CHAPTER 15

Exchange and Spin Interaction

The present chapter deals mainly with conduction electron scattering by
centers having an uncompensated spin. Such centers are the atoms of transi-
tion and rare-earth elements (magnetic atoms); the uncompensated angular
momentum of these atoms is due to the inner unfilled d- or f-shell. As to their
outer valence electrons, the states of these electrons, upon saturation of
chemical bonds in the crystal, are rearranged so that there are two electrons of
opposite spin in each state.

Magnetic atoms can be the host atoms of the lattice of an ideal crystal or
can be impurities in a lattice of nonmagnetic atoms.

Relevant in many cases in the present chapter is that not only the scattering
center, but the band electron has a spin as well. Consequently, the data in this
chapter are closely related to those of ch. 13.

15.1. Interaction between a conduction electron and a magnetic
atom

We begin by considering the Coulomb interaction energy of two electrons: a
band electron in state i (#) with the spin projection o, and one of the electrons
in a magnetic atom, with the electron in the state () with the spin projection
p. This energy is

(Yo, pule®/ry, Yo, op) — (Yo, pu|e®/r, | pp, Yo

- [ fEr v e = v ()

=8, & [Er(n) o (7)) e () (), (15.1)

The first term is the so-called direct interaction, the second term is the
exchange interaction. The direct interaction is independent of the spin orienta-
tions; the exchange interaction exists only for electrons with the same spin
orientations (the Pauli exclusion principle “does not work” for electrons with
different spin orientations).

390



Interaction between conduction electron and magnetic atom 391
We can write the energy given by eq. (15.1) in the form

/d% L*(r) 0,4(r). (15.2)

Here 0, is the effective field set up by the atomic electron for the band
electron. It is evident from eq. (15.1) that

o, = ch(r)—Bc_”AqD. (15.3)
Here V is the potential set up by the electron in the state g, i.e.
2
v — 3.7 € ’ 2. A
V(r) = @ le () (15.4)

this potential is responsible for the direct Coulomb interaction. Responsible
for the exchange interaction is the integral operator 4 »» Which acts as follows:
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A(r)= [ar o () o (r) ¥ (r). (15.5.)
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e A » 1s an integral operator with kernel
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A (r, r)= o*(r') p(r). (15.6)

=7
It sometimes proves convenient, for the sake of generality, to understand the
potential V_ as also being an integral operator, but with a diagonal kernel

Vo(ror)=8(r=r)V, (r). (15.7)

The Kronecker delta appearing in eq. (15.3) can be represented as an
“interaction of spins”, by writing

8,=V,(r)~1(1+4ss)A4,, (15.8)

where s and s’ are operators of the band and atomic electron spins. The
potential given by eq. (15.8) is the operator acting on the spinor-column of the
band electron.

After summing the interactions b, eq. (15.8) for all the electrons of the
magnetic atom, and also taking into account the interaction of the band
electron with the atomic nucleus, we write the Hamiltonian for the interaction
of the band electron with a magnetic atom in the form

#=0+Rs. (15.9)

Two parts of this interaction are distinguished: the part depending and the
part not depending on the spin of the band electron. The operators O and R
are, in general, integral operators, with kernels Q(r, ') and R(r, r’), which
include both diagonal and nondiagonal parts. For example,

Ofr, r/)=8(r—r’)Q1(r)+Q2(r—r’), (15.10)
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The diagonal part Q,(r) includes the potential of the electron cloud of the
magnetic atom and of its nucleus. Hence, Q,(r) is a potential set up by an
electrically neutral formation and is therefore a short-range one. The diagonal
part R, represents the spin—orbit interaction of the band electron in the field
of the nucleus and in the field of the electron cloud [see eq. (13.8)].

The nondiagonal parts Q, and R, are responsible for the exchange
interaction. The exchange interaction Q,, which is independent of spin orien-
tation, can be understood as being the interaction with the atomic states
occupied by two electrons with opposite spins. The exchange interaction with
spin-nonsaturated states is included in R,. The spin-orbit interaction in the
“exchange field” of the atom can also be included in R,, but it is usually
neglected.

Hamiltonian (15.9) is substantially simplified if the conduction electron
wavelength 27 /k is much longer than the dimension a* of the magnetic
atom. Then the matrix element of the operator O, calculated with the two
functions, {/(r) and ¢ (r), can be represented as follows:

J&rw(r) 04 (r) = 0(0) ¥(0), (15.11)
where the point r=0 is the center of the atom and Q is the number:

Q= fd3r/d3r'Q(r, r)

=fd3rQ1(r) +/d3rfd3r’Q2(r, r). (15.12)

An approximation of the type of eq. (15.11) for the matrix elements of the
operators Q) and R corresponds to the Hamiltonian

H=(Q+Rs)s(r), (15.13)
in which Q and R are no longer operators; they are a number and a vector,
respectively.

The vector R, as follows from the aforesaid, is related to the state of the
inner unfilled d- or f-shell. In a free atom the state of this shell is characterized
by the orbital angular momentum L, spin angular momentum S and the total
angular momentum J = L + S. The d-shell electrons of a magnetic atom in a
crystal are usually in a strong crystalline field due to the surrounding atoms.
This field impedes free rotation of the angular momentum L, so that it is
“frozen”, in effect, to the value L = 0. In this case the vector R is directed
along S, so that the spin part of Hamiltonian (15.13) is of the form ASs8(r),
where 4 is a certain constant that characterizes the exchange interaction of the
band electron with one unpaired electron of the inner shell. Such an interac-
tion is said to be the exchange interaction of a conduction-electron spin with
the spin of localized electrons. The crystalline field is of no importance for the
f-shell electrons and, strictly speaking, L # 0. It is natural to replace in this
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case the vector § in the exchange Hamiltonian by its projection onto J, i.e. by
(g —1)J, where g is the g-factor of the f-shell. As a matter of fact, when
L = 0 (the magnetic moment of the f-shell is purely of the spin type), g =2,
and (g — 1)J is simply equal to §. When .§ = 0 (the magnetic moment of the
shell is purely of the orbital type), g =1, and the exchange interaction, which
depends upon spin, vanishes, as it should.

Sometimes, to take the finite dimensions of the magnetic atom into account,
the interaction is assumed in the form

F(r)Ss, (15.14)
where _#(r) is the so-called exchange integral. Note, however, that the repre-
sentation given by eq. (15.14) is a model representation and cannot be
obtained from eq. (15.9) by any step-by-step procedure whatsoever.

The magnitude of the exchange integral is of the order of the atomic energy
of the inner shell with radius a*, i.e.

I~y  A~eg(a*)’, (15.15)

where ¢, is an energy of the order of e*/a*.
The amplitude of the scattering k — k’, corresponding to perturbation
(15.9), can be written in the form

feron=Awr+ Byys. (15.16)

In the Born approximation

___m 3. a—ik'r /) aikr
Ak Py fd re Qe (15.17)
m 3, a—ik'r fp aikr
Y= — R . 1
B, Zthfd re e (15.18)

The simplification of Hamiltonian (15.9), associated with the large conduc-
tion-electron wavelength, in terms of the scattering amplitude f, involves its
expansion for small k and k’. A Hamiltonian in the form of eq. (15.13)
corresponds to the fact that 4,,, and B, are considered to be independent of
k and k’. The exchange interaction, when written in the form of eq. (15.14),
corresponds to B,,,, which depends only on ¢ =k’ — k.

15.2. Scattering by a spin lattice

When the magnetic atoms are the host atoms and are arranged in space in an
ordered fashion, the only random element leading to scattering is the random
orientation of the spins of the various atoms. Therefore, conduction electron
scattering is determined by the spin part of perturbation (15.9):

H=) #(r—a)S,s. (15.19)
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Here a is a vector of the lattice at whose sites the magnetic atoms (taken, for
simplicity, to be identical) are located. For the sake of clarity, the spins S, are
assumed to be classical quantities. Owing to the interaction with a thermal
bath, for example with phonons. each spin §, fluctuates with time and is a
random stationary function S,(z) of time. If the spin lattice is disordered
(paramagnetic), the average over time is (S,) = 0. But if the lattice is ordered,
then (S,) # 0; in ferromagnetic ordering this average (S,) = (S is the same
for all lattice sites a.

