Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет) Факультет молекулярной и химической физики Институт физики твердого тела РАН Кафедра физики твердого тела

Потапенко Антон Павлович

Исследование нелокальных неравновесных эффектов в сверхпроводящих субмикронных структурах

010600 – прикладные математика и физика

Выпускная квалификационная работа бакалавра

Научный руководитель

К.ф.-м.н. Батов Игорь Евгеньевич

Черноголовка

2013

Оглавление

Bı	Введение		
1.	Тео	ретическая часть.	2
	1) A	ндреевское отражение	
	2) K	вазичастицы и уравнение Боголюбова	
	3) N	1одель Блондера-Тинкхама-Клапвайка (BTK)	
	4) A	нализ токов в модели ВТК	
	5) 3	арядовый разбаланс	
	6) N	Іеханизмы релаксации зарядового разбаланса	
2.	. Методика измерений.		
	2.1	Изготовление образцов и подготовка к эксперименту	
	2.2	Описание измерений.	
3.	Экс	спериментальные результаты и их обсуждение.	19
4.	Зак	лючение.	30

введение

В последние годы сверхпроводниковая микроэлектроника находит все большее применение в устройствах для приема и обработки сигналов. Сверхпроводниковые интегральные приемные устройства используются на радиотелескопах, а также в современных радиоастрономических спутниковых приборах. Разрабатываются аналогоцифровые преобразователи, цифровые процессоры на сверхпроводящей элементной базе (www.hypres.com). Сверхпроводниковая электроника имеет ряд преимуществ, в числе которых крайне низкое тепловыделение, рекордное быстродействие, сравнительно дешевое изготовление в рамках существующих нанотехнологий.

Современные технологии, использующие электронную литографию, позволяют реализовывать *субмикронные* тонкопленочные структуры на основе сверхпроводников. В таких структурах характерные планарные размеры сверхпроводников сравнимы с длиной зарядового разбаланса λ_Q (длиной, на которой происходит конверсия неравновесных квазичастиц в куперовские пары) [1]. В этих структурах неравновесные эффекты в электронном транспорте являются определяющими.

Целью работы являлось исследование электронного транспорта в планарных субмикронных структурах с джозефсоновскими SNS переходами и инжекторами из нормального металла. В работе изучались влияние токов инжекции и неравновесные нелокальные эффекты в исследуемых сверхпроводящих субмикронных структурах.

Глава 1

Теоретическая часть.

1) Андреевское отражение.

Если нормальный проводник находится в контакте со сверхпроводником, то наблюдается процесс отражения, называемый Андреевским. Механизм такого отражения показан на рис.1.1. Рассматривается электрон с энергией $E < \Delta$ немного выше уровня Ферми, движущийся к SN-интерфейсу. Т.к. никаких квазичастичных состояний в сверхпроводнике при Е<∆ не предполагается, то никакого пропускания не будет. Более того, из-за отсутствия барьера, который мог бы влиять на изменение импульса, на интерфейсе не будет отражения. Происходит процесс образования куперовских нормального пар в сверхпроводнике путем спаривания падающего электрона с энергий выше фермиевской с электроном, энергия которого меньше E_F, взятого из нормального металла (см. рис.1.1а). Изъятие этого электрона из нормального металла можно интерпретировать как образование положительно заряженной дырки.

Рис.1.1. а) Энергетическая диаграмма Андреевского отражения: падающий электрон со стороны нормального металла отражается в виде дырки с образование куперовской пары в сверхпроводнике. **b)** По сравнении с обычным отражением дырка движется точно по тому же пути, что и падающий электрон.

Для образования куперовской пары в сверхпроводнике волновой вектор электрона с энергий меньше E_F должен иметь направление, противоположное направлению волнового вектора падающего электрона. Суммарный волновой вектор полностью заполненной сферы Ферми равен нулю. Тогда из закона сохранения импульса следует, что волновой вектор дырки должен совпадать с волновым вектором падающего электрона. Но т.к. скорость распространения квазичастиц в реальном пространстве это групповая скорость, которая равна $\mathbf{v}_k = \frac{1}{h} \nabla_{\mathbf{k}} E$, то волновой вектор и групповая скорость дырки направлены противоположно: $\boldsymbol{v} = \frac{\partial E}{\partial p} = \frac{\partial p}{\partial p} \frac{\partial \sqrt{\varepsilon_p^2 + \Delta^2}}{\partial p} = v_F \frac{p}{p} \frac{\varepsilon_p}{E}$. Для электронов с P>P_F, т.е. с $\varepsilon_p = v_F(p - p_F) > 0$, скорость \boldsymbol{v} направлена вдоль импульса **P**, однако для дырок $\varepsilon_p = v_F(p - p_F) < 0$, и поэтому при превращении электрона в дырку все компоненты скорости меняют знак. Т.е. дырка движется по пути падающего электрона, но в противоположном направлении (обратное отражение) (см. рис.1.1b). В случае падающих электронов с |Е|≥∆ в сверхпроводнике возникают квазичастицы, электроноподобные либо дырочноподобные. В этом случае имеет место с определенной вероятностью не только Андреевское отражение, но и нормальное: W_{норм}=1-W_{андр}, где

$$W_{ahdp} = \frac{E - \sqrt{E^2 - \Delta^2}}{E + \sqrt{E^2 - \Delta^2}} [2,3].$$

2) Квазичастицы и уравнение Боголюбова.

При ненулевых температурах Т≠0 система электронов в сверхпроводнике находится в возбужденном состоянии. В чистом сверхпроводнике без тока энергия элементарного (одночастичного) возбуждения системы с импульсом р равна

$$E_P = (\varepsilon_P^2 + \Delta^2)^{1/2}$$

 $\varepsilon_P = \frac{p^2}{2m} - \mu$ – энергия элементарного возбуждения нормальной электронной системы с химическим потенциалом μ . Спектр элементарных возбуждений (квазичастиц) и их заряд q_k

показан на рис.2.

Рис.1.2. Энергетический спектр квазичастиц в сверхпроводнике E_k и их заряд q_k (здесь за +1 принимается заряд электрона). В области 1 заряд квазичастиц очень близок κ +1, в области 3 – κ -1, а в области 2 заряд q_k принимает любые значения от +1 до -1. Прямыми линиями показан спектр нормального металла.

