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1. INTRODUCTION

IT is well known that under ordinary conditions the
electromagnetic field does not penetrate deep into a
metal and is localized in a thin layer near its surface.
This phenomenon is called the skin effect. It is due to
the large electric conductivity of metallic bodies: the
external wave induces a high frequency electric current
that prevents penetration of the field into the .sample.
The skin effect is characterized by a penetration depth
and by a distribution of the field in the conductor. The
penetration depth can be introduced in different manners,
depending on the characteristic of the skin effect. In the
classical (or normal) skin effect, which takes place at
room temperatures, the field decreases exponentially.
The penetration depth (the thickness of the skin layer)
is usually defined as the distance &, in which the field
decreases by a factor e. There is a well known formula
for 6y,

(1.1)
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where ¢ is the speed of light, w the circular frequency
of the wave, and 0, the static conductivity of the metal.
The change in the phase of the wave in the metal is
characterized by the same quantity 6,,.

The definition (1.1) is directly connected with the
law of distribution of the field inside the metal. It is
possible to present a different definition of the thick-
ness of the skin layer, which makes use of the external
characteristic of the metal—its surface impedance
Z =R~ iX:
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Here H(z) is one of the tangential components of the
alternating magnetic field, and the z axis is directed
along the inward normal to the surface of the sample.
Such a definition of the penetration depth is more gen-
eral, since it does not presuppose an exponential attenu-
ation of the field in the skin layer. The exponential dis-
tribution takes place only in the case of the normal skin
effect, when the mean free path ! of the electron in the
metal is much smaller than 6,,. Under these conditions,
the quantity 6y, defined by (1.2) is connected with the 6,
by the relation 26y, =65, (1 + i).

In pure single crystals of metals at low tempera-
tures, the mean free path / can reach values on the or-
der of several millimeters. It is therefore easy to
realize the opposite case, corresponding to the anom-
alous skin effect. In the anomalous skin effect, Ohm’s
law in its usual form j = 0E no longer holds, since the
Current density j(r) at a given point r is determined by

81

the electric field E not only at that point, but also ir a
region with dimension on the order of / around it.
Consequently, the conductivity ¢ is not a constant of the
metal, but depends on the form of the saumple and on the
field distribution in it, i.e., it is an integral operator.
This operator should be determined from a microscopie
theory. Such a theory was constructed by Reuter and
Sondheimer''? on the basis of a simultaneous solution
of the kinetic equation for the distribution function of
the electrons and of Maxwell’s equations. It is shown
in the cited paper that when 6, < [ the law governing
the variation of the metal in the field is much more
complicated than in the normal skin effect. For the
anomalous skin effect, Re 6, and Im 6} determine only
the order of magnitude of the rate of decrease of the
amplitude and of the change of the phase of the electro-
magnetic field in the metal.

The dependence of &}, on the frequency and on other
quantities can be obtained with the aid of simple quali-
tative considerations, advanced to Pippardm and called
in the literature the ineffectiveness concept. In the
anomalous skin effect, not all the electrons are eguiva-
lent from the point of view of their role in the creation
of the high frequency field. Those electrons which move
at noticeable angles to the surface of the metal spend a
relatively short time in the skin layer, and are then
either scattered on the surface, or penetrate deep into
the metal, where the electromagnetic field amplitude is
small. Therefore the contribution of such electrons to
the surface current is insignificant, and they are called
‘‘ineffective’’ electrons. The screening current is
formed essentially by the ‘‘effective’’ electrons, which
move at small angles to the surface and negotiate in the
skin layer a distance on the order of the mean free
path [. The effective electrons constitute a small frac-
tion (on the order of [6y1/7) of the total number of elec-
trons, and therefore the conductivity produced by them
is equal to Geff = goob /I, where g is a number on the
order of unity. Substituting geff for o, in the formula
for the impedance in the normal skin effect

2 (42) e (- %) .3
and using the definition (1.2), we get
b () e (- ). 4

From a comparison with the exact formulas of '’ it fol-
lows that in the case of diffuse reflection g = 21/V3.
Expressions (1.1) and (1.4) reflect the difference be-
tween the normal and anomalous skin effect. Whereas
bp ~ w"/z, the frequency dependence of 6y, is weaker,
namely 6, ~ w™'’%, In the anomalous skin effect, the



depth of the skin layer 0y does not depend on the mean
free path (and consequently on the temperature), since
the ratio 0/l does not depend on . Under the conditions
of the normal skin effect we have §, ~ 1”2, We shall
henceforth make frequent use of the real quantity 6,
which is of the same order as 6. The exact expres-
sions for 6 will be given later in each individual case.

The dynamics of the conduction electrons in metals
and the character of their interaction with the electro-
magnetic waves changes significantly in a constant mag-
netic field H. It has become clear in recent years that
a metal in a magnetic field may turn out to be trans-
parent to electromagnetic radiation, and in a number of
cases it behaves in general like a dielectric.

All the presently known effects of anomalous pene-
tration (AP) of the electromagnetic field into a metal
can be subdivided into two groups. The first can be
arbitrarily called the group of plasma or collective
phenomena. They are due to the resonant excitation of
collective motions of the electrons in the metal by an
external wave. These collective oscillations represent
weakly damped electromagnetic waves in the electron-
hole plasma of the metal. From the point of view of the
quasiparticle concept, such waves can be treated as
secondary elementary excitations of the Bose type, oc-
curring in a Fermi gas (or Fermi liquid) of primary
excitations—electrons and holes. A detailed exposition
of the properties of weakly damped waves in metals is
contained in the review™?,

In the present review we consider AP effects of a
different kind, those due to individual motion of charged
quasiparticles in a magnetic field. The penetration of
the electromagnetic field inside the metal is due to the
electrons that ‘*carry away’’ the high frequency field
from the skin layers and then ‘‘reproduce’’ it within the
volume of the metal. Such effects can be called penetra-
tion of the trajectory type. Unlike the case of excitation
of collective oscillations, the frequency of the external
field is no longer connected by the resonance conditions.
The magnetic field intensity determines the scale of the
picture of the distribution of the electromagnetic fields
inside the metal. These effects were first pointed out
by Azbel’ ©) who considered one of the cases of AP of
the trajectory type, namely, the occurrence of field
peaks deep in a metal under cyclotron resonance con-
ditions.

For the existence of AP effects of the trajectory type
it is necessary to satisfy the conditions

(1.5)

where D is the characteristic dimension of the electron
trajectories in the magnetic field. The right side of the
inequality (1.5) is the criterion defining a strong mag-
netic field. The left side denotes that the skin effect
should remain anomalous with respect to the character-
istic dimension of the electron trajectory. The meaning
of this condition is particularly easy to explain in terms
of the ineffectiveness concept. The electron interacts
most intensely with the electromagnetic field on those
sections of the trajectory where it moves along the wave
front, i.e., parallel to the surface of the metal: v, = 0.
The retardation of the field can be neglected, since the
velocity of the electron v is usually much larger than the
characteristic ‘‘phase velocity’’ wb of the wave. The
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points v, = 0 on the electron trajectory and the corre-
sponding points on the orbits in p-space* will be called
‘effective’’. In view of the fact that in a magnetic field
the velocity vector v changes on the trajectory, there
exist, generally speaking, an infinite number of effective
points. Satisfaction of the left side of inequality (1.5)
signifies that some of these points are certainly located
outside the skin layer. This is precisely the cause of the
AP of the high-frequency field in the metal. When the
electron moves along the effective section of the trajec-
tory in the skin layer, it acquires a velocity increment
Av. Consequently, it is the carrier of part of the skin
current Aj = —eAv (e—absolute value of the electron
charge). The vector Av varies along the trajectory. At
the next effective point, which is located deep inside the
metal, the electron again moves parallel to the surface
of the metal and produces increments to the velocity av
and the current Aj. The occurrence of a current paral-
lel to the surface deep inside the sample is indeed a
manifestation of the AP of the field in the metal, namely,
current and field peaks are produced inside the metal,
and the distances between them are determined by the
dimensions of the electron trajectories.