For a ferromagnetically ordered lattice, perturbation (15.19) includes the
nonfluctuating component

(H)=2F(r—a)(S)s, (15.20)

which is periodic in space. This component should be included in the Hamilto-
nian that determines the band structure. It leads to band splitting with respect
to the conduction-electron spin orientation relative to (§). The cause of the
scattering is only the fluctuating part of perturbation (15.19) (Kasuya 1956, de
Gennes and Friedel 1958), namely

8= #(r—a)ss,s, (15.21)

a

where the spin fluctuation of a magnetic atom is

38,=8,~(S). (15.22)

15.2.1. Scattering probability

Let us calculate the probability of the scattering ok — o’k’, due to the
perturbation given by eq. (15.21). As the wave functions of the band electron
we take (neglecting the spin-orbit interaction in band formation, see sect. 1.1)
ikr

1
——u,(r)e* o), (15.23)

1372
where u, is the Bloch factor and |o) is a spinor corresponding to the
orientation o of the electron spin. If the spin lattice is paramagnetic, states
(15.23) with different o pertain to the same energy ¢, and the quantization
axis of the conduction-electron spin is arbitrary. For a ferromagnetic lattice,
the quantization axis z is determined by the direction of the “average
magnetization” (&), and states with different spin orientations are split by
perturbation (15.20), i.e.

Ea = & = NF ((S,)- (15.24)

Here ¢, is the electron band without taking perturbation (15.20) into account,
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and N is the number of magnetic atoms per unit volume (with one magnetic

atom per unit cell, N =a;?),

Fiw= [ Eriur)iie(r), (15.25)

with the plus sign in eq. (15.24) referring to the spin orientation ¢ = 1 and the
minus referring to the orientation ¢ = 1.

The scattering matrix element calculated with functions (15.23) can be
brought, making use of the periodicity of the Bloch factors, to the form

1 )
Ma/k’,ak = Ejk’k«o" Is! U>Zei}qa 8Sa, (]526)
where
Fix =/ dre iy (r) u,(r) #(r)
oc

=7 > (15.27)

where ¢ = k’ — k. In order to calculate the scattering probability by means of
eq. (2.109), we determine the correlator of such matrix elements:

/ 1 2, , ,
(M ok (0) A/[o’k’,ak(t)> = zg!dgk,k’ RCAFAT)S (o’ [s;lo)

X T (8s;(0)855(1)).  (15.28)

aa

Here i and j are the Cartesian indices x, y and z. Included in the expression
obtained above is the time correlator of the spins at the various lattice sites. By
virtue of translational symmetry, the correlator depends only on the difference
a — a’. Making use of eq. (2.110) we have

11 .
Wk an = N Few (o” Is;1o)* (o’ |5, 0)(8S8S7),,,.

g=k'—k, ho=¢,. —¢,, (15.29)
where
(857 857y, = f°° dr e Y e~199¢85:(0) 85/(1)). (15.30)
w0 -
After introducing the explicit matrix elements of the conduction-electron spin,
the final results obtained are (Haas 1968):

Wikorw =W o o= By (8588, (15.31)
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for the probability of scattering without spin-flip, and
Wik =Wiio i =Bi i (8S88), (15.32)

for the probability of scattering with spin-flip. For the sake of brevity, we have
used the notation

1 1
By =—N-—
' L 4n?
and have introduced the Fourier components of the correlators for the
longitudinal and transverse components of the atomic spin (with respect to the
quantization axis of the band electron spin):

(8S8SHI = (85°857), (15.34)
(8S8S)t =(8S78S")=(8S78S), (15.35)
where 85 * =85~ 4 i8S”, and the indices gw have been omitted for the sake of
brevity.
For the case when band splitting with respect to spin is absent or can be
neglected, it proves beneficial to deal with a scattering probability that has

been averaged over the initial orientations o and summed over the final
orientations ¢’. Thus

=1
Wk—»k'_ 2 Z VV;kaa’k’

=B, o ((88)™,. (15.36)

If it is necessary to take into account quantum effects that are associated with
the noncommutativity of the various atomic spin components, the averages
appearing in the definition of the transverse correlator in eq. (15.35) are no
longer equal. Then, instead of eq. (15.32), we have

Wk L= Bk,k’<8S_ 8s+>qw’

Wik i =Bia(8S7 857, (15.37)

2
|/k,k’ ‘ (15.33)

i.e. the probability of a spin-flip transition depends upon the initial projection
of the band electron spin along the direction of {S).

Equations (15.31) and (15.37) are highly general and describe electron
scattering in the Born approximation by a spin lattice in an arbitrary state.
This state is formed both by the interaction of the spins with one another and
by their interaction with a thermal bath (phonons). The equations are also
valid in the case when the system is placed in an external magnetic field H
(provided this field does not lead to quantization of orbital motion of the band
electron; see sect. 14.1). But the calculation of spin correlators is an extremely
complex problem of magnetism theory; its complete solution is as yet un-
known. Therefore, the following discussion concerns various states of the spin
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lattice for which it is possible to find some approximate equations for the spin
correlators.

Recall that the Fourier component of the spin correlator given by eq.
(15.30) is related to the magnetic susceptibility x of the spin lattice, with the
susceptibility being the reaction to an external magnetic field with frequency w
and period 27 /g. This susceptibility is

2
i1=§’ﬁ.

XL, (857887, (15.38)

This equation includes the Bohr magneton p; and the g-factor of the atomic
spin. The susceptibility x is given per magnetic atom. Sometimes relation
(15.38) enables experimental data on conductivity to be tied in with the results
of susceptibility measurements.

15.2.2. The paramagnetic region — T > T,

In the paramagnetic region (at sufficiently high temperatures) the spins at the
various lattice sites can be assumed to be noninteracting, for which reason
they do not correlate, i.c.

(85,(0) 85]..(1)) = 8,,(85'(0) 857(1)). (15.39)

in which the index a is omitted in the correlator because the correlator is the
same for all the sites. Then, from eq. (15.30), we have

(85887Y,, = (8S'8S7),

=/ © dr e 857(0) 857(1)). (15.40)

The dependence of a one-site correlator as given by eq. (15.39) on time is
determined by the forces that make the spin rotate: the external magnetic field
H and the interaction with lattice vibrations. If only the field H is taken into
account, one-site correlators are readily calculated:

(85785%),, =278 (w) ((857)%),
(88 8S%), =278(w—w,)(8S 857),
(887 887y, =278(w+w,) (857857 ), (15.41)

Here hw, = gugH is the Zeeman splitting of the atomic spin in the field H,
and the angular brackets with no indices denote one-site single-time corre-
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lators (both quantities being taken at r=0), known from elementary mag-
netism theory:
((887)"y = S(S +1) + (87 coranh 48— (S7)?,
(88 F 85 +) = — (S (cotanh L £ F i), (15.42)
(§%y = —SBg(B), (§Hy="8"=0.
Here B is the Brillouin function
28+1

28 +1 4 1 1
B.(B) = 55 wotanh(\ 5% —;5”! - 5§cotanh(§,8), (15.43)

where B=gu H/T.

Electron scattering without spin-flip is elastic because the projection S° of
the atomic spin and its Zeeman energy are conserved. Spin-flip scattering is
accompanied by an energy transfer equal to the Zeeman splitting gu, H.

At H=0 all electron scattering events are elastic, and the averaged
probability, eq. (15.36), as 1s readily evident from eqgs. (15.40) and (15.41), is

W, . w=2m8(w) B, ,-S(S+1). (15.44)

This probability is independent of temperature.

When the radius a* of the inner shell of the magnetic atom 1s much smaller
than the characteristic wavelength 2« /& of the band electron, we can replace
F(r) by A8(r) in calculating #, ,.. Then

| Fwe 1P =1 AP Tup (0) 1210, (0) . (15.45)

where the point r = 0 corresponds to the position of the magnetic atom. In this
approximation, scattering probability (15.44) is of a separable form on the
constant-energy surface, i.e. it takes the form

W, .=08(g—¢&.)aa,. (15.46)

The coefficients g, are even function of &, i.e. g, = a_,. This stems from the
properties of the Bloch functions

u_ (ry=uk(r), (15.47)

which follows from eq. (1.6). After making use, in addition, of eq. (1.7), it is
evident that in the approximation of a small radius of the magnetic atom, spin
scattering is randomizing in the sense of eq. (2.98). Valid for spin scattering in
calculating the current in a weak electric field is the m-approximation with the
scattering time

1
= W, _ .
7(k) % k—k

— LnNES(S + 1) | A1, 0) PO F g(e)- (15.48)
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Here g(¢) is the density of states, and the overbar denotes averaging over the
constant-energy surface in accordance with eq. (2.68).