Квазичастичные состояния могут быть описаны уравнением Боголюбова:

$$\begin{pmatrix} H(\mathbf{r}) & \Delta(\mathbf{r}) \\ \Delta^*(\mathbf{r}) & -H(\mathbf{r}) \end{pmatrix} \begin{pmatrix} u_k(\mathbf{r}) \\ v_k(\mathbf{r}) \end{pmatrix} = E \begin{pmatrix} u_k(\mathbf{r}) \\ v_k(\mathbf{r}) \end{pmatrix}$$
, где вектор $\begin{pmatrix} u_k(\mathbf{r}) \\ v_k(\mathbf{r}) \end{pmatrix}$ описывает в

соответствии с теорией Бардина-Купера-Шриффера (БКШ) [4] электроно- и дырочноподобные квазичастицы. Гамильтониан равен $H(\mathbf{r}) = -\frac{\hbar^2}{2} \nabla^2 \frac{1}{m^*} + U(\mathbf{r}) - \mu$, где

 μ - электрохимический потенциал. Связь между двумя компонентами вектора $\binom{u_k(r)}{v_k(r)}$ обеспечивается потенциалом сверхпроводящей пары $\Delta(r)$. $v_k(r)$ описывает амплитуду вероятности дырочноподобного состояния, $u_k(r)$ - амплитуда вероятности электроноподобного состояния. Тип квазичастицы определяется преобладанием той или иной компоненты вектора $\binom{u_k(r)}{v_k(r)}$: если $|u_k|^2 > |v_k|^2$, то электроноподобная; $|u_k|^2 < |v_k|^2$ – дырочноподобная. Энергетический спектр квазичастиц представлен на рис.1.3.

Рис.1.3. Энергетический спектр квазичастиц в сверхпроводнике. Прямыми линиями показан спектр нормального металла.

Во многих случаях вектор амплитуд вероятностей можно представить в виде: $\begin{pmatrix} u_k(r) \\ v_k(r) \end{pmatrix} = g(\mathbf{r})$

 $inom{u_0}{v_0}$. Если сверхпроводник однородный, $\Delta(r)=\Delta_0$, то можно $g(\mathbf{r})$ представить в виде

exp(ikr). Тогда в этом случае в соответствии с БКШ $u_k^2 = \frac{1}{2} \left(1 + \frac{\sqrt{E^2 - \Delta_0^2}}{E} \right); v_k^2 =$

$$\frac{1}{2}\left(1-\frac{\sqrt{E^2-\Delta_0^2}}{E}\right)$$
; где собственные значения $E=\pm\left[\left(\frac{\hbar^2k^2}{2m_e}-\mu\right)^2+{\Delta_0}^*{\Delta_0}\right]^{1/2}$. График

зависимости v_k^2 от k изображен на рис.1.4. Точка k_F на осях абсцисс, где $v_k^2 = \frac{1}{2}$ и где энергия квазичастиц имеет минимум, соответствует в абсолютном отсчете энергий химическому потенциалу сверхпроводника [5]. В равновесном случае химические потенциалы нормальной и сверхпроводящей электронной системы совпадают $\mu = \frac{P_F^2}{2m}$.

Рис.1.4. Зависимость v_k^2 от k. На уровне Ферми (при $k=k_F$) $\varepsilon_P = 0$.

Распределение электронов в основном состоянии сверхпроводящей системы электронов около поверхности Ферми "размыто" на интервале энергий порядка ~2*Δ*.

3) Модель Блондера-Тинкхама-Клапвайка (ВТК).

Рассмотрим NS-границу в равновесии. Подразумевается, что нет различий между сверхпроводником и нормальным металлом в уровнях Ферми (в случае контакта полупроводника со сверхпроводником различие существенно). На рис. 1.5 показана схема NS-интерфейса. Электрон (0) приближается к границе, где возможны с определенными вероятностями следующие процессы: A(E) – вероятность андреевского отражения в виде дырки (6), B(E) – вероятность обычного отражения, C(E) – вероятность прохождения границы интерфейса с волновым вектором на той же стороне поверхности Ферми (после прохождения частица (4) остается на электронной ветви спектра), D(E) – вероятность прохождения с переходом на дырочную ветвь спектра (2)). Заметим, что суммарная вероятность постоянна, т.е. A(E)+B(E)+C(E)+D(E)=1.

Рис.1.5. Граница NS. По вертикали – энергия, по горизонтали – импульс.0 – падающий электрон, 2 и 4 –прошедшие электроны, 5 и 6 – отраженные.

В модели ВТК потенциальный барьер на границе аппроксимируется δ -функцией: Н $\delta(x)$. Для упрощения формул вводится безразмерный параметр Z, характеризующий силу барьера: $Z = \frac{k_F H}{2\varepsilon_F} = \frac{H}{\hbar v_F}$. В оригинальной статье [3] вычислены вероятности при разных значениях параметра Z и энергии E.

При наличии напряжения появляется неравновесная населенность квазичастиц. Возникает электрический ток, идущий через SN-интерфейс. Делается предположение, что функции распределения всех пришедших квазичастиц задаются равновесной функцией распределения Ферми $f_0(E)$, кроме сдвига энергии за счет ускоряющего потенциала. Тогда все электроны, идущие со стороны сверхпроводника, описываются функцией распределения $f_0(E)$, а со стороны нормального металла - $f_0(E - eV)$. В одномерной модели ток со стороны нормального металла описывается выражением

 $I = \mathcal{A}J = 2N(0)e\mathcal{V}_F\mathcal{A}\int [f_{\rightarrow}(E) - f_{\leftarrow}(E)]dE,$

где \mathcal{A} - эффективное сечение, $f_{\rightarrow}(E)$ и $f_{\leftarrow}(E)$ – функции распределения, которые соответствуют точкам (0) и (5) (см. рис.3).

 $f_{\rightarrow}(E) = f_0(E - eV) \,,$

 $f_{\leftarrow}(E) = A(E)[1 - f_{\rightarrow}(-E)] + B(E)f_{\rightarrow}(E) + [C(E) + D(E)]f_0(E).$

Подставив последние соотношения в выражение для тока, с учетом равенств A+B+C+D=1, A(E)=A(-E), $f_0(-E) = 1 - f_0(E)$ получим

$$I_{NS} = 2N(0)ev_F \mathcal{A} \int (f_0(E - eV) - \{A(E)f_0(E + eV) + B(E)f_0(E - eV) + [1 - A(E) - B(E)]f_0(E)\})dE$$

$$I_{NS} = 2N(0)ev_F \mathcal{A} \int [f_0(E - eV) - f_0(E)][1 + A(E) - B(E)]dE.$$
(*)

Величина [1 + A(E) - B(E)] может интерпретироваться как коэффициент прохождения электрического тока.