The mechanism of the AP of the field depends on the
type of trajectory. If the trajectory is closed, then the
appearance of a peak can be expected in the plane z = D,
where D is the dimension of the trajectory in the z-axis
direction (Fig. 1). The peak is the *‘skin layer’’ for
electrons whose trajectory is displaced a distance D
into the metal. These electrons produce in turn the next
peak at a depth 2D, etc. As a result, a unique ‘‘chain of
trajectories’ is produced, along which the electromag-
netic field penetrates to large depths inside the metal.

In the case of an open trajectory with a non-zero
average velocity component V,, a different mechanism
of AP of the field is possible. The system of peaks is
determined not by a chain of trajectories of different
electrons, but by the trajectory of the electrons that
drift deep into the metal directly from its surface
(Fig. 2). The high-frequency current is localized near
the planes z = up, where uy is the depth of the n-th effec-
tive point (we assume that one of them is located on the
surface z = 0).

* . . . . .
To avoid confusion we point out that we are using the term “trajec-
tory” when we are dealing with a motion of an electron in r-space, and
“orbit” when we describe motions in moinentum space.
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FIG. 2.

So far we have considered the motion of an individual
electron. Actually there exist in the metal electrons that
move along different trajectories with different values
of D or up, which are functions of py—the projection of
the momentum on the direction of the magnetic field H.
For this reason, the secondary current is distributed,
generally speaking, over a large depth. As a result of
the averaging over all the electrons, the trajectories that
are singled out are those for which the density of states
with given values of D or up becomes infinite, i.e., elec-
trons with extremal values D(py) = Dext OF up(pPg)
= uext- A relatively large number of effective electrons
are focused at corresponding distances from the surface
of the metal, and this ensures the occurrence of the
peaks. The widths of the peaks are determined by the
thickness of the skin layer, and to a much lesser degree
by the distances between them. The field in the interval
between the peaks is much weaker, although it differs
from zero.

The AP of the field in a metal can be due also to in-
effective trajectories. Then the spatial distribution of
the field in the metal has a harmonic character.

We shall discuss below different mechanisms of
focusing of effective electrons, and we shall present a
classification of all the presently known cases of trajec-
tory-type AP of the electromagnetic field in a metal.
The first part of the present review is devoted to an ex-
position of the results of the theoretical investigation of
field AP in a semi-infinite metal. A discussion of
methods and results of the experimental study of AP is
given in the second part. These methods are directly
connected with a group of phenomena known as the radio
frequency size effects'®?,

2. Classification of Electron Trajectories

An important role in AP phenomena of the trajectory
type is played by the shape of the electron trajectory. It
is therefore, useful to recall the main features of the
motion of a charged quasiparticle with an arbitrary dis-
persion law in a constant magnetic field (see“ﬂ), and
also to classify the different types of trajectories.

From the equations of motion

P=ve 2 (2.1)

p=— = IvH], =

. follows that the orbits of an electron are determined
in momentum space by the integrals of motion

pﬁzﬂ:const. (2.2)

& =const, 7]

Geometrically, these orbits are the intersections of the

*[vH] =v X H.
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equal-energy surface €(p) = const and the planes py

= const. Depending on the topology of the Fermi surface
€(p) = €F, the direction of the field H, and the values of
py. the orbits can be either closed or open, i.e., they
can pass continuously through the entire reciprocal
lattice.

Since P is the velocity of the electron in momentum
space and v is the velocity in r space, it follows from
(2.1) that the orbit in p-space and the projection of the
trajectory of the electron on the plane perpendicular to
H in r-space are similar, with a similarity coefficient
eH/c, and are turned by 7/2 relative to each other. The
mean values of the electron velocity component along
the magnetic field is determined by the formula

a8 (e, p a8 (e, p,. B
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where m is the effective mass of the electron and
S(€, py) is the area bounded by the plane curve (2.2).
Using these data, we can easily classify the possible
types of trajectories in r-space.

1. Closed trajectories. Inasmuch as Vy should van-
ish on these trajectories, it follows from (2.3) that these
trajectories correspond to the intersections of (2.2) with
the extremal surface Sgyt. From symmetry considera-
tions it is clear that on the open Fermi surface the
trajectories of the central section py = 0 are always
closed. We note that closed trajectories, generally
speaking, are not plane curves.

2. Helical trajectories. These are obtained from
non-central sections of the Fermi surface and are
strictly periodic in r-space. The average electron
velocity V is parallel to H and depends on py.

3. Trajectories of the vicinity of the elliptical limit-
ing point. The limiting point is defined as the point p,
on the Fermi surface €(p) = e at which the plane per-
pendicular to H is tangent to the surface and the orbit
degenerates into a point. For all py close to po, the
electron trajectories have the form of strongly elonga-
ted helical lines with practically equal pitch. On these
orbits the cyclotron frequency = eH/mc and the effec-
tive mass m are also practically the same.*

4. Open trajectories. These exist only in a metal
with an open Fermi surface. The motion of the electron
is infinite in a plane perpendicular to H. The average
velocity v, generally speaking, has an arbitrary direction

‘relative to the vector H.

1. THEORY
3. System of Equations

To develop the theory of AP of an electromagnetic
field in a metal, it is necessary to solve Maxwell's
equations. For a monochromatic wave (~exp (—iwt)) ina
half-space, these equations are of the form (we neglect
the displacement current)

Eq(2) = —4niwe™?q (2).
J: (2) =0,

a=I,y,

(3.1)
(3.2)

*There can exist also hyperbolic and parabolic limiting points, but
in such points the effective mass m and the cyclotron period 27/$2 be-
come infinite. Therefore the corresponding trajectories do not lead to
AP of the field in a metal.



The z axis is directed along the inward normal to the
surface of the metal, and the y axis coincides with the
projection of the vector H on the plane z = 0; E(z) and
j(z) are the vectors of the electric field intensity and
the current density, and the primes denote derivatives
with respect to z. Equation (3.2) is the consequence of
the continuity equation and is identical with the condition
for electric quasineutrality of the metal.

To obtain the connection between j and E, we shall
use the kinetic equation. In the approximation linear in
the electric field, we have

—iwf+v, ,,’ + 8= 81 +vf —eBv 2 (3.3)
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i = gy § VP (3-4)
here f is the non-equilibrium addition to the Fermi dis-
tribution function

fole) = [ exp (57) + 7 (3.5)

7 = Qt is the dimensionless time (phase) of the motion
of the electron along the orbit (2.2) in p-space, T is the
temperature in energy units, and 27h is Planck’s con-
stant. In (3.3) we replaced the collision integral by the
constant v, which represents the frequency of the colli-
sions of the electrons with the scatterers. The validity
of introducing the collision frequency v{p) in the anom0
alous skin effect is proved in""’.

The system (3.1)—(3.4) must be supplemented by the
boundary conditions. When z — =, all the functions van-
ish. On the surface z = 0 the tangential components of
the electric and magnetic fields are continuous. For the
function f we assume the diffuse-scattering condition

flio =0, (3.6)

l!:;/)ﬂ

(6,97 the solution of (3.3) is of the form

As shown in
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The function s(z, 7, €, py) takes into account the fact
that the trajectory on which the electron has entered
into the phase-space point (z, 7, €, py) can start on the
surface z = 0. In this case the function s is defined as
the root of the equation

Qz + S dt'v, = 0. ’ (3.8)
lying closest to 7 and satisfying the condition s = 7. If
there is no such root (the electron ‘‘arrives’’ from in-
side the metal), then s(z, 7, €, py) should be set equal
to —w (for details see'® '),

Substituting (3.7) in (3.4), we get

Jo (@) T:;;T%ede(—%&) g '"fp"gdn @) S At v (1)

@ (r’—r)] E. (z »—— S dt'v, (1" )) (3.9)
An analysis shows that in all the cases discussed
helow the field component E, in (3.9) can be neglected,
and Eq. (3.2) can be completely disregarded. The prob-

. v—i
> exp[ )

lem thus reduces to a simultaneous soluation of (3.1) and
(3.9). This system of equations is particularly compii-
cated in those cases when it is necessary to take into
account the collisions of the electrons with the surface.
In particular, collisions with the surface play an impor-
tant role in field AP phenomena in the presence of drift
motion of the effective electrons to the interior of the
metal. The method of solving the system of equations
(3.1) and (3.9) in such cases is discussed in Sec. 5.2.