The average |u|?>" for a metal can be taken at e=e¢p, including this
constant factor in the constant | 4 |2. In a semiconductor, in which k and e,
are always in a small region of the BZ close to k,, we can calculate |u, |2 at
k =k, (if k, is not a point of degeneracy, see sect. 1.1), and the average |7|7 ¢
at e =¢,, where k, and ¢, correspond to the bottom (or top) of the band. The
two Bloch factors are equal in this case and can be included in |4 |2; the
scattering is found to be isotropic.

15.2.3. The ferromagnetic region — T < T

In the ferromagnetic region, far from the transition point 7, the fluctuations
of the atomic spins are small, and electron scattering by spin disorder is weak.
This scattering can be described as emission and absorption of magnons (see,
e.g., Korenblit and Lazarenko 1971). In scattering by magnons, the correlators
appearing in probability (15.37) of spin-flip scattering are the following:

(85~ 85", =258(w—w,) N,
(8S* 857, =288(w+aw,) (N, +1). (15.49)

Here A, is the energy of a magnon having the wavevector ¢, and N, are the
equilibrium magnon occupation numbers, which are given by the same Planck
function, eq. (3.11), as for phonons. After substituting eq. (15.49) into eq.
(15.37), we obtain an expression for the transition probability that is of the
same structure as eq. (3.8) for phonon scattering. Since the magnon has an
angular momentum projection onto the direction of (S) equal to —1, it is
clear that the scattering of a band electron by magnons without spin-flip is
impossible.

All that was stated in sect. 3.1 in connection with the electron—phonon
interaction, about spontaneous and induced scattering, is valid for magnon
scattering. In particular, spontaneous emission of magnons by a hot electron is
possible at a spin lattice temperature 7= 0. This process can be treated as
electron scattering by zero-point vibrations of the system of atomic spins.

Considered above was the simplest situation: one spin in a primitive cell
and ferromagnetic ordering. In the case of cells containing several spins, a
contribution to scattering is made by correlators of the types given by eq.
(15.34) and (15.35) for spins of various kinds, as well as by crossed correlators.
Correspondingly, several magnon branches appear. Scattering probability
calculations become more cumbersome, but they can be carried out by the
same methods.

Frequently applied, for the sake of simplicity, is an isotropic model of
scattering by magnons, devised by analogy with the isotropic model of
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scattering by phonons described in ch. 4. Two types of magnon dispersion
laws are considered:

hwq=A+h2q2/2m*, (15.50)
ha, = A+ hs*q. (15.51)

The quadratic dispersion law is typical for ferromagnetic materials, the linear
law, for antiferromagnetic materials. The gap A # 0 if there is intrinsic
anisotropy or anisotropy due to an external magnetic field. From experimental
data it is known that in the majority of cases the energy scale of magnons is
the same as for phonons.The description of scattering as emission and absorp-
tion of magnons is of advantage only at low temperatures. It is clear, by
analogy with phonons, that only long-wavelength magnons with ¢ < b, are of
importance under these conditions. Matrix elements for the emission and
absorption of long-wavelength magnons (averaged over the electron spin
orientations) can be written in the form of eq. (4.1). Here the dependence of
B(g) on g differs for magnons of various types:

B(gq) =B, for ferromagnons, (15.52)
B(q) = B,q for antiferromagnons. (15.53)

Approximation (15.52) is confirmed by eq. (15.33): as g — 0, the factor B, ,.
remains finite. In antiferromagnetic substances, the scattering matrix element
vanishes as ¢ — 0 because the perturbations produced by two opposite spins in
a primitive cell are mutually cancelled.

15.2.4. The critical region — T =1

It proves most complex to describe scattering near the transition point 7. If
we approach T, from the paramagnetic region, the interaction between sep-
arate atomic spins becomes of importance, whereas if we approach T, from the
ferromagnetic region, the interaction between spin waves becomes relevant.
A discussion of the degree of reliability of various approximations for the
spin correlator near the transition point is outside the scope of the present
book. But all theoretical considerations indicate that as 7 — T, spin fluctua-
tions increase drastically; this concerns long-wavelength and low-frequency
fluctuations with ¢ <7/d and w </ ¢/h. Here d is the average distance
between spins and _# is the energy of their interaction (of the order of 7). If
small momentum and energy transfers are of importance in electron scatter-
ing, then scattering in the vicinity of the critical point greatly increases. But if
small transfers turn out to disagree with the conservation laws (see sect. 2.6),
no increase in scattering occurs near 7,. This is illustrated by fig. 15.1, which
shows the dependence of the scattering rate on the temperature for an electron
with wavevector k& for various values of kd, where 4 is the spin lattice
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Fig. 15.1. Temperature dependence of the rate of elastic scattering by a spin lattice; 74 is the
spin-disorder scattering time, r is determined by eq. (15.48); kd values are shown near the curves
(de Gennes and Friedel 1958).

constant. The scattering is assumed to be elastic, and the correlation function
1s calculated according to molecular field theory.

The resistivity in a Fermi gas is determined by 7 at k = k4. It is evident,
therefore, from fig. 15.1 that only in the case when the magnetic atoms are
sufficiently densely arranged, kd <=, does the increase in fluctuations in the
vicinity of 7, manifest itself as a maximum in the resistivity. The wavevector k
is small in semiconductors and therefore a maximum in the resistivity is
usually exhibited [see, for example, the relation p(7") for EuO (Shapira et al.
1973)].

15.2.5. Electrical resistivity of rare-earth metals

A brief review of experimental data on the electrical resistivity of rare-earth
metals is given below to illustrate the theoretical formulas of the preceding
subsection. The temperature dependences of the electrical resistivity of a group
of heavy rare-earth metals, from gadolinium through thulium, are given in fig.
15.2. All of these elements have hexagonal close-packed lattices with values of
the lattice constants very close to each other, an equal number of valence
electrons and, consequently, with very similar FS. The main difference be-
tween these elements is the filling of the 4f-shell. Consequently, they have
different magnetic ordering temperatures 7., which are shown, in the figure,
near the curves. The ordered structures themselves also differ from one
another. Directly below T, in most of these elements various types of periodic
magnetic structures occur. Their spacing is, in general, incommensurate with
the lattice constant and depends upon temperature. As a result, not only
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Fig. 15.2. Temperature dependences of the electrical resistivity of rare-carth metals (Legvold
1972).

scattering varies with temperature, but also the electron band structure itself.
This considerably complicates the interpretation of experimental data. Hence
we shall not discuss the region 7'~ T, here. At T < T, the magnetic structures
are stabilized.

Let us begin with the paramagnetic region 7> T, (Legvold 1972). In the
relaxation-time approximation, the electrical resistivity is the sum of three
resistivities: the residual resistivity p,, the spin-disorder resistivity p 4, which,
according to eq. (15.48), is independent of 7, and the phonon resistivity [
which varies linearly with temperature [see eq. (4.66); we can put Pon & T
because the lowest magnetic transition temperature, that of thulium, is,
nevertheless, not very low: about 60K, i.e. comparable to the Debye tempera-
ture T7,]. After measuring p, and extrapolating the linear, high-temperature
dependence p — p, on T to zero temperature, we obtain the value of p . This
quantity is indicated on the ordinate axis by arrows for all seven metals.
Similar measurements were also carried out with the electric field in the
direction E||c.

By making use of eq. (7.4), the measured values of p 4 can be converted to
1/7. The latter should be compared to the result obtained by eq. (15.48), in
which, however, the factor S(S + 1) should be replaced by (g — 1)%/(J + 1), in
accordance with what was said in sect. 15.1 about the meaning of the vector R
in eq. (15.13).
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Summarizing, the expression for py includes, in addition to the factor
(g— 1)2J(J + 1), whose presence is precisely what is subject to experimental
verification, the integral

I.= '/FSUE dsS,

from eq. (7.4) (the index E denotes the projection on the direction of the
electric field), as well as several factors from eq. (15.48). Since the band
structure of all the metals being discussed is practically the same, it follows
that the variation of both the quantity 4 and the Bloch factors in going from
one metal to another should be small. This, as we shall see in the following, is
experimentally confirmed. The changes in the quantity I, can be taken into
account as follows. A measurement of the FS indicates that its changes from
one element to another consist mainly in the change in the diameter of its
“trunk”, which is oriented along the ¢ axis and provides for openness of the
FS in this direction. Such a change in the FS should mainly affect the integral
I when E 1 c. This consideration can be directly compared with experimental
data because the parameter I, appears, not only in the spin disorder resistiv-
ity, but in the phonon resistivity as well. The latter is characterized by the
coefficient of the linear term in p in the temperature region 7> T,. As is
evident from the curves in fig. 15.3, the quantity dp/d7T really does vary
comparatively little when E||c along the series from Gd through Tm.