4). Анализ токов в модели ВТК.

Рассмотрим разделение суммарного тока I_{NS} на части в соответствии с механизмом переноса заряда. В частности, различие между током I_{NS}^* , связанным с возникновением квазичастичного заряда разбаланса Q в сверхпроводнике, и током, идущим непосредственно в сверхпроводник.

Напишем (*) в виде

$$I_{NS} = 2N(0)ev_F \mathcal{A} \int [f_0(E - eV) - f_0(E)][2A(E) + C(E) + D(E)]dE$$

(воспользовались соотношением A(E)+B(E)+C(E)+D(E)=1, т.е. 1+A(E)-B(E)=2A(E)+C(E)+D(E)). Представим I_{NS} в виде суммы двух компонент I_{NS}^A и I_{NS}^{qp} . Первый из них

$$I_{NS}^{A} = 2N(0)ev_{F}\mathcal{A}\int [f_{0}(E - eV) - f_{0}(E)][2A(E)]dE,$$

соответствует андреевскому отражению (A(E) – вероятность андреевского отражения), в котором ток в сверхпроводнике переносится парами. Вторая компонента тока I_{NS} соответствует квазичастичному переносу

$$I_{NS}^{qp.} = 2N(0)ev_F \mathcal{A} \int [f_0(E - eV) - f_0(E)] [C(E) + D(E)] dE.$$

Но этот ток не является током квазичастиц, т.к. следует учесть, что есть как дырочноподобные, так и электроноподобные квазичастицы с k^+ и k^- и $q_k = \pm N_s (E_k)^{-1}$. Т.е. ток квазичастиц равен

$$I_{NS}^{*} = 2N(0)ev_{F}\mathcal{A}\int [f_{0}(E - eV) - f_{0}(E)][C(E) - D(E)]N_{S}^{-1}(E)dE$$

В случае сильного барьера, когда $Z^2 \gg 1$, $A \approx Z^{-4} \ll 1$ [3]. Тогда I_{NS}^A мал по сравению с I_{NS} и $I_{NS} \approx I_{NS}^{qp.}$ представляет собой выражение для туннельного тока (C+D $\approx Z^{-2}$)

$$\int_{NS}^{qp.} = \frac{1}{eR_N} \int [f_0(E - eV) - f_0(E)] N_S(E) dE, \quad Z^2 \gg 1$$

 I_{NS}^{*} , с учетом C-D=Z⁻²:

$$I_{NS} \approx I_{NS}^* = \frac{1}{eR_N} \int [f_0(E - eV) - f_0(E)] N_S^{-1}(E) dE, \ Z^2 \gg 1$$

В случае отсутствия барьера Z=0. Тогда B=D=0, C=1-А. Тогда

$$I_{NS} = \frac{1}{eR_N} \int [f_0(E - eV) - f_0(E)] [1 + A(E)] N_S^{-1}(E) dE, \quad Z = 0$$

Выражения для тока I_{NS}^A , соответствующего андреевскому отражению, остается неизменным, а $I_{NS}^{qp.} = \frac{1}{eR_N} \int [f_0(E - eV) - f_0(E)] [1 - A(E)] dE$, Z = 0, в то время как

$$I_{NS}^* = \frac{1}{eR_N} \int [f_0(E - eV) - f_0(E)] [1 - A(E)] N_S^{-1}(E) dE, \ Z = 0.$$

Если энергия электрона, движущегося к интерфейсу, $|E|<\Delta$, то 1-А=0. В этом случае последние токи $I_{NS}^{qp.}$ и I_{NS}^* зануляются, кроме I_{NS} , т.к. в этом случае 1+А=2А. В отличие от сильного барьера весь ток осуществляется квазичастицами над щелью, т.е. соотношение $F^* \equiv I^*/I$, характеризующее зарядовый разбаланс в виде доли от подаваемого тока, будет мало для металлических контактов по сравнению с туннельными контактами.

5) Зарядовый разбаланс.

В части 4 было упомянуто про компоненту тока I_{NS}^* , связанной с возникновением квазичастичного заряда разбаланса Q в сверхпроводнике.

Несимметричное заполнение ветвей спектра возбуждений связано с возникновением нескомпенсированного положительного или отрицательного заряда. Такие неравновесные ситуации в сверхпроводниках называют состояниями с зарядовым разбалансом [7]. Остановимся на этом поподробнее.

Эффективный заряд квазичастицы с импульсом ћк, введенный Петиком и Смитом [7-из диссерт.] равен в единицах е= - |е|: $q_p = u_p^2 - v_p^2 = \frac{\varepsilon_p}{E_p} = \pm N_s(E_p)^{-1}$, где $N_s(E_p)$ – нормированная плотность состояний. Заряд, находящийся в ячейке р вблизи p_F, только частично (q_P) принадлежит возбуждению (нормальной компоненте), остальной заряд (1- q_P) связан с куперовскими парами (сверхпроводящей компонентой). В равновесном сверхпроводнике функция распределения квазичастиц f_P - функция распределения Ферми. Полный заряд электронной системы в сверхпроводнике выражается через v_P^2 и f_P [7]:

$$Q_{nonh} = 2e \sum_{p} \left[u_{P}^{2} f_{P} + v_{P}^{2} (1 - f_{P}) \right] = 2e \left(\sum_{p} q_{P} f_{P} + \sum_{p} v_{P}^{2} \right) = Q_{n} + Q_{s}$$

Здесь $Q_n = 2e \sum_p q_P f_P$ – заряд нормальной компоненты,

 $Q_s = 2e \sum_p v_P^2$ – заряд сверхпроводящей компоненты [8].