On the other hand, it is shown in a number of papers
that in AP phenomena due to the motion of effective
electrons on closed trajectories (cyclotron reson-
ance™*', field AP along a chain of trajectories' ™'’
ete) it is possible to neglect the contribution of the
electrons that collide with the surface. This means that
in expressions (3.7) and (3.9) we can put s = —= for all
z, T, €, and py, i.e., we can use the electron distribution
function for an unbounded metal. In this case, the elec-
trodynamic problem in a half-space can be replaced by
the simpler problem of finding the distribution of the
high-frequency field in an unbounded medium.

We continue the functions E,(z) in even fashion to
the region z < 0 and change over to Fourier components

£ (k) =2 3 d2E, (z)cos ks,  En(z)=

dkE, (k) coskz.  (3.10)
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Substituting (3.10) in (3.9), we obtain a linear connection
between the Fourier components j (k) and F’d(k)
(a.' ,B = x9 y)'

Ja (k) = 048 (K) g8 (K), (3.11)
where oa,g(k) are the Fourier components of the two-
dimensional conductivity tensor

Sde( “’0\ i"’""" Sdrza (1) S dT'vy ()

) b e

KT — r)J cos (L il(lr"f:; (r"‘)) .

Equations (3.1) have in the Fourier representation
the form

D

Gap (k) ;

xe\p[ (3.12)

526, (k) 4 2Eq (0) = drtinc a4 (K) Es (K. (3,13)

Hence
E,(2)= — 2775 (2) Eg(V), (3.14)
Top (2) == S dk cos kz [k — 4nioc o (k)| g, (3.15)

U
where I is a unit matrix and (k) is the conductivity
tensor (3.12). Formulas (3.14) and (3.15) yield the gen-
eral solution of the problem of the distribution of the
field in a metal in the case under consideration.

The physical meaning of such a method of solution
lies in the fact that we represent the highly inhomogene-
ous field near the surface of the metal in the form of a
superposition of plane monochromatic waves (expansion
in a Fourier integral). The Fourier component of the
connectivity tensor 6 (k) describes the interaction of the
conduction electrons with one of the harmonics of the
wave packet. The integral effect of the interaction of
the electrons with all the harmonics is determined by
the inverse Fourier transformation (3.14) and (3.13). It
is thus sufficient to limit oneself to an investigation of
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the propagation of plane monochromatic waves
¢ y(k) coskz exp(-iwt) in a metal. For this purpose it
is necessary to determine the components of the ten-
sor 04 8(K).

One of the most important characteristics of a metal
is the high-frequency surface-impedance tensor

Zgp= Rop—iXqp, (3.16)

which is a generalization of the definition (1.2). The

tensor Z, g connects the values of the electric field on

the surface with the tangential components of the total
o

current Jo = fdzjq(x):
¢

Eq(0) = ZasJs. (3.17)

From (3.1) and from (3.14) and (3.15) it follows that
(3.18)

so that the field distribution and the impedance tensor
are fully defined by the quantities Top (z).

We shall henceforth consider essentlally the case of
low frequencies

Zap = — 8iwc™T 4 (0),

w v,

(3.19)

when the quantity w in (3.12) can be neglected. This
means that the alternating field can be regarded as
quasistatic, and its time variation produces only a skin
laver in a metal.

4. Anomalous Penetration of a Field in a Metal Along a
Chain of Trajectories

4.1, Chain of trajectories in a magnetic field paral-
lel to the surface of the metal. In Sec. 1 we already
mentioned the mechanism of field AP along a chain of
trajectories. It is now necessary for us to ascertain the
conditions for the occurrence of the peaks, the law
governing the decrease of their intensity with increasing
depth, and the factors that determine the widths of the
individual peaks. We start with the simplest model,
with which it is possible to illustrate the features of
AP along a chain of trajectories"*’. We assume that the
metal has a cylindrical Fermi surface p; + p; =p?

= const, and that the magnetic field H is parallel to the
y axis (the z axis is directed as before along the inward
normal to the surface of the metal). This model is the
simplest because all the electron trajectories are the
same and represent circles of diameter D = 2pc/eH.

Let us calculate the elements of the transverse con-
ductivity tensor 6, g(k). It is obvious from symmetry
considerations that only the element oxx(k) = o (k) differs
from zero. Assuming that vy(7) = v cos 7, we obtain
from (3.9)

0 (k)= 0y {|J iy (kR) [ — Re Jyuip (kR) J_psiy (kR)), (4.1)
e? 2 dN
O":T(TT)eF' Vet (4.2)

here o, is the static conductivity, dN/de is the density
of the electron states per unit energy interval, N(¢) is
the electron density, R = D/2 is the radius of the elec-
tron trajectory in the magnetic field, and J ( )is a
Bessel function. In the model employed by us the quan-
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tities v, R, and  do not depend on py. Using the symp-
totic expression for the Bessel function at large values
of the argument, we obtain

409 chay—sinkD
n kD .

o (k)= (4.3)
It is seen from this formula that the quantity o (k)
can have deep minima when y < 1: if KD = 27(n + 1/4)
(n—integer), then ¢ ~ 6,%*/kD and is much smaller than

the mean value. The sharp decrease of 0(k) is due to
the fact that there are only two effective points, A and
B, on the electron trajectories (see Fig. 1). When the
diameter D spans an integer number of wavelengths, the
resultant interaction of the electron with a given wave
is small as a result of interference, for in one of these
points the electron moves along the field, and in the
other against the field. If the diameter spans an odd
number of half-waves, the interaction is a maximum.
The sharp decrease of o(k) when k = 2(n + 1/4),/D de-~
notes a decrease of the absorption, as a result of which
the wave penetrates deep into the metal to a large dis-
tance. Since the spectrum of the wave numbers of such
penetrating waves is discrete and equidistant, a periodic
system of narrow peaks is produced inside the volume
of the metal. Their spatial width is determined by the
number of the interfering components, i.e., in final
analysis, by the depth & of the skin layer. These argu-
ments are confirmed by a rigorous calculation.

Let us investigate the function T(z), which describes
the field distribution in the metal. Substituting (4.3) in
(3.15), we get

o«

dyq cos gz}

-D% ot
T(“)”D,\ S M3 (chay—sing) (4.4)
B 2n 3 .
M- Tobh 8 (Tum(,) ’ (4.5)
Let us transform (4.4) in the following manner:
= 2Ts+1) o« In
v as - qyecos (2ns - gy =D
r@=D Q aq - 702 g "u gAYy Ssing)) (46)

8- c Zm [t

We consider first the case z = nD. An important role
in the sum over s is played by large values of s, on the
order of M/27. Therefore the quantity q’ in the terms
of the type 27s + q" can be neglected, and the sum over
s can be replaced by an integral. Calculating this inte-
gral, we get

T (nD)- Sexp (n—b') V7 — 1y (). (4.7)
The function
= dq’ cos ng’
1y (n) = W § (ch:ty—s-i;q’)1 3 (48)

determines the decrease of the amplitude of the singu-
larities with increasing number n. An analysis shows
that for the first peaks (n < 1/7y, i.e., z < I), the quan-
tity ¥ in (4.8) can be set equal to zero and

I (n—ol{) (—i—) cos%

F(n«r) Y

91/331/2p8 (i)
£y (0) = — 31~ 1.85.

Thus, owing to the presence of the peaks, the surface

ty(n)=ty(0)cos 125

sl ™=

(4.9)
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impedance Z turns out to be larger by a factor tY(O)
= 1.85 than the value of Z which would be obtained with
that allowance for the AP of the field in the metal.