The quantity p,, depends not only on I but on other factors as well, for
instance, the changes in the phonon spectrum. In the simplest case, for the
isotropic model, the phonon spectrum enters into the expression for 1/7
through the sound velocity s [see eq. (4.66)], but in the anisotropic model, its
influence is not so simply taken into consideration. Legvold (1972) assumed
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Fig. 15.4. Paramagnetic resistivity of rare-earth metals multiplied by a factor taking into account
the area of the FS as a function of the quantity (g —1)27(J + 1) (Legvold 1972).

that the slight variation in dp/dT along the series from Gd through Tm for
E||c occurs only due to the changes in the phonon spectrum. Then the much
larger variations of dp/dT in the basal plane should be attributed to changes
in the parameter I, and should be taken into account in the analysis of p,.
Hence, the values of p 4, taken from fig. 15.2, are multiplied in fig. 15.4 by the
ratio (dp/dT), /(dp/dT) . As is evident from the curve, the quantity p,
corrected in this way, turns out to be proportional to (g — 1)2J(.J + 1), which
was to be proved. This indirectly confirmed the previously proposed natural
assumption that all the other factors in eq. (15.48) do not vary along the series
of elements from Gd through Tm.

The possibilities of experimental investigations in the scattering of electrons
by magnons are usually drastically restricted due to the masking effect of
phonon scattering. This may be illustrated by measurements of the electrical
resistivity of Tb below 50K made by Andersen and Smith (1979). In this
region, Tb has an anisotropic ferromagnetic structure, enabling eq. (15.52) to
be employed as the interaction matrix element. The magnon spectrum has the
form of eq. (15.50), where the quantities A and m* are known from neutron
measurements (A = 19K). After substituting B(g) and w(q) into eq. (4.59),
we can calculate the temperature dependence of magnon scattering;:

1 O[{Texp(~A/T), for T< 4, (15.54)
(Fi T2, for T> A. (15.55)

But the proportionality factor is inadequately known. Even if the value of p,
measured for Tb is used (see fig. 15.5) to eliminate in Prmae the uncertainty
associated with the intensity of the magnetic interaction, there still remains a
factor, determined by the electron band structure and difficult to calculate (in
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Fig. 15.5. Calculated and measured temperature dependence of the electrical resistivity of Tb. The

solid and open circles represent measurcments with the current perpendicular to and along the

c-axis, respectively, with the residual resistivities pg = 6.78 uf2 cm and ol =614 pQ cm having

been subtracted. The solid curve is the sum of the electron-magnon p,,,, and electron-phonon

Pph Tesistivities, whereas the dashed curve is the calculated electron—magnon resistivity pp,,, alone.
The inset is a low-temperature blow-up of the same results (Andersen and Smith 1979).

the isotropic model it is equal to kg/m?). There is also arbitrariness in
describing phonon scattering by means of egs. (7.26) and (4.63), because 7
includes &, the sound velocity s and the constant =. All of these parameters,
however, change the scale of only the ordinates of the 1/7,,, and 1/7,,, curves.

It is from this point of view that the experimental results from fig. 15.5 are
to be appraised. By means of a reasonable choice of the parameters, it proved
possible to achieve excellent agreement between theory and the experimental
data. But no one has succeeded as yet in directly confirming the existence of
the dependence 1 /7 & exp(—A4/T).

15.3. Magnetic impurities

Let us consider a semiconductor having a certain amount of magnetic atoms
as impurities. An example is Mn, substituting for Cd in the semiconductor
CdTe and producing the alloy Cd, _ Mn Te. Both Mn and Cd have the same
number of valence s-electrons. Therefore, the most important result of the
replacement of Cd by Mn is the occurrence of a half-filled 3d® shell with
L=0and S=5/2in place of the filled 4d'° shell with zero angular momenta
S and L. Alloys of this type are called semimagnetic semiconductors [see
references given by Dobrovolska et al. (1981)].
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In scattering by magnetic impurities in a nonmagnetic crystal, not only the
spin orientations of the impurities are random, but their arrangement as well.
Hence the perturbation should be written in the form

H(r, 1) =U(r)+M(r, 1)s. (15.56)

Here

U(ry=Yv(r-R,) (15.57)

is a random potential of the impurities; v(r) is the effective potential of a
single impurity, replacing the operator Q in Hamiltonian (15.9), and R are
the positions of the impurities. Then

M(r,t)=3) #(r—R,)S,(1) (15.58)

is a random “magnetization” (expressed in energy units), set up by the
impurities. This magnetization fluctuates with time due to the fluctuations in
the directions of the spins of the impurities.

Let us make use of eq. (2.119) to calculate the scattering probability. Here,
as mentioned in sect. 2.6, the average () need not be eliminated. In
considering the transition ok — ¢’k’, J#(r, t) in eq. (2.119) is to be under-
stood as the matrix element J¢,, (r, 1) of perturbation (15.56) calculated with
the spin functions of a conduction electron. We choose the quantization axis z
of electron spin along the average magnetization (M(r, 1)) = (M ). Then, for
scattering without spin-flip,

Hoo(r. 1) =U(r)+ M(r, t){o]s,|0)
= U(r) + $M.(r. 1), (15.59)

where the plus corresponds to o= 1 and the minus to ¢ = |. For spin-flip
scattering

K, (r,1)=M(r, t){c"|s|o) (o’ #0), (15.60)

which includes only the transverse (x, y) components of the vectors M and s.
Spin-flip scattering of an electron is feasible only as the result of fluctua-
tions in magnetization, and, by complete analogy with eq. (15.37), we obtain

1 1

er—wk’:zzcl_hz MVM+>qu
11 oA
WM_,M,——EEE M™M o (15.61)

In general this scattering is inelastic.
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Scattering without spin-flip is determined by the correlator
U(r) £ 3M. (v, OJ[UG) £ 3M.(r', )]
= U(r) U(r)y + $[QU(r) M(r, 1)) + (M, (r, 1) U(r))]
+ 3 (M (r, 1) M (r, t')). (15.62)

Interference terms can first be averaged over time, after which they are
independent of time. Therefore, not only is the scattering due to fluctuations
in the potential elastic, but that due to interference of these fluctuations with
those of the magnetization is also elastic. This part of the scattering has the
probability
1 1

Wi = 75 4—h32w5(w)[<UU>q + (UMY, + (MUY,)|.  (15.63)
which depends upon the spin orientation; the plus refers to o= 1, and the
minus to o = |. In calculating the averaged probability given by eq. (15.36),
the interference term cancels out. Magnetization fluctuations make their
contribution to scattering without spin-flip:

1 1

I/I/O/I:‘*Uk’ - 2_3 m MzMz>qw’

(15.64)
which is independent of spin orientation. In general, this scattering is inelastic.

In spin-flip scattering the electron can change its energy both at the expense
of the spin energy of the atoms in the external magnetic field and of the
energy of their interaction (of the dipole—dipole type). Only the second
possibility remains in scattering without spin-flip.

At sufficiently low densities, the impurities interact only very weakly and
almost always form a paramagnetic system. The spins at the various lattice
sites do not correlate. Therefore, in calculating the correlators, approximation
(2.125) of randomly arranged potentials can be applied, generalizing this
relationship for the case of quantities that depend, not only on r, but on ¢ as
well.

Thus, for example,

(M(0,0) M/(r, 1)) =Nf7°° dv' [&r g (r) (1)

XE(r+r)S/(t"+1). (15.65)

Since the spin components are random functions of time, the integral with
respect to ¢* can be dealt with as averaging, and we can write

(M(0,0) M/(r, 1)) = N(S'(0) Sj(t)>fd3r’j(r’) F(r+r). (15.66)
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It follows that
(MIMP),, = N(S'ST) | £, . (15.67)

where 7 is the Fourier transform of #(r), determined according to eq.
(9.20). In an analogous manner

(UM,), + (MU ), =27N8(w) (S.) (4, L% + uX7 ). (15.68)

The one-site averages appearing here can be calculated by making use of eq.
(15.42). [Note that in this case the scattering given by eq. (15.64) becomes
elastic.] This solves the problem of calculating the scattering probability in a
paramagnetic system of impurity spins.