Это двухкомпонентное рассмотрение заряда верно в случаях малых пространственных изменений в сравнении с длиной когерентности $\xi(T) \sim \hbar v_F / \Delta$ и медленных временных изменений во временном масштабе \hbar / Δ . В этих случаях спектр квазичастиц мгновенно перераспределяется при локальном изменении щели. Возбуждение квазичастиц приводит к уменьшению Δ , в соответствии с уравнением БКШ для щели: $\Delta \sim \sum_P \frac{\Delta}{2E_P} (1 - f_P)$.

Заряд сверхпроводящей компоненты $Q_s = 2e \sum_p v_P^2$ - это заряд всех электронов, образующих основное сверхпроводящее состояние. В равновесии количество электронов, образующих основное состояние $2\sum_p v_P^2$, равняется полному числу электронов проводимости, т.е. $Q_{noлh} = 2e \sum_p v_P^2$; $Q_n = 0$. Что означает, что дырочно- и электроноподобная ветви спектра возбуждений (рис.1.2, 1.3) заселены симметрично. Какойлибо разбаланс в заселенностях этих двух ветвей, впервые рассмотренный Тинкхамом и Кларком [9,10], приводит к появлению конечного заряда квазичастиц $Q_n = 2e \sum_p q_P f_P$, т.е. разбалансу заряда [6,7].

В силу электронейтральности материала, любое изменение заряда квазичастиц равным по модулю и противоположным по знаку изменением заряда сопряжено с сверхпроводящей компоненты $Q_s = 2e \sum_p v_P^2$. То есть в неравновесных ситуациях, связанных с зарядовым разбалансом, меняется число электронов, принимающих участие в образовании основного сверхпроводящего состояния. Функция распределения сверхпроводящих электронов v_k^2 (рис.1.6) сдвигается, меняется химический потенциал сверхпроводника μ_{s} . При этом распределение квазичастиц f_{P} почти не меняется [8], следовательно, с учетом уравнения БКШ для щели (см. выше), не меняется и Д. Поскольку площадь под кривой v_k^2 пропорциональна числу сверхпроводящих электронов, то их уменьшение приводит к уменьшению химического потенциала μ_S на величину $\mathcal{E}_F - \mu_S$.

Рис.1.6. Спектр квазичастиц E_k в сверхпроводнике в неравновесном состоянии и неравновесное распределение сверхпроводящих электронов v_k^2 . Штриховой линией показано старое распределение, сплошной – новое.

Таким образом, изменение химического потенциала μ_S сверхпроводника приводит к распределению квазичастиц относительно нового основного состояния. Энергия квазичастицы $E_P = (\varepsilon_P^2 + \Delta^2)^{1/2}$ и ее заряд ε_P/E_P выражается через новое значение $\varepsilon_P = \frac{p^2}{2m} - \mu_S$. Ветви спектра возбуждений симметричны теперь относительно нового μ_S (рис.1.6), а заполнение квазичастицами импульсных состояний, по-прежнему, симметрично относительно $\frac{P_F^2}{2m}$. Заряд конденсата меняется на величину $\Delta Q = 2N_S(E_F)(\varepsilon_F - \mu_S)$. Появляется разбаланс квазичастичного заряда Q_n .

В стационарных условиях градиент электрохимического потенциала, приводящего к ускорению сверхтекучей компоненты, равен нулю $\nabla \varphi_{3x} = \nabla (e\varphi + \mu_S) = 0$. Тогда $E = -\nabla \varphi = \frac{1}{e} \nabla \mu_S = -\frac{1}{2eN_S(E_F)} \nabla Q$, т.е. в неравновесных условиях, при наличии градиента заряда квазичастиц сверхпроводника, возникает электрическое поле. Однако оно не ускоряет конденсат, так как компенсируется градиентом химического потенциала сверхпроводящих электронов μ_S . При протекании электрического тока через NS границу при T вблизи T_C почти все нормальные возбуждения, переносящие ток в нормальном металле, проникают в сверхпроводник. В приближении T вблизи T_C можно пренебречь изменением химического потенциала квазичастиц по сравнению с изменением μ_S [5,7]. Вблизи NS границы на некоторой характерной длине превращения тока нормальных возбуждений в сверхток λ_Q (a, c учетом выше упомянутого, это длина спадания электрического поля E вглубь сверхпроводника) возникает область с конечным нескомпенсированным зарядом квазичастиц.

6) Механизмы релаксации зарядового разбаланса.

Механизмы релаксации зарядового разбаланса могут происходить благодаря различными процессам рассеяния квазичастиц: электрон-фононное неупругое рассеяние, упругим рассеяние на примесях, магнитное рассеяние с переворотом спина.

Тинкхам [10,11] ввел время релаксации электронно-дырочного разбаланса τ_Q и рассмотрел его основные механизмы. Предполагается, что температура квазичастиц равна температуре фононов, также находящихся в равновесии.

Рассмотрим релаксацию заряда за счет неупругого рассеяния на фононах при T вблизи T_C ($\Delta \ll kT$).

В [12] было получено следующее значение для времени релаксации заряда за счет электронфононных неупругих процессов:

$$\tau_Q = \frac{4kT}{\pi\Delta}\tau_E$$

 τ_{E}^{-1} – частота неупругих столкновений электронов с фононами.

В экспериментах [9,13] вблизи T_C была получена зависимость $\tau_Q \sim \Delta^{-1}$. Тинкхам в [11] показал, что упругое рассеяние на примесях в случае изотропной щели не приводит к релаксации заряда.

За счет процессов андреевского отражения при протекании токов на NS границе возникает скачок E_N - E_S электрического поля. Оставшаяся величина E_S спадает в S на характерной длине $\lambda_Q = (D\tau_Q)^{1/2}$. Этот вопрос рассматривался в [7]. Существование в сверхпроводнике стационарного, но неравновесного заряда квазичастиц с плотностью Q подразумевает, что идет непрерывный поток квазичастиц, который релаксирует, переходя в конденсат. Данное условие выражается соотношением $div \mathbf{j}_n = -\frac{eQ}{\tau_Q}$, где \mathbf{j}_n - нормальная компонента полного тока. С учетом закона Ома и выражения для E из части 5) данного введения, получим $\nabla^2 Q = \frac{1}{\lambda_Q^2} Q$, где $\lambda_Q^2 = \frac{\sigma \tau_Q}{2e^2 N_S(E_F)}$. Так как $\sigma = \frac{2}{3}e^2 N_S(E_F)lv_F$ (см. [14]), то $\lambda_Q = (D\tau_Q)^{1/2}$, где D – коэффициент диффузии, $D = \frac{lv_F}{3}$. И из $\nabla^2 Q = \frac{1}{\lambda_Q^2} Q$ следует, что поле E затухает экспоненциально вглубь S на характерной длине λ_Q .