The more remote peaks (at depths z > [) decrease
exponentially:

nn
€08 —5—

2 exp(—nay)
ty(n) = 1 &P .
1 ("2:‘ ,)1,3
r{3) !

(4.10)

It is easy to show that the field has a much smaller
value far from the points z = nD. To this end we repre-
sent (4.6) in the form

2x ®  ds2ns cos (Zns; —Z— q')

Ty =0 é dq’ S (225)3 —iMS (ch iy —sing) ~
0

(4.11)

We have replaced summation over s by integration, and
neglected terms of the type q'/27s. Here ¢ = (z/D) — n,
where n is the integer nearest to z/D. The main contri-
bution to the integral with respect to q" is made by the
integration in the vicinity of q’ = 7/2. Therefore when

y < 1 formula (4.11) can be rewritten in the form

o do. exp (_‘.%z_)
M3

T(z)— D S ds2:ts cos (2.13@ 4~%—[Z)~) - (4.12)

oo (28)F (a? -+ a2y?)

An analysis of this formula shows that when

M;;IZL‘B"JQ

-1

the relative magnitude of the field between the peaks is
small:

| el
|

Ty | i 8
| TinD) P l:mnﬁ : (4.13)

The field distribution in the metal is shown schematic-
ally in Fig. 1. At z =~ nD there are sharp singularities
(peaks), the width of which is of the order of several
times 5.

The model considered by us, with a cylindrical Fermi
surface, is not realized in any of the metals. In the best
case the Fermi surface has individual sections that are
nearly cylindrical (for example, in tin). This means
that besides trajectories with nearly equal diameters
there exist also trajectories with other values of D. If
the diameter D depends significantly on py, then expres-
sion (4.3) must be averaged over py. In averaging the
rapidly oscillating function sin(kD(py)), the regions of
values of py for which D(py) = Dext become singled out.
The character of the singularities of (k) is altered in
this case, namely, the amplitude of the oscillating term
in o (k) become small, on the order of (kDext) ™
~ (6/Dext)''*. For example, in the case of a Fermi
sphere!’®! with radius pp we have

Ore (k) = ;%U[i—zagn(kow—%j], (4.14)

1/2 28 1/2 1
= ~ — W
a ( 7k Dy ) = ( “D, ) s b

and 0, = Ne?/mv is the static conductivity of the metal
and Do = 2ppc/eH. Substituting (4.14) in (3.15) and ex-
panding Txx(z) in powers of the small parameter a, we
get

(4.15)

]Tx,(nDOHza"]Tn(O)L (416)

The intensity of the peaks decreases exponentially with
increasing number.

PN U R O AR ) v .

The difference between formulas (4.7)—{4.9) and
(4.16) is of fundamental character. If all the electrons
producing the skin layer are “*focused’ on a single
plane, then a slowly damped system of bursts is pro-
duced. In the opposite case the damping is rapid:

T((n + 1)D)/T (nD) ~ a < 1.

4.2. Chain of trajectories in an inclined magnetic
field. A slowly damped system of peaks from chains of
trajectories is possible not only in the case of a cylin~
drical Fermi surface. It should arise whenever the skin
layer is determined, for some reason or another, not
by all the effective trajectories, but only by a small
fraction of them, for which the scatter AD of the diame-
ters is small compared with the thickness of the skin
layer 0:

AD 6. (4.17)

Let us ascertain the causes of the nonequivalence of
the effective electrons. One of the possible mechanisms
of such a selection was pointed out by Azbel’ in). na
metal with a complicated dispersion, the only electrons
that take part in the cyclotron resonance are those hav-
ing Q(py) = Qext- The extremum of Q(py) is reached,
in particular, on the central section py = 0 of the Fermi
surface. The fraction of the resonant electrons is of the
order of (V/Qext)‘/z. On the other hand, the diameter of
the electron trajectory D(py) also has an extremum at
py = 0. For resonant trajectories, the scatter of the
diameters is AD ~ D‘,(ApH/’p)2 ~ Dyv/Q. If AD < 6,
then the contribution made to the current by the all the
nonresonant electrons can be neglected. Consequently,
the high-frequency current is determined only by a
small group of electrons near the section py = 0.

Another mechanism of selection of the effective elec-
trons, proposed in"®}, consists in the following. If we
incline the vector H relative to the surface of the metal
by a small angle ¢, then the natural drift of the electrons
along H, and consequently inside the metal, separates
the electrons of the central section. These are pre-
cisely the electrons that have a small drift velocity and
return many times to the skin layer. The remaining
electrons can fall into the skin layer only once, after
which they go either into the metal or collide with the
surface of the sample. Therefore electrons with py ~ 0
play the dominant role in the creation of the skin cur-
rent, and the mechanism of the ‘*slowly damped chain
of trajectories’’ is again in operation.

From the mathematical point of view, the mechanism
of the AP of the field along a chain of trajectories is
always due to the fact that the Fourier component of the
conductivity 0y, (k) has minima at the points k, ~ 27n/
that are located near the real axis of the complex varia-
ble k. This fact is illustrated by the cases (4.3) and
(4.14) considered in the preceding section. In an in-
clined field, when the inequalities

(AD;))LZ (4.18)

3
L 7 E
are satisfied, the asymptotic expression for gy,(k) has
a similar form:
300 {—sinkDg--w
klp KDy

e (k) = (4.19)

where ¢ is the angle of inclination of the vector H rela-



ANOMALOUS PENETRATION OF ELECTROMAGNETIC FIELD IN A METAL 87

tive to the surface of the metal. The parameter

(At
v=(5)

u_oa)m (4.20)
T2
characterizes the scatter of the diameters of the elec-
trons which return many times to the skin layer.

The inequalities (4.18) have a simple physical mean-
ing. The relative nun ber of electrons that have no time
to go deeper into the metal during the mean free path
time is 6 /l¢. The scatter of the diameters is AD
~ DolApH/Po)? ~ Dob*412¢%. The condition (4.17) leads to
the left-side inequality of (4.18). The right-side inequal-
ity of (4.18) states the requirement that just these elec-
trons must make up the skin layer, i.e., that the small
number of this group be compensated for by their re-
peated return to the skin layer: (6/l¢)(1/Do) > 1. Thus,
the natural drift of the electrons along the magnetic field
plays the role of the selection mechanism that leads to
weak damping of the peaks.

Since the Fourier component of the conductivity
0xx(K) has the same oscillating character as in the case
of a cylindrical Fermi surface (see (4.3), the coeffi-
cient a of sin KD, is equal to unity, unlike in (4.14)), we
present without a derivation the corresponding formu-
las for the function Txx(z) (for details see“m):

Ter(nlig) = dexp (18-) 275 e (), (4.21)
where
on
4 F dgeeng _ [ 2Dl \ sk
tw (1) ¥i> ¢ u‘——can‘“‘ b= (123“’00) ’ (4'22)
When n < (2w)"'* we have
w (B) r(d) ()
ty () = — 7 RN yra v
(o (nw _) (2at/a ptic
4
t(0) =T* (%) (22" 1.4, (4.23)

When n > (2w)"”2 the peaks are damped exponentially:

(3 ()

1 (16w)! Bpdh

Ly (n) ~ exp(—n 1 2uw). (4.24)

The damping of the peaks is due to the small yet finite
scatter of the electron diameters relative to the central
section. The distribution of the field in the metal in this
case is illustrated in Fig. 1.

It must be emphasized that weak damping of the peaks
in an inclined field is possible only if there is only one
extremal diameter at a given orientation of the vector
H. If the Fermi surface is non-convex or multiply con-

nected, then the conductivity oy (k) is proportional to a
sum of terms of the type of (4.19):

Oxx (k)= A;(1 —sin kD).

In the general case when the quantities Aj are of the
same order, and the diameters Dj are not commensur-
ate, oxx(k) cannot vanish for any real value of k. There-
fore the peaks of the field will attenuate exponentially
just the same.