The scattering is elastic for H = 0, the interference term is absent, and the
spin part of the scattering is the same as for scattering by a paramagnetic spin
lattice. But in strong fields H the spatial disordering of the spins has an effect.
The probability of elastic scattering (15.31) without spin-flip tends to zero for
a lattice of noninteracting spins as /{ — oc. This becomes evident when egs.
(15.41) and (15.42) are used. Only the probability of spin-flip scattering,
accompanied by the transfer of the energy hw=guyH > T, remains finite;
hence a thermal electron is actually not scattered. Meanwhile, in the same
situation, but with a disordered spin arrangement, in addition to the strongly
inelastic spin-flip scattering given by eq. (15.61), elastic scattering (15.64)
without spin-flip also remains. This can be confirmed with the aid of eq.
(15.67).

The scattering probability was calculated above for a free electron; the
possibility of Landau quantization in an external field H, if there is one, and
the actual band structure were not taken into consideration.

Since the effective mass of electrons in a semiconductor is appreciably
smaller than the mass of a free electron, the cyclotron splitting 48 for the
band electron is greater than the Zeeman splitting gu,H for an impurity
atom. Hence, when the field H is switched on, Landau quantization for
equilibrium electrons with e ~ T begins earlier than the alignment of the
impurity spins. But this means that in fields H, before Landau quantization
begins, scattering by spin impurities corresponds to small guyH/T values,
being, thereby, quasi-elastic.

As to the effect of actual band structure, it is not at all simple to take it into
account within the framework of the general correlator method, even for
semiconductors. The reason is that perturbation (15.56) is not smooth, and the
effective-mass method cannot be applied. The band structure can be taken
into account in a comparatively simple way for a random distribution of the
scattering centers, when they scatter independently. It is obvious that in this
case £ and y,, which are the matrix elements with plane waves of the k — k’
transition, should be replaced by matrix elements (15.27) and by v, ., defined
in a similar manner. The expansion of the Bloch factors u, in terms of the
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basis functions at k =k, [see eq. (1.45)] is known for semiconductors. This
enables integrals of the type of 7, ,. to be reduced to several constants,
which are integrals calculated with the basis functions. Thus, for instance, only
two constants, (s| £ |s) and {p|_Z | p), remain in the Kane model (see sect.
1.3.4). In many cases these constants can be found by independent magneto-
optical experiments because they determine the change of the band structure
given by eq. (15.24) in a magnetic field, in which {S.) becomes nonzero.

The momentum relaxation time in the Kane model for the conduction band
in semiconductors of the InSb and HgTe types was calculated by Kossut
(1975). Though semimagnetic semiconductors are being quite actively investi-
gated, to date there are evidently no experiments in which spin scattering is
clearly manifested. Probably it is masked by cruder effects: the change of the
electron band structure owing to the exchange interaction, and the dependence
of the g-factor on the field H and on the temperature 7.

The theory of scattering by magnetic impurities in metals is being devised
in a completely analogous manner (Fischer 1983). Many experimental data are
available for metals, but, in this case, comparison with the theory discussed
above is complicated by the Kondo effect. As has already been shown in sect.
2.6, the application of the method of correlators is equivalent to the first-order
of the Born approximation. But, as was demonstrated by Kondo (1964), an
important correction appears to the scattering probability for a degenerate
system of conduction electrons in second-order Born approximation. As 7 — 0
this correction increases as In Z/7. This indicates that the Born approxima-
tion is inapplicable and that it is necessary, in principle, to devise a more
complex theory. These problems, however, are outside the scope of the
visualizable physical considerations on which the present book is based.

At high impurity concentrations, there is a probability of forming clusters
(pairs, triplets, etc.) of magnetic atoms located in adjacent unit cells. The spins
of such impurities strongly interact, combining into the total spin of the
cluster. Therefore, a cluster scatters differently from isolated impurities. The
probability of scattering by a pair of magnetic atoms has been calculated by
van Peski-Tinbergen and Dekker (1963) and by Matho and Beal-Monod
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the electron scattering k — k’ is asymmetrical with respect to the reflection of
the vector k' from a plane passing through k& and A. In other words

Wik F Wi (15.69)

where k' is the vector k' reflected from the plane mentioned above. Scattering
with this probability is said to be “skew” (Fert 1973).

For the simplest case the probability of elastic skew scattering can be
represented as follows:

Wieow=I[w(e 0)+w(e, 8)h(nxn)]8(e,—¢), (15.70)

where 6 is the scattering angle, ¢ is the energy of the electron being scattered,
and »# and n’ are unit vectors along k and k’.

The principle of detailed balance, eq. (2.11), is not satisfied in such
scattering. This means that for the scattering of a spinless particle by a spinless
system, the skew transition probability can be obtained only in an approxima-
tion of a higher order than the Born approximation, and only in the case when
the scattering system has no center of symmetry (Smit 1958, Luttinger 1958).

15.4.1. Spin-aligned band electrons

We shall now discuss the elastic scattering of electrons, whose spins are
aligned along the z-axis, by a center having spherical symmetry, taking into
account the spin—orbit interaction in the field of the center. This corresponds
to Hamiltonian (15.9) with

Q=U(r), R=—i(h/2m*?)[vU(r) X V], (15.71)

where U(r) is the field of the center.

In order to conceive of the nature of the scattering symmetry, we shall first
discuss scattering in the (x, y)-plane, with the initial wavevector k along — x.
After applying the results of sect. 2.3, it can be readily shown that if k’ lies in
the (x, y)-plane, the matrix of the scattering amplitude is

f=A4(8)—2nB(8)s,, n=sign n). (15.72)
This matrix is diagonal and the spin orientation is conserved in scattering.
Therefore, the scalar scattering amplitude is

f=A(8)FnB(0), (15.73)

where the plus and minus correspond to electrons with spin up and with spin
down. The scattering cross section in the (x, y)-plane is of the form

o=|f>=0,Fn0,, oy=|A|*+|B|?>, o,=AB*+ BA*. (15.74)

When the vector k is reflected from the (x,z)-plane the sign of 7 is reversed
so that the electrons of each polarization are scattered asymmetrically with
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respect to this plane. If o, > 0, electrons 1 are scattered mainly to the left, and
electrons | mainly to the right. After averaging the cross section in eq. (15.74)
over the spin orientations, we find that the average cross section for scattering
in the (x, y)-plane is

G=w,0,+w, 0, =0, 1p0;, (15.75)

where w,  is the probability that the spin is either up or down, and
p;=w,—w  is the degree of spin orientation (13.69). Thus, if the electron
spins are polarized the average scattering cross section in the (x, y)-plane is
asymmetrical.

When k and k’ do not lie in the (x,y)-plane, spin-flip is possible in
scattering. In this case 6, ,,. is the sum over the final spin orientations and
the average over the initial spin orientations. After making use of the well-
known properties of the Pauli matrix, we can readily verify that

Op o =Tr{wff'}
=0,(0) +2(s)v,,.0,(0). (15.76)

Here the dagger denotes the Hermitian conjugate of the spin matrices, w is the
density spin matrix which, in our case, is

w, 0
W=l w | (15.77)
v, 1s the unit vector along k X k’, and the average value of the spin,
(s)="Tr{ws}, (15.78)

is directed, in our case, along z and equals (s,) = 3p,.

Thus, in the scattering of electrons with polarized spins, the spin-averaged
scattering probability is skewed in a way similar to eq. (15.70), with the
“degree of skewness” proportional to the degree of spin polarization.

