_{xx}a_{xxz}n_x^2n_z$ и $g_{yy}a_{yyz}n_y^2n_z$, могут давать вклад необходимой симметрии по углу ϕ . Таким образом, с учетом всех ненулевых элементов \hat{a} формула 3.5 будет иметь вид:

$$a^* = \frac{1}{g(B=0)} (g_{zz} a_{zzz} \cos^3\theta + [g_{xx} a_{xxz} \cos^2\phi + g_{yy} a_{yyz} \sin^2\phi] \sin^2\theta \cos\theta)$$
(3.6)

Квантующее магнитное поле оказывает влияние на все главные элементы тензора \hat{g} за счет изменения зонной структуры образца. Заметим, что знак полученных a_{iik} положителен, так что приложение магнитного поля уменьшает модуль g-фактора, знак которого отрицателен. Экспериментально полученные значения \hat{a} указаны в таблице 3.2.

Рис. 3.5: Экспериментальная зависимость плоскостной части g(рисунок а)) вблизи дна подзоны размерного квантования и линейной по магнитному полю поправки a^* к g-фактору (рисунок б)) от угла ϕ , снятых на образцах 4(открытые кружки) и 5(заполненные квадраты). Из a^* вычтена независящая от ϕ часть. Сплошные линии - аппроксимации экспериментальных данных по формулам 3.3 и 3.5 соответственно.

Глава 4

Выводы

Основные результаты работы состоят в следующем:

1. Для исследования электронного парамагнитного резонанса были спроектированы и собраны две низкотемпературные вставки, позволяющие контролируемо и воспроизводимо изменять ориентацию образца относительно приложенного магнитного поля.

2. В системе двумерных электронов исследован электронный спиновый резонанс и изучена зависимость положения линии резонансного микроволнового поглощения от фактора заполнения.

3. Подтверждена кусочно-линейная зависимость *g*-фактора электрона от магнитного поля с разрывами вблизи четных факторов заполнения, в том числе и в случае магнитного поля, направленного под углом к плоскости двумерной электронной системы.

4. Главные значения тензора \hat{g} были измерены для асимметричных квантовых ям с ширинами 25 и 20 nm и концентрацией $4 \times 10^{11} cm^{-2}$ и $4.4 \times 10^{11} cm^{-2}$ и симметричной ямы с шириной 20 nm и концентрацией $4.8 \times 10^{11} cm^{-2}$. При этом была обнаружена сильная анизотропия *g*:

	AQW $(#2)$	AQW $(#4)$	SQW $(\#5)$
g_{xx}	-0.289	-0.292	-0.343
g_{yy}	-0.359	-0.347	-0.350
g_{zz}	-0.410	-0.403	-0.414

5. Было продемонстрировано, что плоскостная анизотропия *g*-фактора практически исчезает в симметричных квантовых ямах.

6. Было показано, что значения g-фактора определяется ориентацией магнитного поля

относительно кристаллографических направлений образца, а не направлением протекания тока.

7. Было показано, что главными осями тензора \hat{g} являются кристаллографические направления [001], [110], [110].

8. Были исследованы линейные по магнитному полю поправки к тензору \hat{g} в симметричной и асимметричной квантовых ямах с шириной 20nm и концентрацией около $4 \times 10^{11} cm^{-2}$. Показано, что \hat{a} имеет три ненулевых элемента. При этом была обнаружена сильная анизотропия a^* :

	AQW $(#4)$	SQW $(\#5)$
$a_{xxz}(T^{-1})$	0.002 ± 0.001	0.0075 ± 0.0005
$a_{yyz}(T^{-1})$	0.012 ± 0.001	0.0090 ± 0.0005
$a_{zzz}(T^{-1})$	0.017 ± 0.0001	0.016 ± 0.0001

Результаты были опубликованы в нескольких работах [21], [22], [23] и были представлены на следующих конференциях: Х Российская конференция по физике полупроводников, 54 научная конференция МФТИ.