Глава 2.

Методика измерений.

2.1 Изготовление образцов и подготовка к эксперименту.

Приготовление планарных структур с джозефсоновскими контактами требует использования высокотехнологического оборудования. Это необходимо для воспроизведения высокой точности геометрических параметров образцов, а также для получения качественных SN-интерфейсов, основной характеристикой которых является прозрачность границы раздела. Обычно для этого используются установки электронной и фотолитографии, в частности для данной работы были изготовлены субмикронные планарные мостики (в середине рис. 2.1.1) при помощи электронной литографии на двойном резисте и последующего теневого осаждения [15]. На рис.2.1.1 и 2.1.2 показаны изображения одного из типа образцов, полученные при помощи сканирующей электронной микроскопии.

Рис.2.1.1. СЭМ-изображение образца.

Рис.2.1.2. Схема SNS перехода.

Вся серия образцов была сделана за один вакуумный цикл в высоковакуумной установке. Для формирования полоски нормального металла на подложку из оксидированного кремния осаждался тонкий слой меди толщиной $d_N = 30$ нм, а затем слой алюминия (но уже под другим углом) толщиной $d_S = 100$ нм. В итоге получился джозефсоновский переход Al-Cu-Al. Подробная схема перехода изображена на рис.2.1.2. Образцы отличаются различными расстояниями L между сверхпроводящими берегами – от 35нм до 230нм. $A_{BN}=200*150$ нм² и W=150 нм - неизменные параметры. Ширина контакта d=200 нм.

В низкотемпературных экспериментах образцы помещают в криостат при помощи специальных вставок, в нижних частях которых закреплены держатели образцов. Держатель состоит из текстолитовой подложки с напыленными медными площадками для припаивания проводов, через которые проходят сигналы между образцом и приборами. Образцы приклеиваются клеем БФ к подложке держателя. Предварительно перед каждым экспериментом с использованием нового образца проводилось бондирование последнего, т.е. при помощи специального прибора (бондера) припаивались тоненькие проволочки к образцу и медным площадкам. После этого держатель с образцом помещался во вставку, которая затем опускалась в криостат He-3. Криостат He-3 предназначен для измерений в температурном интервале 0,3-1,4 К.

В данной работе измерения проводились с использованием специальной He-3 вставки, изготовленной в ИФТТ РАН. Основными элементами вставки являются: 1-градусная камера для He-4, проходящая через нее камера He-3, система вентилей. Газообразный He-3 конденсируется на холодной части стенок камеры He-3, при откачке паров He-4 примерно до давления 4 мм.рт.ст. (температура 1,3 K). Жидкий He-3 скапливается в нижней части камеры He-3. Одним из важнейших устройств помимо вставки является сорбционный насос, который служит для откачки сжиженного He-3, температура при этом понижается до 0,3 K.

2.2 Описание измерений.

В данной работе измерения образцов проводились по нелокальной схеме, изображенной на рис.2.2.1. Измерения проводились по 4-точечному методу (см. рис.2.2.1) с разными расстояниями до SNS-переходов: 1500 нм и 600 нм (1-й образец), 1500 нм и 1000 нм (2-й образец).

Рис.2.2.1. Нелокальная схема измерений.

Одним из типов проводимых измерений являлось измерение дифференциального сопротивления. Для этого использовалась схема, изображенная на рис.2.2.2

Рис.2.2.2 Схема для измерений дифференциального сопротивления.

С источника напряжения Keithley 2400 идет коаксиальный кабель на вход постоянного напряжения на сумматоре. А к входу переменного тока на сумматоре подключен синхронный детектор SR-830 (Lock-in), который задействован как источник переменного тока. С сумматора через коаксиальный кабель идет суммарный ток (переменный+постоянный), который пропускается через контакты 1 и 2 образца (см. рис.2.2.2). Провод, ведущий к контакту 2 образца, заземлен. Измерения проводились по 4-точеной схеме при низких температурах вплоть до 0.3К в экранированном криостате. С контактов 3 и 4 образца снимается напряжение синхронным детектором SR- 830. К нему подключен вольтметр Keithley 2182 для лучшей точности измерений. С него показания передавались на компьютер, где при помощи программ проводились измерения.

Другой вид осуществленных измерений – получение вольт-амперных характеристик. Для этого собиралась другая схема (см. рис. 2.2.3).

Источник тока 220

Рис.2.2.3. Схема для измерений вольт-амперных (I-V) характеристик.

С источника тока Keithley 220 подается ток, который пропускается через контакты 1 и 2 образца. Вольтметром Keithley 2182 снимается разность потенциалов между 3 и 4. Источник тока и вольтметр через GPIB подсоединены к компьютеру, на котором строится I-V кривая.

На данные, получаемые при таких измерениях, при малых значениях тока и напряжения, сильно влияют шумы. Для подавления электромагнитных шумов применялись RC-фильтры (рис.2.2.4), установленные в измерительных DC-линиях как на выходе из криостата (при комнатной температуре), так и непосредственно перед образцом (при низких температурах). Параметры фильтров: R (комн.)=1 кОм, C (комн.)=100 мкФ. При температуре эксперимента: R (0,3 K)=2 кОм, C (0,3 K)=2,8 мкФ.

Рис.2.2.4. 4-точечная схема измерений с RC-фильтрами.

Для получения сверхнизких температур применяются методы последовательного конденсирования и откачивания He-4 и He-3. Схема криостата He-3 изображена на рис.2.2.5.

Рис.2.2.5. Схема криостата He-3. z1 – зажим шланга идущего на вакуумную рубашку криостата; z2 – зажим шланга идущего на атмосферу; z3 – зажим шланга идущего на объемы He3 и He4; z4 – зажим шланга идущего на сеть He4; z5 – зажим шланга идущего на объемы He4; v1 – вентиль вакуумной рубашки криостата; v2 – вентиль для откачки объема He3; v3 – вентиль для откачки объемов He4; v4 – вентиль на гелиевую сеть; v5 – вентиль адсорбционного насоса между вставкой He3 и насосом.; v6 – вентиль адсорбционного насоса между насосом и емкостью для сбора He3; v7 – запирающий вентиль на емкости He3.