5. Anomalous Penetration due to Drift of Electrons
Inside the Metal

5.1. Kinematics of open electron trajectories. As-
Sume that on some periodic open trajectory with V=0

FIG. 3.

there is one effective point per period 27/Q. For the
electron to interact with the alternating field it is neces-
sary that one effective point of the trajectory be situated
in the skin layer. Then the remaining points are situa-
ted at distances

Up = nu (n=1,23,...), (5.1)

where u is the displacement of the electron along the z
axis during the period 27/Q. If the trajectory has two
effective points per period, then there appears, besides
(5.1), one more sequence of depths

ull=u® tnu  (Wh<u, n=0,1,2 ...), (5.2)

where u'"’ is the projection of the distance between two
neighboring effective points on the z axis (Fig. 3).

In accordance with the general concepts mentioned
in the introduction, in order for a peak to occur it is
necessary that the functions u,(py) and uj’py have an
extremum on the Fermi surface. It follows from (5.1)
that all the up reach the extremum simultaneously.
Consequently, one group of electrons is successively
focused and produces peaks at the depths z = nueyt. For
the sequence uy”’, this statement is generally speaking
incorrect, since u and u‘"’ are two different fuqctions of
PH- However, for sufficiently large n (n > (u'*’')2/|u”15),
both systems of peaks are produced practically by the
same group of electrons with extremal values of u(py)-
Therefore in most cases the singularities of the field
AP due to the drift motion of the electrons are deter-
mined by the properties of the function u(py). The
presence of three and more effectiveness points in one
period does not introduce anything new into this general
picture.

Let us ascertain the conditions under which the elec-
trons can drift deep into the metal. If the magnetic field
is directed at an angle ¢ to the surface, then Vg differs
from zero for all helical trajectories. The displace-
ment u of the electron along the z axis within one period
is determined by the formula

v 25, - csing oS (ep,
u=2n _'.i!.., T, | §foser pry|
el dpy

(5.3)

Let us consider in greater detail, by way of an exam-
ple, the kinematics of the electrons in an inclined field
on a spherical Fermi surface. We define the position of
the orbit with the aid of the polar angle y (Fig. 4). The
values y = 0 and 7 correspond to the limiting points, and
X = 7/2 to the central section. On the orbits for which
sin x > sin ¢ there are two effective points each. The
trajectories with x = ¢ and 7 — ¢ have one effective
point per period each (see Fig. 2). The sections of the
Fermi surface corresponding to sir y = sin ¢ will be
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in an inclined magnetic field.

Q and Q' - boundary sections
corresponding to the trajectory
shown in Fig. 2.

called boundary sections. The remaining trajectories
(with sin y < sin ¢) are ineffective. The exact formula
for u(x) and uy’(x) are of the form"’

u{y)=nDysingpcosy. Dy=2ppcieH,

oz ayli2
an 4 QRIXWED T cos (:i—z)] . (5.4)

ulti (x) = Dysingcos y [ e
Figure 5 shows the functions u,(x), us’ (x), and u{"(x)
at different values of ¢. It is seen from the figure that
the curve u;'’(y) has two extrema at ¢ < 25°. The uy”
with n > 1 behave in similar fashion.

At a small angle of inclination ¢, the boundary sec-
tions tanyygund = €Ot ¢ are located near elliptic limit-
ing points, where
2acsinghyt?

= e ’

as
JPH

(5.5)

Uy = -

‘v~ 2aK5h

and K, is the absolute value of the Gaussian curvature at
the limiting point. On the Fermi sphere we have K;'/*
= pp. On a non-convex Fermi surface, extrerna of u(py)
can occur also on other sections, where o S/de 0 and
8S/apy = 0.

The focusing effect is possible also when ¢ = 0 in the
presence of open Fermi surfaces. If the vector H lies
in the plane of the sample and is orthogonal to the direc-
tion along which the Fermi surface is open, then the
displacement u is the same on all open periodic trajec-

FIG. 5. Functionsu, n (solid lines, ul(,l) (dashed), and u, (dash-dot)
for different inclination angles o.

Abscissas — the quantity tan  cot x. The values of the angle #/2 — X
are indicated along the ug
on the right.

) curves. The angle ¢ and tan o are indicated

V.
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tories and is determined by the formula

= ;Tbccnsﬁ, (5.6)
where b is the period of the open orbit and ¢ is the angle
between the surface of the metal and the direction of the
open part of the Fermi surface in p-space (see Sec. 2).

5.2. Focusing of electrons from the vicinity of the
limiting point at small angles of inclination of the mag-
netic field. As shown in®"’ , the field AP produced when
the electrons drift into the metal can be analyzed by the
method of Fourier transformation of the conductivity
tensor, as described in Sec. 3. In the present section
we describe another method of calculating the distribu-
tion of the field in the metal, which takes into account
more consistently the collisions of the electrons with
the surface of the metal™?’,

Let us consider the field AP along the trajectories
of the electrons from the vicinity of the limiting point.
All are displaced equally along the vector H within the
period 27/Q. This phenomenon is well known in elec-
tron optics as ‘‘focusing of monochromatic electrons by
a longitudinal magnetic field.”” At large inclination
angles ¢ there are no effective points on the orbits of
the focusing electrons, since the limiting point is loca-
ted far from the line v, = 0. The electrons can be effec-
tive only in the case when the angle ¢ is sufficiently
small. To this end it is necessary that the inclination
angle ¢, which is simultaneously the angular distance
from the limiting points to the line v, = 0, be smaller
than the characteristic angular dimensions ¢ of the
region occupied on the Fermi surface by the focusing
electrons, The value of ¢ is determined from the con-
dition that the spatial focusing of the electrons during
the free-path time must not exceed &, i.e

%];Z(\p)‘uz 0) | > PHsing ~ 8, p~ (lsi':;qT)Uz (5.7)
From this it follows that*
sin g << (-?—) 13 (5.8)

On the other hand, the obvious condition 6 < u, leads to
the inequality (uo ~ D sin ¢):

% % sin @. (5.9)
In calculating the field distribution we shall start di-
rectly from formula (3.9) for the current density. This
formula contains the function s(z, 7, €, py), which should
be found from expression (3.8). The trajectories of the
electrons from the vicinity of the limiting points are
strongly elongated helices; in the zeroth approximation
they can be replaced by straight lines. Then

2az

5(z, 1.8, py)=1— (—)

u

(0, >0) {5.10)
and s = — for negative V,. Inasmuch as for all the re-
maining electrons the form of the function s does not
play any important role, we shall use expression (5.10)
at all values of py in the calculation of the asymptotic

* A more accurate criterion on the side of larger ¢ is presented in the
next section (formula (5.30)).
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value of the y-component of the current density (3.9).

We use the saddle-point method in the integral over
7 and 7 in (3.9). The saddle-points 74 are the solutions
of the equation vy (7o) = 0, and coincide with the effec-
tive points. Using the saddle-point method in the inte-
gral with respect to 7, we get

) ‘a
. 2e2 i ' ,
Jy(z)':mg% L vy (Ta) S dx S dt'v, ()
L -0 s(z, Ly pg Ep)
v
1 I L
Xexp[_ r—ta)]E‘, (L+§—Sd1v,(1)-— T8 x~) (5.11)

*a

The summation is over all the 7, in the interval from 0
to 27. In the integral with respect to 7', one saddle-
point coincides with the upper limit 74, and all the re-
maining ones are smaller than 74. Accordingly, we
represent (5.11) in the form

79 (2)+ AJ, (2), (5.12)

where j°'(z) represents the contribution from the point
7' = Ty, and Ajy(z) represents the sum of all the re-
maining terms.” After simple transformations we get

Jy(2)=

oo

i 4, ffdant, (g @ —m).