Наконец, хотелось бы выразить благодарность моему научному руководителю И. В. Кукушкину за всестороннюю поддержку и терпение, Ю. А. Нефёдову за помощь на различных стадиях эксперимента, обработки и обсуждения полученных результатов, а также всем сотрудникам лаборатории ЛНЭП за дружескую атмосферу.

Литература

- [1] Kato et al., Science **306**,1910 (2004)
- [2] C. Kallin and B. I. Halperin Phys. Rev. B **30**, 5655 (1984)
- [3] Jongsoo Yoon et al., Phys. Rev. Lett. 84, 4421 (2000)
- [4] Wolf et al., Science **294**,1488 (2001)
- [5] Е.К. Завойский, J.Phys. USSR, v.9, **245** (1945)
- [6] Claude Weisbuch and Claudine Herrman, Phys. Rev. B, 15, 816 (1977)
- [7] Roth, Lax, and Zwerdling, Phys. Rev. **114**, 90 (1959)
- [8] P. Pfeffer and W. Zawadzki, Phys. Rev. B 74, 233303 (2006)
- [9] E.L. Ivchenko and A.A. Kiselev, Sov. Phys–Semicond. 26, 827 (1992).
- [10] Y. A. Bychkov and E. I. Rashba, JETP Lett. **39**, 78 (1984)
- [11] G. Dresselhaus, Phys. Rev. **100**, 580 (1955)
- [12] P.Le Jeune et al., Semicond. Sci. Technol. **12**, 380(1997)
- [13] T.Amand, X.Marie, P. Le Jeune, M. Brousseau, D.Robart, J.Barrau and R.Planel, Phys. Rev. Lett. 78,1355(1997).
- [14] A.P. Heberle, W.W. Ruhle, and K. Ploog, Phys. Rev. Lett. 72, 3887 (1994).
- [15] S.Bar-Ad and I.Bar-Joseph, Phys. Rev.Lett. 66,2491(1991).
- [16] I.A.Yugova, A.Greilich, D.R.Yakovlev, A.A.Kiselev, M.Bayer, V.V.Petrov, Yu.K.Dolgikh, D.Reuter, and A.D.Wieck, Phys.Rev.B 75, 245302 (2007)

- [17] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000).
- [18] V.K. Kalevich and V.L. Korenev, Pis'ma v ZhETF 57, 557 (1993) [JETP Lett. 57, 571 (1993)].
- [19] S. Hallstein, M. Oestreich, W.W. Ruhle, K. Kohler, Proceedings of 12th International Conference High Magnetic Fields in the Physics of Semiconductors, p. 593 (1996)
- [20] P. S. Eldridge et al., Phys. Rev. B 83, 041301(R) (2011)
- [21] Yu.A. Nefyodov, A.A. Fortunatov, A.V. Shchepetilnikov, and I.V. Kukushkin, Pis'ma v ZhETF 91, 385 (2010) [JETP Lett. 91, 357 (2010)].
- [22] Yu.A. Nefyodov, A.V. Shchepetilnikov, I.V. Kukushkin et al., Phys. Rev. B 83, 041307(R) (2011).
- [23] Yu.A. Nefyodov, A.V. Shchepetilnikov, I.V. Kukushkin et al., Phys. Rev. B 84, 233302 (2011).
- [24] G.Lommer, F.Malcher, and U.Rössler, Phys. Rev. B **32**, 6965 (1985).
- [25] M. Dobers, K.v. Klitzing and G. Weimann, Phys. Rev. B 38, 5453 (1988).
- [26] D. Stein, K.v. Klitzing and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).
- [27] A. Berg, M. Dobers, P. R. Gerhardts, and K. von Klitzing, Phys. Rev. Lett. 64, 2563 (1990).
- [28] N. Nestle, G. Denninger, M. Vidal, C. Weinzierl, K. Brunner, K. Eberl, and K.v. Klitzing, Phys. Rev. B 56, R4359 (1997).
- [29] S.Dickmann and S.L.Artyukhin, Письма в ЖЭТФ **89**, 153 (2008)
- [30] Albert W. Overhauser, Phys. Rev. **92**, 411 (1953)