При работе с криостатом Не-3 выполняются следующие основные шаги:

- 1) предварительно откачивается стеклянная рубашка криостата до давления порядка 5*10⁻² мБар.
- 2) откачиваются объем He-4 криостата и внутренний объем He-4 в He-3 вставке. Заливается азот в криостат и напускается газообразный гелий из сети.
- **3)** Откачивается вставка до 8*10⁻² мБар и напускается газообразный He-3 (кран v7 (см. рис.2.2.5) закрывается по достижении 1,2 К).
- **4)** После заливки Не-4 ждут 2 часа пока охлаждается вставка. Далее запускается откачка Не-4. В результате откачивая Не-4 охлаждается вся система до 1,2-1,4К.
- **5)** При температурах 1.2-1.4 К перекрывается откачка, выравниваются давления путем напуска газообразного Не-4 в систему.
- 6) Заливается внутренняя полость Не-4 во вставке.

После того, как криостат залит и получена рабочая температура (0,3 К), проверяется работа измерительных приборов, измерения проводятся при помощи программ, написанных на Labview.

Глава 3.

Экспериментальные результаты и их обсуждение.

Были получены результаты для образцов InjNS3 и InjN1S4 с инжекторами на расстояниях

- для образца InjNS3: d₁=590 нм, d₂=1530 нм
- для образца InjN1S4: d₁=1020 нм, d₂=1480 нм

Предварительно экспериментально получили значения сопротивлений R и R₀, где R – сопротивления единицы длины сверхпроводника в нормальном состоянии, R₀ – сопротивление нормальной части джозефсоновского перехода Al-Cu-Al.

- для образца InjNS3: R=0,69 Ом/мкм, R₀=5,6 Ом
- для образца InjN1S4: R=1,07 Ом/мкм, R₀=6,05 Ом

Измерения IV-характеристик для каждого из образцов проводились по локальной и нелокальной схемам измерений (рис.2.2.1). Представим полученные результаты для каждого из образцов по отдельности.

1. Образец InjNS3

Рис. 3.1. СЭМ-изображение образца InjNS3.

В ходе измерений были сняты IV-характеристики образца при различных температурах, из которых получили значения критических токов. Ниже представлены (рис.3.2) зависимости критического тока I_C от температуры T в случае локальных измерений и две кривые $I_C(T)$ при пропускании тока через разные инжекторы (нелокальные измерения).

Рис.3.2. Зависимости критического тока I_C от температуры T для образца InjNS3. Local – локальные измерения, 1 – расстояние до инжектора 590 нм (нелокальные измерения), 2 – расстояние до инжектора 1530 нм (нелокальные измерения).

Для определения критических токов инжекции $I_{(inj)C}$ и критического тока I_C , значения которых необходимы для определений характерных расстояний проникновения продольного электрического поля вглубь сверхпроводника, были получены IV-характеристики (рис.3.3) при температуре T=0.35 К. Отсюда находим значения токов и, с использованием формулы $\frac{I_C}{(I_{inj})_C} = \frac{R\lambda_Q e^{-d/\lambda_Q}}{R_0 + 2R\lambda_Q}$, полученной ниже в этой главе, вычисляем длину λ_Q . Значения представлены в табл. 1 (см. ниже).

Рис.3.3. *IV-характеристики образца InjNS3 при температуре* T=0.39 *К* (точные расстояния до инжекторов см. в табл.1). Local – локальные измерения, 1 – расстояние до инжектора 590 нм (нелокальные измерения), 2 – расстояние до инжектора 1530 нм (нелокальные измерения).

При температуре T=0.38 К снята IV-характеристика (рис.3.4) при пропускании тока из одного инжектора в другой

Рис.3.4. *IV-характеристика образца InjNS3 при температуре T*=0.38 *K при пропускании тока инжекции из одного инжектора в другой.*

И такие же по типу измерения проводились для другого образца с несколько иной геометрией структуры.

2. Образец InjN1S4

Рис.3.5. СЭМ-изображение образца InjN1S4

Ниже представлены зависимости критического тока I_C от температуры T в случае локальных измерений и две кривые $I_C(T)$ при пропускании тока через разные инжекторы (рис.3.6).

Рис.3.6. Зависимости критического тока I_C от температуры T для образца InjN1S4. Local – локальные измерения, 1 – расстояние до инжектора 1020 нм (нелокальные измерения), 2 – расстояние до инжектора 1480 нм (нелокальные измерения).

Для определения критических токов инжекции $I_{(inj)C}$ и критического тока I_C и последующего определения глубины проникновения λ_Q , были получены IV-характеристики (puc.3.7) при температуре T=0.39 К. Значения токов $I_{(inj)C}$ и I_C , длины λ_Q представлены в табл. 3.1 (см. ниже).

Рис.3.7. *IV-характеристики образца InjN1S4 при температуре* T=0.39 К (точные расстояния до инжекторов см. в табл.1). Local – локальные измерения, 1 – расстояние до инжектора 1020 нм (нелокальные измерения), 2 – расстояние до инжектора 1480 нм (нелокальные измерения).

При температуре T=0.38 К снята IV-характеристика (рис.3.8) при пропускании тока из одного инжектора в другой

Рис.3.8. *IV-характеристика образца InjN1S4 при температуре T=0.38 К при пропускании тока инжекции из одного инжектора в другой.*

Из данных, полученных из экспериментов с инжекцией, определены значения характерной глубины проникновения λ_Q . Из IV – характеристик 2 и 5 (см. рис. 3.3 и 3.7) получаем критические значения токов, представленных в таблице 3.1

Образец	InjNS3		InjN1S4	
	D ₁ =590 нм	D ₂ =1530 нм	D ₁ =1020 нм	D ₂ =1480 нм
I _{(inj)C} , мкА	19.7	23.6	22.4	24.2
<i>I_C</i> , мкА	4.4		3.7	

Табл.3.1. Значения критического тока *I_C* при локальных измерениях и токов инжекции при нелокальных измерениях. *D*_{1,2} - расстояних от инжекторов до SNS-перехода.