Note that scattering asymmetry vanishes if ¢ is calculated in the Born
approximation. In this approximation, as is evident from egs. (15.17) and
(15.18), we have

Sooi =Fi i (15.79)

The angle 8 does not change when k and &’ are interchanged, but the sign of
the vector »,,. is reversed. Hence, in the Born approximation,

A*(8) = A(8),  B*(8)=—B(6), (15.80)

so that the asymmetric term in eq. (15.74) vanishes. Scattering also ceases to
be of the skew type when the spin-orbit interaction is neglected because, in
this case, B =0.
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15.4.2. Magnetic atoms with aligned spins

The scattering of a conduction electron by a magnetic impurity is determined
by a Hamiltonian of the type of eq. (15.9), in which Q and R are to be
understood to be the difference between the corresponding values for an
impurity atom and for an atom of the host metal. The scattering amplitude for
the k — k’ transition is of the form of eq. (15.16). If the electron wavelength is
large compared to the inner-shell radius of the impurity atom, i.e. if ka* <1,
the quantities 4,,,, and B,,., appearing in the corresponding equation, can be
expanded into a power series in terms of k and k’. For simplicity we assume
that the inner d- or f-shell is characterized only by the spin S, and that the
scattering center has spherical symmetry and a center of symmetry. There is
no difficulty, in this case, in constructing the required scalars for A4,,, and
vectors for B,,. from the components of the spin § and the wavevectors k and
k’. Since S is a pseudovector, the terms of the expansion with odd powers of
the wavevectors are forbidden by the center of symmetry. We limit the
expansion to terms of up to second order in k and k’. Then the possible
scalars for A4 are

1, k% kk', (kX Kk')S,... (15.81)

(the dotted line denotes invariants obtained by the interchange of k and k’).
The possible vectors for B are

S kXk', Sk*, S(kk'), k(Sk), k(Sk’), ... (15.82)

Only invariants that include § to a power not higher than the first are given
here. These are the only kind that exist when § = 1. If the spin of the impurity
is greater than j, invariants exist with higher powers of S, but we shall not
discuss them.

Under various conditions one of the various given invariants (or more
complex ones, with higher powers of k and §) may make a contribution to the
scattering asymmetry. As an example let us consider the scattering amplitude
in the form

f=a+2bSs+2cks, kx=kXxk' (15.83)

The first term results from the short-range potential of the impurity, the
second from the exchange interaction of the electron with the inner magnetic
shell, and the third term is due to the spin—orbit interaction of the electron in
the field of the impurity.

In order to investigate the scattering asymmetry, we first assume that the
impurity spins § and the electron spins s have no components transverse to
the specified z-axis. Then, for scattering in the (x, y)-plane, the matrix of the
scattering amplitude is

f=a+2bS.s.+2ck_s,. (15.84)
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No spin-flip occurs in such scattering, so that the scalar scattering amplitude
for 1 and | electrons is

f=a+bS tcx,. (15.85)
The corresponding cross sections are
o=|f1P=al*+ |b|’S*+ |c|*kZ + (ab* + ba*)S, + (ac* + ca* )k,
+(be* + cb*)S k. (15.86)

The scattering asymmetry is determined by the last two terms. The first of
these terms provides for asymmetry that is opposite for electrons with differ-
ent spin orientations, and the second term, for asymmetry that is the same for
different spin orientations. These terms appear as a result of the interference
of spin—orbit scattering with potential and exchange scattering. The fourth
term in eq. (15.86), arising from the interference of potential scattering with
exchange scattering, provides for symmetric scattering that differs for 1 and |
electrons. Next we average cross section (15.86) over the orientations of the
electron spins and the projections of the impurity spins. Then we obtain

6=o0,+0", (15.87)
in which the symmetrical part of the cross section is

o,=|al*+ |b|XSH) + |c|*k2+ p(S,Y(ab* + ba*), (15.88)
and the asymmetrical part is

o' = [p,(ac* + ca*) + S, (bc* + cb*)] k.. (15.89)

The contribution to ¢’, proportional to p, is of the same nature as ¢, in eqgs.
(15.74). A new contribution is that due to the polarization of the impurity
spins. This contribution is independent of the degree of band electron spin
polarization.

If we make use of relation (15.76) between 6 and f, we shall encounter no
difficulty in calculating the cross section & even for an arbitrary direction of k
and k’, rejecting, in addition, the artificial condition that the spins have no
transverse components. Thus, for unpolarized band electrons,

G=[1al+|b1S(S+1) + ¢ %3] + (be* + cb*)(S . (15.90)

In the Born approximation it follows from eq. (15.79) that the constants a and
b are real, whereas ¢ is purely imaginary, so that in this case as well, the
scattering can be of the skew type only beyond the Born approximation.

15.4.3. Extraordinary Hall effect

In skew scattering, an electric field E, perpendicular to k, leads to a transverse
current event for an isotropic band. This current can be readily calculated if
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we assume that in eq. (15.70) the asymmetric part of the scattering is small
compared to the symmetric part. When w =0 the nonequilibrium part of the
distribution function [see eq. (7.1)] is

8f, = (—%ff)eEvaI(s), (15.91)

where 7,(e) is the transport time corresponding to the term w. Taking w into
account as a small perturbation leads to an additional term in the nonequi-
librium part of the distribution function, namely

l 7 (&) (__%
NS

where 7, (e) is the “spreading time” given by eq. (2.70), corresponding to the
term w. Note that w, in contrast to w, is not necessarily positive; hence 7 N
can have either sign. A positive w corresponds to predominant scattering “to
the left”: if h is along z and an electron (e < 0) is incident from the side of the
x-axis (Le. k is along —x), the electron is scattered mainly toward — y. In this
case the main current, associated with 8§ /.- 1s along +x, and the supplemen-
tary current, associated with 8f/, is along +y. We readily see that

%ﬁ’%((ﬁ»Eoo, o}i=£<< ¢ >> (15.93)

8/, = )(h X eE ) o7, (e), (15.92)

m 27,

The angular brackets denote averaging according to eq. (7.16). The superscript
E of o, indicates that this is an extraordinary transverse conductivity, arising
from the fact that the scattering has a skew component. In comparison to the
longitudinal conductivity, the transverse conductivity has the additional small
factor 7, /7, ~ w/w. The sign of this transverse conductivity depends upon the
sign of the scattering asymmetry. Predominant electron scattering to the left
leads to the same effect as a magnetic field H along the direction of A. If the
magnetic field is weak, i.e. 7, <1, its contribution to ¢, and that of skew
scattering are additive, with the former equal to

n_ ne’ 2
0y = S KT)), (15.94)
so that the total transverse conductivity is
o,,=a;+o/l. (15.95)
But since
of /ot~ (07,) ", (15.96)

the extraordinary Hall effect can be greater than the ordinary effect,
notwithstanding the small value of w/w.
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It follows from the aforesaid that skew scattering should lead to the
appearance of the extraordinary Hall effect, which is added to the ordinary
Hall effect. The latter arises in crossed fields H L E as a result of carrier drift
across both fields. From an experimental point of view, the problem of
observing the extraordinary Hall effect consists in separating the contribution
of 0" from the measured Hall coefficient

R=p, /H~0o, /oiH. (15.97)

Let us consider, for example, the alloys of the noble metals with the rare
earths. At 1at% of the rare earth, the residual resistivity of such an alloy is of
the order of 10 u&2 cm. Therefore, the rate of electron scattering in the alloy by
rare-earth atoms, which are magnetic impurities, is about 101*-10%s~ L. In a
10kOe field, the value of 27, is approximately 1072, i.e. 271, <1, so that egs.

sl

2.25~
*AgGdh= 376u0cm

vAgDy p= 707uQ cm ]

2Ag Dy £=220u0 cm

] |
0 0.25 0.50 075 1

Fig. 15.6. Temperature dependence of the limiting Hall coefficient extrapolated to zero-field for
AgGd and AgDy alloys (Fert and Friederich 1976).
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(15.93)—(15.96) are applicable. The phonon scattering in these alloys is weaker
than the impurity scattering right up to room temperature. Therefore, the
ordinary Hall coefficient R is independent of temperature. This, exactly, is
what enables the contribution of skew scattering to be separated out because it
depends upon temperature (Fert and Friederich 1976). In fact, the skew
scattering cross section ¢’, according to eq. (15.90), is proportional to (S), i.e.
to the average value of the magnetization. If the magnetic field is sufficiently
weak, the magnetization satisfies Curie’s law, i.e. |{S)| o« H/T and o, o 1/T.
Shown in fig. 15.6 is the dependence, in silver-base alloys, of the limiting value
of the Hall coefficient, i.e. its value as H — 0, on the reciprocal T~! of the
temperature. The straight line obtained, intercepts the quantity R on the
ordinate axis, and the quantity Rf=R — R is the contribution of skew
scattering. The different slopes of the lower two full lines in fig. 15.6 are due to
the different concentrations N of dysprosium. By using the proportionality of
the concentration N and the residual resistivity p,, we can see that Rf & N.
This proportionality is the natural consequence of the fact that the rate of
skew scattering is 1/7, o No’.