—ox

(5.13)

where

el \Ta)
A, REIEN K dpy Z- o 2 m z-m\dS Bprid(v,)die—ep). (5.14)

Ta

Going over to integration over the spherical image of
the Fermi surface, we obtain

4 . e2 " dhcos?h 5.15
Ay FEEI SV TS ( )
A is the azimuthal angle in velocity space (v, = v cos 4,

v, = v sin ¢ cos A), ¢ is the polar angle, and the polar
axis is parallel to Oz. For the Fermi sphere we have

= 3Ne’/8pp.

All the remaining saddle-points 7’ = 74 — 27n make
a contribution to Ajy(z). Out of the entire sum, we re-
tain in Ajy(z) only one singular term, for which the
value of nu is close to z. This is precisely the term
responsible for the occurrence of the current peak

202  dh cos?h
@Gy K@)

0 (z—nu)exp (;Znnv— im)

Q

Ajy(z) =

x §§ dtdnk, f;-—rtlt+% (et — n?)] .

—c

(5.16)

where 0(x) is the unit step function: 6(x) = 1(x > 0) and
6(x) = 0 (x < 0); n =[z/u] is the integer part of z/u.

An important role in the integral with respect to A is
played by the small vicinity of the limiting point A = 0,
where u(A) has a maximum. Near this point, all the
smooth functions of A can be expanded in a series. As
a result we obtain

EES)
202 [ SUU SR Y-
Aj, (2) = cor (m){yj\?:“ Sggdwgdne (z—nuo—%nufﬂﬁ)

e

r By 5 mitg— g nuiht A+ (Bt | | (5.17)

where [, is the mean free path of the electron at the
limiting point, and uf = 8%ue/8A%. The characteristic

width of the region of integration with respect to A is of
the order of (5/2)1/2. This small parameter determines
the relative magmtude of the current Ajy in the peak
compared with ] . 1t is clear already from (5.17) that
Ajy(z) is an almost periodic function of z with a period
Wo, and attenuates exponentially over a length [, sin ¢.
In view of the smallness of Ajy(z), £q. (3.1) can be

solved by perturbation theory. We use an even continua-
tion of Ey(z) for jy(z) and go over to the Fourier com-

ponents (3.10). Equation (3.13) and the function Tyy(z)
are rewritten in the form

K2E, (k) 4 2E(0) == batioc™ [0y (k) &, (K) + Ajy (B)], (5.18)
) 2nAy
Tyy(2)=To(2) + AT (2), o6 (k)= R (5 19)
where
o o -
. dk cos kz =& - dggeos (_K)
O(Z)'S K Iniwe Tog (1) S prp (5.20)
i dk cos kz Ajy (k) o2 13
AT(Z) - ceE‘"(i)) § k2 —4dniwc 2oy (k) ! b= (8:1%)/1,,) ‘ (521)

Figure 6 shows plots of the functions Re 2/6 To(z)
and Im 2/6 To(z). These functions describe also the dis-

tribution of the field in the skin layer at H = 0 in the

sase of specular reflection of the electrons from the
surface of the metal™’. From (5.21) and (5.17) we get**’

883 \ 1/2 : (1_’%) cmn 29

AT (z2)= — (T) exp | — g a¥, ( = ;"‘“) s (5.22)
where

2l ;‘; R g -“",jj;j’- . (5.23)

For a Fermi sphere o = 1.
The function ¥,(x) is of the form

‘daq cos(qr+ ) Zsin (qz+%)

oc d
1 \ L'Nm
i@ = (¥ —1)2 i 5 (@B=D(" 0
O

[227%* Ing

+2.37 (g 1) i3 (2¢° g+ 2 (5.24)
Were we to disregard collisions between the electrons

and the surface, and were we to use the distribution
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function in an unbounded metal, then there would be no
§-function in (5.16) and (5.17). Then (5.22) would contain
in lieu of ¥,(x) the function!?

_18
=7
8

This expression would be obtained also if the field dis-
tribution were to be calculated by the Fourier expansion
method (see Sec. 3). Figure 7 shows plots of Re ¥, .
and Im ¥, ; and of their derivatives. It is seen from
these curves that allowance for collisions of the elec-
trons with the surface of the metal leads to a decrease
of the field on the left edge of the peak (z < nu,) and
hardly affects its shape when z > nu,. (We shall return
to a discussion of this fact in Sec. 11.) We see also that
the real and imaginary parts of ¥, ; (or ¥, ) change in
such a manner that the extremum of one of them coin-
cides with the position of the sharpest variation of the
other. The characteristic spatial width of the burst is
of the order of (6—7)0 and coincides approximately with
the width of the function Te(z). The amplitude of the
burst does not depend on H and decreases with increas-
ing distance like 272,

The formulas presented in this section are valid in
the case of focusing of electrons with an extremal dis-
placement per period at large inclination angles  of

dqq“zcos (q:+ )

T =1

(5.25)

the vector H relative to the surface of the metal. The
corresponding criterion for the applicability of the
formulas is

iy ~ -
K['\fm

. (5.26)
Under ordinary experimental conditions this inequality

is well satisfied. If it is replaced by the opposite inequal-
ity, then formula (5.22) describes directly the distribu-
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F1G. 7. Plots of the functions ¥, and ¥, (a) and of their deriva-
tives ¥; and ¥; (b). The indices of the functions are indicated near the
curves.
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tion of the field in the metal for the first peaks with
numbers n < u/5.

5.3. Focusing of electrons on the boundary section.
‘‘Quantization’’ of electron states in resonant interac-
tion. When the angles of inclination of the magnetic
field to the surface of the metal exceed (6/1)'"°, the
electrons are no longer effective in the vicinity of the
limiting points. The projection of their velocity v, does
not vanish. Here, however, a different focusing mech-
anism of the effective electrons is possible'’®’. The
only effective electrons that resonate with the given
harmonic of the wave packet are those for which the
condition ku = 27n is satisfied. The current density in
a metal with a given wave vector Kk is therefore deter-
mined only by the orbits corresponding to discrete val-
ues of the angle y from the interval ¢ < y < 71— ¢ (see
Fig. 4). The number of resonant states (i.e., the num-
ber of different groups of electrons) is determined by
the wavelength 27/k, and by the magnitude and direction
of the magnetic field. When any one of these parameters
changes, the number of states also changes. In other
words, a group of resonant particles can appear on the
Fermi surface (or disappear). Because of this, the con-
ductivity o(k) experiences finite increments (jumps). It
is obvious that this effect is due to electrons situated
in the vicinity of the boundary section of the Fermi sur-
face, which separates the effective and inetfective elec-
trons. The jumps of the conductivity o(k) lead to AP of
the field in the metal as a result of the focusing of the
electrons on the boundary section. Jumps of this kind.
as is well known, are experienced by the density of the
states and become manifest in all the macroscopic
characteristics of the metals in a quantizing magnetic
field when the number of Landau levels on the Fermi
surface changes. In the case under consideration. the
‘*quantization’’ of the states occurs under the classical
conditions Q2 3> T. This unique '‘quantization’ of the
states is due to the resonant interaction of the electrons
with the variable field.

Let us investigate this AP mechanism, using as an
example an alkali metal with a spherical Fermi surface.
Since the.velocity of the electron on the boundary sec-
tion at the point v, = 0 is directed along the y axis. it
is necessary to calculate the conductivity o y(' ) and the
corresponding field distribution function T

In this and following sections we shall dysregard the
collisions between the electrons and the metal surface,
and we shall use the Fourier-transformation method
described in Sec. 3. In addition. we confine ocurselves
to the low-frequency case (3.19). From the general
formula (3.12) we get

1 2n
Ve
ﬂ.\mQ S dPOS

—1

Oyy (k) = o (k) == dtn, (T, p) S dt'n, (v, pyexply (v —1)]

% cos [kRpsin ¢ (v — 1) + &R cos ¢ (1 —p?)"/* (cos T —cos T)]. (5.27)

We have introduced here the following notation:
@ =cos x, x—angle between v and H, and

ny = v,lv=-ncos¢ + (1 —u3) Fsingsint, y=vQ

Expanding the cosine in (5.27) in a double Fourier series
in 7 and 7', and calculating the integrals, we get

a‘py]% (kRcosp } T—n2)
Y2~ (n—&Rusin g

= 1
Vel 5\ ¢
2y co«z(p e X

N0 -

o (k)= (pcos? @ +nsing (AR)"1)2.