Далее воспользовавшись формулой $\frac{I_C}{(I_{inj})_C} = \frac{R\lambda_Q e^{-d/\lambda_Q}}{R_0 + 2R\lambda_Q}$ ((I), см. ниже), получаем

значения λ_Q .

Oopaseu	InjNS3	InjN1S4
D ₁ , нм	590	1020
λ _Q , мкм	4.3	2.7
D ₂ , нм	1530	1480
λ _Q , мкм	4.5	2.9

Табл.3.2. Значения характерных глубин проникновения λ_Q продольного электрического поля в сверхпроводник для разных образцов при разных расстояниях до инжектора. D_{1,2} - расстояниz от инжекторов до SNS-перехода.

Экспериментальные результаты можно объяснить, следуя теоретическим представлениям, развитым в работе [16]. В работе [16] для описания экспериментальных результатов по инжекции квазичастиц в джозефсоновский переход используется эквивалентная схема неравновесного сверхпроводника, предложенная в работе Кадина, Смита и Скочпола [8]. Джозефсоноский переход рассматривается в рамках резистивной RSJ модели (параллельное соединение идеального джозефсоновского элемента и нормального сопротивления R₀) [1]. Зависимость тока I_S от разности фаз на сверхпроводящих берегах джозефсоновского перехода имеет вид

$$I=I_C\sin\Delta\varphi,$$

Сверхпроводящие электроды джозефсоновского перехода рассматриваются в эквивалентной схеме как двухпроводная линия. Эквивалентная схема структуры с джозефсоновским переходом и инжектором из нормального металла приведена на рис. 3.9. Бездисипативная линия (А) представляет собой канал для сверхпроводящего тока I_s и потенциал в этой линии соответствует электрохимическому потенциалу куперовских пар. Резистивная линия (В) на

эквивалентной схеме представляет канал для нормального тока I_n, потенциал в резистивной линии соответствует электрохимическому потенциалу квазичастиц. Канал конверсии квазичастиц в конденсат представлен на эквивалентной схеме проводимостями G. Погонное сопротивление сверхпроводящих электродов джозефсоновского перехода в нормальном состоянии на схеме обозначено R (см рис. 3.9).

Рис.3.9. Схематическое изображение образца с указанием распределения токов в образце и эквивалентная схема.

Получим соотношения, связывающие значения критического тока I_C и критического тока инжекции $I_{inj,c}$. На рис. 3.9 изображена схема образцов с указанием обозначений, использующих при последующих расчетах.

I. (1) $I_{n,1} = A_1 e^{-x/\lambda_Q}$ (нормальный ток затухает экспоненциально вглубь сверхпроводника)

(2)
$$I_{n,2} = A_2 ch \frac{x}{\lambda_Q} + B_2 sh \frac{x}{\lambda_Q}$$

(3) $I_{n,3} = A_3 e^{(x+d)/\lambda_Q}$, где d – расстояния от инжектора до SNS перехода

Из граничных условий: $I_{n,1}(x = 0) = I_{n,2}(x = 0)$, откуда следует A₁=A₂=A. <u>В точке x=-d</u>:

- граничные условия $I_{S,2} = I_{S,3}, I_{S,2} = -I_{n,2}.$ - по правилу Кирхгофа: $I_{inj}=I_{S,3}+I_{n,3}$. Тогда - $I_{n,2} = I_{inj}-I_{n,3}$. Т.е. $-Ach\frac{d}{\lambda_Q} + B_2 sh\frac{d}{\lambda_Q} = I_{inj} - A_3$ (1*) **II.** Разность электрохимических потенциалов пар и квазичастиц в точке х задается формулой $U(x) = -\frac{1}{G} \frac{dI_n(x)}{dx}$ [16]. В точке x=-d $U_2(x = -d) = U_3(x = -d)$. В итоге, $-Ash\frac{d}{\lambda_Q} + B_2ch\frac{d}{\lambda_Q} = A_3$ (2*) (1*)+(2*) $\Rightarrow B_2 = A + I_{inj}e^{-d/\lambda_Q}$. В свою очередь, $A_3 = Ae^{-d/\lambda_Q} + \frac{I_{inj}}{1+th\frac{d}{\lambda_Q}}$. **III.** Получили, что $I_{n,1} = A_1e^{-x/\lambda_Q}$, $I_{n,2} = Ach\frac{x}{\lambda_Q} + (A + I_{inj}e^{-\frac{d}{\lambda_Q}})sh\frac{x}{\lambda_Q}$. Haпряжение на джозефсоновском переходе: $V = \frac{\hbar}{2e}\frac{\partial\varphi}{\partial t}$. Напряжение на R_0 : $V+U_2(x=0)-U_1(x=0) = I_{n,1}(x=0) \cdot R_0 = A \cdot R_0 = -I_c sin\varphi \cdot R_0$. Откуда следует, что $A = -I_c sin\varphi$ $= \frac{V-R\lambda_Q I_{inj}e^{-d/\lambda_Q}}{R_0+2R\lambda_Q}$. Обозначим $\mathcal{R} = R_0 + 2R\lambda_Q$. Тогда уравнение для разности фаз $\varphi(t)$ на джозефсоновском переходе:

$$\frac{\hbar}{2e\mathcal{R}}\frac{\partial\varphi}{\partial t} + I_c \sin\varphi = \frac{R\lambda_Q I_{inj}e^{-d/\lambda_Q}}{\mathcal{R}}$$

Итак,
$$I_c = \frac{R\lambda_Q(I_{inj})_c e^{-d/\lambda_Q}}{\mathcal{R}}, \mathcal{R} = R_0 + 2R\lambda_Q$$

Следовательно, $\frac{I_c}{(I_{inj})_c} = \frac{R\lambda_Q e^{-d/\lambda_Q}}{R_0 + 2R\lambda_Q}$ (I).

Аналогичные рассуждения и вычисления приводят к похожим соотношениям, относящихся к экспериментам по нелокальной схеме с двумя инжекторами (IVхарактеристики на рис. 3.4 и 3.8). Ток инжекции вводится через инжектор в диссипативную линию на расстоянии d_1 от перехода, а выводится на расстоянии d_2 . Таким образом расстояние между инжекторами равно $|d_1-d_2|$.

Рис.3.10. Двухпроводная модель [16,8] для случая измерений IV-характеристик по нелокальной схеме с двумя инжекторами.