Finally, still another special feature of the extraordinary Hall effect, one
that lends itself to experimental verification, follows from eq. (15.90). Since
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Fig. 15.7. Extraordinary Hall resistivity p’, of an AuGd alloy versus the magnetic field at various
temperatures. The solid lines represent the Brillouin functions (15.43) with J=7/2 and g =2 for
T =6.2 and 2 K (Fert and Friederich 1976).
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the quantity [(.S )| tends to saturation as the field H is increased, and the rate
at which this occurs increases as T is lowered, the extraordinary Hall coeffi-
cient R should behave in the same way. Such behaviour of the quantity Pk, is
demonstrated in fig. 15.7. Shown in this graph along with the experimental
points are two Brillouin functions (15.43) for two temperatures, 7= 6.2 K and
2K, the functions corresponding to the magnetization curves for a system of
impurity atoms. The curves are normalized in such a way that they approach
the same limiting value in strong fields that the experimental curves do. Then
the coefficients of ¢’ in eq. (15.90) is determined from the normalization
constant. It is quite evident from the graphs in fig. 15.7 that

w/w~ok /o = pf /py<0.3x10 2,

which justifies the perturbation calculation of the nonequilibrium parts given
by egs. (15.91) and (15.92) of the distribution function.

15.5. Electron spin relaxation in exchange interaction with holes

Adjoining the problems discussed in the present chapter is the problem on
spin-flip of the electron in its interaction with holes. This process is described
by a Hamiltonian of the type of eq. (15.14) though, as is clear from its
derivation (Bir and Pikus 1974, §27), the meaning of the delta function in
Hamiltonian (15.98) is not the same as in eq. (15.13). This section deals with
the calculation of the spin-flip time 7,(k) for a conduction electron scattered
by an equilibrium distribution of heavy holes in a wide-gap semiconductor of
the GaAs type (Bir et al. 1975).

15.5.1. Rate of spin-flip

The exchange interaction of an electron and a hole in the isotropic approxima-
tion is described by the Hamiltonian

H=Co(r,—ry)(Js). (15.98)

Here the electron and hole are described in the effective mass approximation,
with r, and r, being their coordinates and s and J their angular momenta
(s =% and J = 3). These momenta are to be understood as matrices of (2 X 2)
and (4 X 4) order, operating in the space of the basis functions of the
corresponding band. Thus, the components J,, J and J, are matrices,
determined in eq. (1.50) and operating in the basis p;, of the hole band
(m= 43, + %), and the components s, s, and s, are Pauli matrices (to an
accuracy within a factor of 1), operating in the basis s, 2 of the conduction
band (m= + 1). The constant C in eq. (15.98) can, in principle, be de-
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termined experimentally from the value of the exchange splitting A between
the states of an exciton with K=1 and K =2, where K=J + s is the total
angular momentum of the exciton:

C=1iralA, (15.99)

where ay is the Bohr radius of the exciton.
The matrix element of the transition induced by perturbation (15.98) is to
be calculated with the following wave functions:

1 ipry
—erid (p)S, . (15.100)

\I,(rl’ r2)= L3

ikr

Here k and p are the wavevectors of the electron and hole, 4, and A, are
column vectors determining the wave functions of free particles in accordance
with the effective mass method (see sect. 1.2), and v, and v, are the velocities
of the electron and hole. The subindex ¢ = 1, | denotes the projection of the
electron spin onto a certain axis, and p is the projection of the hole angular
momentum onto p. The Sommerfeld factor S takes into account the long-range
nature of the Coulomb field, owing to which the wave function of the
unbound (but interacting!) electron-hole pair differs from the wave function
of two noninteracting particles. If the screening radius A is large, i.e. A > ay,
then

2\ —1/2
21 m”) , (15.101)

e 2 st - (2

1-e2m

where m is the reduced mass, v is the relative velocity, and e is the Bohr
energy of the exciton. If, however, A <ay, then S = 1.

On the basis of the aforesaid we can write the equation for the electron
spin-flip time (for a Boltzmann gas of electrons). In the calculations we obtain
the sum

. 2
Y|4 (k) sa, (k) AL (p7) JA,(p)| . (15.102)
pop'=+3/2

In a wide-gap semiconductor, the admixture of p-states in the conduction
band can be neglected, and then A, is independent of k; this is evident from
eq. (1.96). After using the explicit form of the Pauli matrices, this sum can be
written as

. 2
Y |4L(p) 3 +is)4,(p)| =G, . (15.103)
pop'=+3/2
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After introducing this notation we have

1 2a C?
= — 34 s +e —e,—€,
SR T T h g ke e )

Xfp(l _fp’)Gp,p’Svk-u Svk/fc,,/

27 d¢  dp

=% e o) (1)
h ./.(277_)3 (2 ) q 4 pt+q//p ptq
XGp',p+qukfu,,Svk,qfv,,+q' (15104)

The factor G, ,, can be calculated using the column vector 4, (p), given in
sect. 1.3.3. If the split-off hole band is sufficiently far away and the one-band
approximation can be used for the hole band, G, ,, depends only on the
directions p and p’ (with respect to each other and to the z-axis).

To proceed we assume the electrons are light (m_ < m,) and not too hot,
i.e. g, < (m,/m_ )T for Maxwellian holes or ¢, < (m/m_)e; for Fermi holes.
In addition, we shall disregard cold electrons with ¢, < T. Under these
conditions, as is evident from the conservation laws, ¢ ~ k& < p. This enables us
towrite G, ., =G, and ¢, —¢,, = —v,hq.

First we shall consider a Maxwellian gas of holes. Here the electrons are
fast: v, > uv,, and the scattering is quasi-elastic: hw <T < ¢, (where Aw is the
energy transfer). Hence the Sommerfeld factors in eq. (15.104) are equal and
depend only on the initial energy ¢,. As a result

1 27
—— ==C% 15.105
T (k) h ‘ ‘ (sk) ( )
where G is the average of G, , over the angles of p, N is the hole density, g(e)
is the density of states of the electron, and S, is given by eq. (15.101) with
= (g,/ep)” /%, and ey is calculated with the mass m,. After substituting eq.

(15.99) and G = % into the preceding equation, we obtain

1 1 h 37 A2
= =7n71§? 5 —=—Na 3 15.106
(k) 7" (m), = ( )

64 Bey”
The spin-flip time turns out to be independent of the orientation of k with
respect to z, and also independent of the hole temperature.
We turn now to a Fermi gas of holes. It proves convenient to consider two
cases separately: “moderate temperatures”, when T/ep > m_/m;, and “low
temperatures”, when the inequality is reversed.

Moderate temperatures. Here, as in a Maxwellian gas, the electrons are fast for
all ¢,; hence v, > v, and the scattering is kinematically quasi-elastic: hw < ¢,.
But, in a Fermi gas, a comparison of Aw with T, i.e. statistical quasi-elasticity
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(see sect. 2.4), is also of importance. In estimating hw ~ quy, it can be shown
that hw ~ (g,/€)"/?, where = (m,/m_ )T?/ep) > T. (Note that the meaning
of the energy & is close to that of the energy 7'2/ms? which separates the
regions of induced and spontaneous scattering by acoustic phonons; see sect.
4.2.2.) For ¢, <§, the general equation, eq. (15.104), is simplified as follows:

1

= bk|
r(k) /(2 )’ (2 )
X8(ep—_,) [,(1-1,)G, . (15.107)
from which
1 27
(k) _71_C G|, I* g(e,) Tg
31T e
=37 ST, (15.108)

where gp is the density of states of the holes at the Fermi level. This
expression differs from eq. (15.105) in that the total hole density has been
replaced by the number of holes in a thermal layer of thickness 7. For g, >¢€
we can put T'= 0 in general equation (15.104). In this case, as is quite evident,
we find a dependence of 7,(k) on the orientation of k with respect to z. We
restrict ourselves to the calculation of the average over the orientations of k.
This averaging is equivalent to averaging over the directions of z, leading to
the substitution of G for G, , in the integrand. After this the integral can be
readily evaluated; holes in a layer of the thickness #%kv, are found to be
relevant:

Low temperatures. In this case the electrons are fast for ¢, > (m_/m, )eg; hence
Uy > Ug, and the scattering is dynamically quasi-elastic: hw <e,, but statisti-
cally nonquasi-elastic: 4w > 7. Consequently, the situation is the same as at
moderate temperatures with ¢, > & and eq. (15.109) is applicable. For g, <
(m./my)eg, the electrons are slow: v, < v.. Therefore, the Sommerfeld factor,
if it must be taken into account, is determined by the velocity vg. We can write
the scattering probability, averaged over the angles, as

1 _ 2T i d3p _ _
<Ts(k)>_ 7 CcG LPI/(zﬂ') 277)3 de(sk &y hw)

x8(w—1,q9) f(e,) [1 = f(e, + he)]. (15.110)
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We begin by averaging over the directions of p:
/ S(w—v q)_*@(w veq), (15.111)

where ©(x) is a step function, and then integrate with respect to p:

h
) [1=1(e, + ho)] =gFTfMW (15.112)

d’p

(27) ’
After noting that w <vpq in the region being considered, and returning to
integration with respect to k’, we have

1 — ke —¢
—\ =G S, 2 'h K Tk
<Ts(k)> e 20°7 (2g) K — K]

[e(fk’*fk)/r_ 1]71.