(5.28)
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If we let the mean free path [ go to infinity, then y — 0.
and

D(z)= — 8 (2). (5.29)

Y _
A
In order to obtain the condition for the validity of such a
substitution at finite values of v, it is necessary to com-
pare the relative rate of change of the two rapidly vary-
ing functions D(n — kR pusing) and J(kRcos ¢Vl — p?).

It will be seen from the exposition that follows that an
important role in the sum over n is played by the terms
with .

{nt=ny= [i,jj—s'm 2(;] .

When [n] = no, the D-function has a maximum at
|lu| = cos ¢, the width of the maximum being Ap
~ /KR sin ¢. The Bessel function Jp(kR cos ¢v1 — %)
changes near the maximum of the D-function over the
interval Ay ~ (sin® ¢/kR)*'®. This estimate follows
from the well-known asymptotic expression for the
Bessel function J,(x) when n ~ x = 1. Therefore the
condition for the replacement of the D-function by a
§-function in {(5.28) is ’

e

Y . sinzgy273 . i
; ( ) or sing> (Aﬁ?)

KRsing KR

e (5.30)

The quantity ¢ ~ (R%/1°)""" (and not (6/1)'"*) plays the
role of the critical inclination angle: when ¢ < ¢, the
electrons of the limiting point can still be reg‘arded as
effective, but in the region ¢ > ¢ they are ineffective.
When condition (5.30) is satisfied. formula (5.28) can be
represented in the form

Jaey

alky= 2kl sing

3 n L P 2T T SN SRR V]
2 (AHSinq cus(;) JL (k2R cost g —nP Lgty) ](531)

The summation is over all the n (positive and negative)
for which the radical in the argument of the Bessel
function is real.

Expression (5.31), in which the integral over the
states is replaced by the sum over the discrete values
of n, illustrates the statement made above concerning
the ‘‘quantization’’ of the electron states as a result of
the resonant interaction of the electrons with the elec-
tromagnetic field. Formula (5.31) is asymptotically ex-
act when ¥ — 0 and takes into account the contribution
of both the effective and ineffective electrons. The dif-
ference between their interactions with the wave is con-
nected with the change of the character of the asymptotic
form of the Bessel functlon Jp(x) when n ~ x > 1 (the
Stokes phenomenont'*?). For the effective electrons
(x >n > 1), the asymptotic form of J,(x) is oscillating
and for the ineffective particles {(n > x) the function Jy(x)
decreases exponentially. The ‘‘turning point’”> x =n
corresponds in our case to the boundary section, and
with this |n| = ny. The condition under which all the in-
effective electrons with |n| > no make an exponentially
small contrlbutlon is determined by the inequality
n®— x> ny>. In particular, it should be satisfied also
for nj=ny + 1. ‘From this we get the criterion for ¢ on
the side of large angles

—13 —1/7

Or sing< (kRcosq) (5.32)

It follows from (5.30) and (5.32) that the angle region in
which the electrons should become focused on the boun-

sin®q oon
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dary section is bounded by the inequalities

YT RRY T < sing < (kR)™H (5.33)

In the sum over n it is possible to disregard here the
exponentially small terms with |n| > n,.

For large values of kR sin ¢, many values of n are
important in the sum over n. -Using the asymptotic form
of the Bessel functions and replacing the sum over n by
an integral, we get

ny
dnn? __ 3aag

3ay S
2kin? (nt—n2)172 T4kl
_%eo

o0 (k) (5.34)

The ‘‘quantum effect,’” which is manifest in the dif-
ference between the sum over n and the integral, is due
to terms with |n} = no. When the inequality (5.32) is
satisfied, these terms decrease exponentially in a reg-
ion where the argument of the corresponding Bessel
function is smaller than the index. Therefore

SUALII 13‘0 (no) 0 (kR sin ¢ cos ¢ —n,) o~

F(U’(k) sin @
(12?3 r2 (%)

oty

ay ku
T sin g (ku)2/s 4 Py n") ’

ag = ~ 275, (5.35)
where u = 27R sin ¢ cos ¢ is the displacement of the
electron on the boundary section along the z axis. The
region of ‘‘smearing’’ of the §-function is of the order
of {27ku)*® sin®¢ and is small as a result of the inequal-
ity (5.32). The dependence of aclk) on

A ke T .’"}i]

2a 2n

when A < 0 is described by the function

ol 4 2UA] 32
exp _'3"( T3 inz ) ] .
L nyCsintg

Thus, the Fourier component of the conductivity o(k) ex-
periences jumps when k is varied in the angle region
(5.33).

The distribution of the electromagnetic field in the
metal is described by the function (3.15). Integrating
this expression by parts and omitting certain indices,
we obtain

(5.36)

4 K dk sin kz
"7t A= %aiw c 20 ()] d/\
U

(5.37)

[k* — 4niw ¢ %0 (k).

In the differentiation of the smooth functions k, we ob-
tain the function To(z) (5.20), which decreases sharply
near the surface and has no singularities in the volume
of the metal. The field peaks are due to the derivative
of the ¢ function in (5.35) and are described by the
formula

. tagu2M?3 o (2'1x) 3 sin (2sz }

AT (2) =T (5) = To () = — 2 )_ e
L T LR 5.38
M 6 ’ b= ( .'inzu)oo) ' ( )

The sum (5.38) represents a periodic function of z with
a period u. At large values of M it has singularities
whose form is determined by the expression
v, (z—bnu) , wa(l’) . 1 quq % sin qz

i { ——1)2
iU

ag (udz)!/?

21z sin g

AT (z) =

(5.39)

In the derivation of these formulas we disregarded the
““smearing’’ of the §-function (5.36), which leads to an
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exponential decrease of the peaks over distances

L ~ (u®5)"*/sin® ¢. Because of inequality (5.32), we get
L > u. The amplitudes of the first few singularities de-
crease with depth like z™'. Figure 8 shows the field dis-
tribution near the singularity.

5.4. Focusing of effective electrons on open periodic
trajectories. Let us consider the AP of the field in a
metal with an open Fermi surface in the case when the
vector H is parallel to the boundary of the sample. If
we disregard the collisions of the electrons with the
surface of the metal, then it is convenient to use in the
calculation of the field distribution the Fourier expan-
sion method (Sec. 3). Calculating the integrals with
respect to 7 and 7’ in (3.12) for the elements of the con-
ductivity tensor o k) with the aid of the stationary-
phase method, we obtainl!:

rel dhngng

el dhngng )
T CRRYP TR { S T S K

closed open

Cap (A)

y
2 a2 sin? i;‘— } '
‘ () (5.40)
The integration is along the line v, = 0 (¢ = 7/2) on the
Fermi surface, ny = v4/v are the components of the
unit velocity vector, and ¢ and A are the polar and azi-
muthal angles in velocity space. The first term repre-
sents the contribution of the closed orbits, where the
displacement u = 0, and the second is due to the open
orbits in p-space, on which u is constant and is given by
(5.6). Inasmuch as y changes smoothly within the open-
orbit layer, the resonant factor can be taken outside the
integral with respect to A, replacing y by certain char-
acteristic value yq.

In (5.40) we neglected the contribution of the station-
ary-phase points that lead to a sequence of peaks at
depths z = uy'’ (see Sec. 5.1). Following"*'), we assume
that the relative ‘““number’’ of open orbits is small, i.e.,
the second term in (5.40) is a small correction. The
basis for such an assumption is the fact that the role of
the open orbits is significant only in a small interval of
values of ku, where |ku —2mn| < y. At all other values
of ku, the second term of (5.40) is of relative order of
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smallness y2 << 1. Since the field distribution in the
metal is determined by the integral with respect to k,
the singularity in the field distribution has a relative
amplitude of the order of yo.
We refer the first term in (5.40) to the principal
axes. In terms of these axes
olk) = zﬁ:g Bus (1 + Bun mjiﬁ) ,

v+ 2sin? (v-

.2 o dhn}
closed
where 3 is the relative ‘‘number’’ of open orbits. We
shall henceforth omit the vector indices. Let us inves-
tigate the field distribution function in the metal (3.15).