Уравнение для разности фаз $\phi(t)$ на джозефсоновском переходе:

$$\frac{\hbar}{2e\mathcal{R}}\frac{\partial\varphi}{\partial t} + I_c \sin\varphi = -I_{inj}\frac{R\lambda_Q(e^{-\frac{d_1}{\lambda_Q}} - e^{-\frac{d_2}{\lambda_Q}})}{\mathcal{R}}.$$

Итак,
$$I_c = (I_{inj})_c \frac{R\lambda_Q e^{-\frac{d_1}{\lambda_Q}} - e^{-\frac{d_2}{\lambda_Q}}}{\mathcal{R}}, \mathcal{R} = R_0 + 2R\lambda_Q.$$

Следовательно, $\frac{I_c}{(I_{inj})_c} = \frac{R\lambda_Q (e^{-\frac{d_1}{\lambda_Q}} - e^{-\frac{d_2}{\lambda_Q}})}{R_0 + 2R\lambda_Q}$ (II).

Значения λ_Q , полученные из (II) по результатам эксперимента с двумя инжекторами, согласуются с полученными раннее результатам предыдущим способом (табл.3.2).

Были также исследованы дифференциальные IV-характеристики джозефсоновских переходов структур (схема на рис. 2.2.2, глава 2). На рис. 3.11 представлена зависимость дифференциального сопротивления dV/dI от тянущего напряжения V_{DC} для джозефсоновского SNS перехода с расстоянием между сверхпроводящими берегами L= 200 нм (образец InjNS4). Как видно из рис. 3.11, на зависимости dV/dI (V_{DC}) наблюдаются особенности при значениях напряжения $V_n = 2\Delta$ /en, связанные с многократным андреевским отражением [15]. Стрелками на рис. 3.11 отмечены рассчитанные значения положения особенностей на зависимости dV/dI (V_{DC}) для различных величин n. Прозрачность SN-границы можно оценить из вольтамперной характеристики джозефсоновского перехода в области напряжений V > 2 Δ (Рис. 3.12) [17]. В области больших значений токов и напряжений зависимость V(I) линейна, ее экстраполяция к значению V=0 дает величину избыточного тока I_{exc} = 6.7 µA (рис. 3.12). Используя значения сверхпроводящей щели в алюминии Δ =180 µeV и нормального сопротивления перехода R_n = 12 Ом, получим eI_{exc}R_n/ Δ = 0.45, что соответствует значению Z-параметра в модели BTK: Z = 0.85 [18].

Рис. 3.11. Зависимость дифференциального сопротивления dV/dI от тянущего напряжения V_{DC} SNS перехода с расстоянием между сверхпроводящими берегами L = 200 нм (образец InjNS4). T=0.4K. Стрелками отмечены значения напряжения 2Δ /en, соответствующие особенностям многократного андреевского отражения (где $\Delta = 180 \ \mu eV$ - сверхпроводящая щель в алюминии, n- целое число)

Рис.3.12. Вольт-амперная характеристика SNS перехода с расстоянием между сверхпроводящими берегами L = 200 нм (образец InjNS4). T=0.4K.

Глава 4.

Заключение.

выводы

- Освоена методика низкотемпературного (T~0.3 K) эксперимента с использованием ³He-криостата
- Экспериментально исследованы субмикронные планарные джозефсоновские SNS переходы Al/Cu/Al. В резистивной части вольтамперных характеристик обнаружены особенности, связанные с эффектом многократного андреевского отражения.
- Проведены измерения температурных зависимостей вольт-амперных характеристик планарных субмикронных структур с джозефсоновскими SNS переходами и инжекторами из нормального металла. Изучены влияние токов инжекции и нелокальные эффекты в исследуемых сверхпроводящих субмикронных структурах.
- Обнаружено нелокальное напряжение на SNS переходе, когда инжекция квазичастиц в один из сверхпроводящих берегов производилась таким образом, что полный ток через переход был равен нулю. Определена длина зарядового разбаланса в исследуемых структурах.

В заключение хочется выразить благодарность Батову И.Е. за научное руководство, помощь в ходе экспериментов и плодотворные научные дискуссии; Голиковой Т.Е. за помощь в ходе экспериментов и обработки результатов; Степакову Н.С. за помощь в подготовке экспериментов; Рязанову B.B. плодотворные научные за поддержку, дискуссии и работу возможность выполнить дипломную В лаборатории сверхпроводимости.

Литература

- [1] Шмидт В.В. Введение в физику сверхпроводников. М.:МЦНМО, 2000
- [2] Klapwijk T.M., Blonder G.E., Tinkham M. Physica B, 109-110, 1982
- [3] Blonder G.E., Tinkham M., Klapwijk T.M. Phys. Rev. B, 25, 4515, 1982
- [4] Bardeen J., Cooper L.M., Schrieffer J.R. Phys. Rev., v. 108, p.1175, 1957
- [5] Waldram J.R. Proc. Roy. Soc. (London), v.A 345, p.231, 1975
- [6] Pethick C.J., Smith H. J.Phys. C: Solid State Phys., v.13, p.6313, 1980
- [7] Pethick C.J., Smith H. Annals of Phys., v.119, p.133, 1979
- [8] Kadin A.M., Smith L.N., Skocpol W.J. J. Low Temp. Phys., v.38, p.497, 1980
- [9] Clarke J. Phys. Rev. Lett., v.28, p.1363, 1972
- [10] Tinkham M., Clarke J. Phys. Rev. Lett., v.28, p.1366, 1972
- [11] Tinkham M. Phys. Rev., v. B6, p.1747, 1972
- [12] Schmid A., Schon G. J. Low Temp. Phys., v.20, p.201, 1975
- [13] Clarke J., Paterson J.L. J. Low Temp. Phys., v.15, p.491, 1974
- [14] Де Жен П. Сверхпроводимость металлов и сплавов. М.: Мир, 1968
- [15] Голикова Т.Е. и др. Письма в ЖЭТФ, т.96, вып.10, с.743, 2012
- [16] Каплуненко В.К., Рязанов В.В., Шмидт В.В. ЖЭТФ, т.89, вып. 4(10), с.1389, 1985
- [17] Guenel H.Y., Batov I.E. et al. J. Appl. Phys., 112, 03431, 2012
- [18] Flensberg et al. Phys. Rev. B, 38, 8707, 1988