(15.113)

After going over to dimensionless variables in the integral with respect to k’,
we can transform the obtained expression into the following form:

1 721 372 T 1/2 mh 1,2 5 e,
<Ts(k)> —6?(;) (%) (m—) S| 1(7) (15.114)
where
— 6 2 ldzzl/z(l—z)
H()=1+ e fo J_exi-n (15.115)
and
‘){(X)zl'i—(“-/'ﬁz)x, fOI‘X<1,

~ (8/57%)x?, for x > 1. (15.116)

If the electron is scattered by a hole bound to an acceptor, the wave
function given by eq. (15.100) should be replaced by the function

¥(r, rn)= e*nq (k) 2,(r), (15.117)

1372
where the column vector @ is the wave function of a localized hole. The
Sommerfeld factor S =1 because, in the case being discussed, a free electron
travels in the field of a neutral center. In the case of a spherically symmetric
state @, the spin-flip time turns out to be close to that obtained for a
Maxwellian gas of holes. For g, < &g, we have

2

1 1 , h _ 5w A

=2 2=y 15.118
(k) 7" T, 64 By (15.118)

where N, is the density of localized holes, i.e. neutral acceptors.
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15.5.2. Spin relaxation in GaAs and GaSh

Described in sect. 13.6.2 were experiments conducted with photo-electrons
having oriented spins; these experiments enabled the time 7, to be measured
directly [see eqgs. (13.72) and (13.73)]. Systematic experiments for the investiga-
tion of the dependence of the time 7, on temperature and on the doping in
GaAs and GaSb crystals enabled Aronov et al. (1983) to specify clearly the
range of temperatures and impurity densities in which the spin relaxation
mechanism described in sect. 15.5.1 predominates.

Given as an example in fig. 15.8 are the dependences of the time 7, on the
density N of shallow acceptors of Zn in GaSb crystals. The arrow indicates the
critical density N, above which the shallow acceptors are metallized, leading
to the formation of a weakly degenerate gas of holes. Valid for this region is
€q. (15.108). For N < N, the holes are distributed between the localized states
on the acceptors and the free states. Hence the time 7, should be characterized
by the sum of expressions (15.106) and (15.118). As is evident from fig. 15.8,
both regions have exactly the density dependences that were predicted by the
equations of sect. 15.5.1. The dependence 7, &« N~! is predicted, as well,
according to egs. (13.36) and (13.28), in spin-flip due to the spin-orbit
interaction in the impurity field. But in this case the time 7, exceeds the
experimental values by two orders of magnitude.

The circles in fig. 15.9a indicate the results of measurement of the depen-
dence of 7, on T for N <N_. The continuous curve was plotted from data
obtained in calculations based on eqgs. (15.106) and (15.118). Here the quantity
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Fig. 15.8. Dependence of the time 7, on the density N, of shallow Zn acceptors in GaSb crystals at
T =15 K (solid circles) and 77 K (open circles) (Aronov et al. 1983).
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Fig. 15.9. Temperature dependence of the time 7, in GaSb crystals with N < N,. In (a) the open

circles are the experimental data, and the solid curve is the theoretical relationship according to

egs. (15.106) and (15.118), with Ny =2.8x10' ¢cm™3; in (b) the open circles represent the

quantities 7, = [(1/7) exp — (1/T) carc]” ! taken from fig. 15.9a. The solid curve in fig. 15.9b is the

theoretical relationship (13.55) calculated from data (triangles) on the temperature dependence of
the hole mobility (Aronov et al. 1983).

7, required for the calculations, was determined from similar measurements
with N > N_. Hence, in calculating this curve there were no free parameters.
The fact that a difference exists between the calculated and experimental data
indicates that a new scattering mechanism begins to operate as the tempera-
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Fig. 15.10. Domains in the (7, N,) plane in which the precessional spin relaxation mechanism and
relaxation through electron-hole scattering predominate in GaAs and GaSb (Aronov et al. 1983).
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ture is raised and that this mechanism leads to spin-flip with the scattering
rate

/7= (1/7)exp = (1/7) care- (15.119)

The points in fig. 15.9b indicate the values of 7, obtained by subtraction
according to eq. (15.119). The straight line passing through these points was
independently plotted. It represents the spin-flip time in accordance with the
precessional mechanism, and was calculated by employing eq. (13.55). using
independent measurements of the transport time 7, (these measurement data
are also given in fig. 15.9b). The fact that the points coincide with the
calculated curve indicates that in this crystal it is precisely the precessional
mechanism that becomes predominant as the temperature is raised.

Figures 15.8 and 15.9 are examples illustrating how the experimental data
were analyzed. The results of this analysis are summarized in fig, 15.10.

15.5.3. Effect of elastic scattering on spin relaxation

The electron spin-flip time calculations carried out above are based on the
assumption that in the course of the interaction time, both the hole and
electron are in quite definite states with definite wavevectors and projections
of their angular momenta. This assumption is at the root of the concept of the
probability of the process kopu — k’oc’p’w (and at the basis of the kinetic
equation in general). The interaction time ., is a/v, where a is the dimension
of the region of interaction and v is the relative velocity of the particles. The
interaction distance a is determined by the momentum transfer Ag, so that
tim ~ (qv) 1. Hence, the concept of the probability of an elementary event is
valid if gv > 71 where r is the relaxation time of the quantum parameters
that specify the states of the colliding particles. This inequality is not satisfied
if the holes are effectively scattered by some kind of imperfections, for
instance, impurities, because such scattering destroys the hole states specified
by the wavevector and the projection of the angular momentum. Therefore,
the equations given above for 7 (k) are valid only when kv (7, '), and
kv> (7 '),, where (7)), is the momentum relaxation time and (1), 1s the
angular momentum relaxation time for holes. If even one of these two
inequalities is not satisfied, the calculation of 7, is extremely complicated (Bir
et al. 1975), though semiquantitatively its result can be readily understood. Let
us consider, for example, a Fermi gas of fast holes, when v=vp When
kvg > (77 '),, the holes pass ballistically through the interaction region without
being scattered by imperfections, so that 7, ~ a/v.. But if kvp < (7,1),, the
hole will be repeatedly scattered by imperfections as it passes through the
region of interaction with an electron, and its motion will be of a diffusional
type. As a result, 7, ~a’/D, where D= 10%(7), is the hole diffusion

1

coefficient in scattering by imperfections. It is obvious that the spin-flip
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probability is proportional to ¢, ,. Consequently, if the inequality kv > (7 '),
is not satisfied and is replaced by the reverse inequality, the spin-flip probabil-

ity given by eq. (15.114) should be multiplied by

a/D (m'),

YT (15.120)

i.e. strong hole momentum relaxation increases the spin-flip probability of an
electron scattered by these holes.

When the inequality kv > (7 '), is not satisfied, a hole has a definite spin
only during the short time (7,),. Therefore, the estimate . ~ (7,), is valid,
and, when kv < (7. 1),, eq. (15.114) should be multiplied by

(Ts)h - kUF <1
a/vg (Tfl)h 7

h

(15.121)

i.e. strong hole spin relaxation reduces the electron spin-flip probability. Exact
equations for the averaged spin-flip probabilities are given by Bir et al. (1975).