The field near the surface is described by formula
(5.20), in which the depth 6 of the skin layer is of the
form

Bun h (5-41)

c2 13
8~ (mmp) - (5.42)
The form of the peaks and their decrease with depth are
determined by the function

oo

’ dixcos (—%i) Yo
(z2) = iM? ; T ’
AT (2) =i MByou [FLENTEIE \‘5;3_23.“]2;)
!6 -

(5.43)

where M = u/6 2> 1. The main contribution to the inte-
gral in (5.43) is made by integration near the points
X = ku = 27s (s—integer). Therefore

2aszy
“‘" 2:13(:(;51( - ) Taypz
AT (z) = 2a%i M By > AR ¢xP (——u’») .
s=0
The function AT(z) is an almost pericdic function of z
with a period u. At large values of z, the field in the
metal is an aggregate of narrow and slowly-decreasing

peaks. The form of the singularity near z = nu is

(5.44)

lyt(l)=‘1—§

i

dqq c0s 4z
Pz -
0

(5.45)

AT (z) = —aBy,dexp ( —2any,) ¥, (i ;nu) ,
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Plots of Re ¥4(x) and Im ¥,(x) are shown in Fig. 9. Just
as in the case of the limiting point, the extremum of one
of the curves coincides approximately with the position
of the sharpest variation of the other. The width of the
peak is (5—7)8, the relative height of the peak is of the
order of By, and is smuall compared with the field on the
surface even when 8~ 1. The exponential decrease of
the bursts occurs over a characteristic length ! of the
mean free path of the electrons on the open orbits.
From the mathematical point of view, the AP of the field
into a metal as a resuit of focusing of effective electrons
on open periodic orbits is connected with the delta-like
singularities of the Fourier components of the conduc-
tivity tensor (5.40).

6. Focusing of Ineffective Electrons

The ineffective electrons move over trajectories such
that their velocity component v, normal to the surface
of the metal never vanishes. The interaction with the
electromagnetic field is resonant only for that wave-
packet harmonic, whose length is equal to the displace-
ment of the electron u within one period. Because of
this, a field AP havmg a harmonic character is pro-
duced in the metal-'®-. The spatial period of the oscilla-
tions is determined by the extremal values of the dis-
placement ugy (Sec. 5.1). From the mathematical point
of view the difference between the ineffective electrons
and the effective ones is manifest in the fact that the
Fourier component of the conductivity o(k) has a single
singular point, located near the real axis on the complex
k-plane.

The considered mechanism of AP of the electromag-
netic field has an analogy in static conduct1v1ty Sond-
heimer‘'®- and later V. L. Gurevich!*’? have shown that
the resistance of metal plates in a normal magnetic
field oscillates with variation of H. The oscillations are
connected with the change of the number of revolutions
of the electron on the path from one surface of the plate
to the other. This phenomenon was first observed by
Babiskin and Siebenmann-**? and by a number of other
workerst®%J,

Let us con51der the simplest case, when the vector H
is perpendicular to the boundary of the metal, and the
Fermi surface is singly-connected and is actually sym-
metrical with respect to the z axis. It is knownl®*J that
in this case it is convenient to introduce circularly
polarized quantities

Ey(z) - Eo(z) = iE, ()= —2r1Ey (0) T, (3), (6.1)
tlexp (thz)-exp (—ikz
T+ z) :'_.‘1 S = 1?2! /.mm:zap:(k) x (6.2)

I

The Fourier components of the conductivity o{k) are
given by

X 2ne? mry - -1 Pz) )
( )= ()—[h)anplT[Y'lLl):F(pz)] s 1(171) +1, (6-3

where v = (vZ + v2)12 5 the transverse velocity. The
symbols = in (6.3) correspond to electrons, and should
be interchanged in the case of holes. Formula (6.3) can
be easily obtained from (3.12) if it is assumed that
projection of the velocity v, does not depend on 7 and if
We put vy = v, cos 7and vy = v, sin 7.

It is known from™7 that in the anomalous skin effect
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the electromagnetic field at large distances from the
surface of the metal consists of two components. One
represents the contribution from the poles of the inte-
grand of (6.2) and describes the sharp decrease of the
field near the surface of the metal. This part of the
field is due to the effective electrons. The second is
connected with the presence of a single branch point in
the Fourier component of the conductivity o.(k). The
singular points of 0,(k) are due to the contribution of
the electrons from the vicinity of the limiting point of
the Fermi surface, or else from the section where
ulp,) = uext. In a strong magnetic field these points are
located near the real k axis. At large distances from the
surface of the metal, the contribution of the effective
electrons (poles) can be neglected, and the behavior of
the field is determined by the form of the functions o.(k)
in the vicinity of the singular points.

6.1. Limiting point. The contribution to the connec-
tivity from the electrons of the limiting point is deter-
mined by the expression

Ty

2retm 07 d — pat
Aoy (k) 7WTLZ {S yoiry (pszﬁilzly';l(p;o) (p:— po)
o S 4Pz (p:+ po) }
Y=Y g (o) Y (o) Uiz — po)
iezmo Ay . - .
=60 IRE ”,_f‘ (Y5 (pa)—iy) In (Y (po) —iy)
=iy = Ya (p) In (— iy — ¥s (pul]. (6.4)

The integration is near the limiting points p, = % pe,
Y:= 8Y./op,. It follows from (6.4) that near Re k > 0
the function Ac.{k) has a singularity of the type x In x at
k.ug = 27{1 + i}), and the function Ac-(k) has a singu-
larity at k uy = 27(1 —iy). Let us calculate, for exam-
ple, the asymptotic expression for T.(z) at large values
of z. We make a cut in the complex k plane from k. to
k. +i%, In the term with exp(ikz) of formula (6.2} we
turn the contour to Im k > 0, and in the term with

xp(—ikz) we make the turn to Im k < 0. The integral
(6.2) can be represented in the form of a sum of resi-
dues and an integral along the edges of the cut, since
the sum of the integrals along the imaginary axis van-
ishes identically. The sum of residues, as indicated
above, decreases rapidly, since the roots of the equa-
tion k%? = 47iwo.(k) are complex: kj = 6’1ej, e]? = i.
The quantity 6 is the depth of penetration of the field
into the metal at H = 0 and is determined by the formula
(5.21). Therefore in the asymptotic expression T.(z)
there remains only the integral along the edges of the
cut. The calculations carried out in-"- lead to the fol-
lowing result:

T. (z) = A,z Zexp (zlx,b—%) , (6.5
where
e2c2 mi, A ug \® ., f 21
Ao = T (5_21’_[7:)7)0 ('uT) I+ (u_n) : 16.6)
For a spherical Fermi surface we get
a2 B cpp 1,3
PR (6.7)

In the presence of several limiting points, the os-
cillations can have different phases, owing to the com-
plex nature of the quantities 0.{27/uy). From (6.5) it
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follows that in the case of lirear polarization the field
in the metal is a standing wave (~ cos(27z/ug).

6.2, Helical trajectories with extremal displacement
over the period. In the vicinity of the corresponding
branch point o,(k} is given by

zaetmnt & - . S -
Oy (k)—"‘('{,;ﬁa_ﬁ S aps {[ YooYz (p)—iY% (Pa)l(Px—Pi)’] '
+ [Y"“ iV (py) +':§'| Yy ()| (e, + ) }’l}

emv} ’

.t (£1i)
— 13nQ

Cyi—Y ' (6.8)

_"ﬂ!!/!
The values of all the quantities are taken at |pg| = Py,
where the function u(pz) has an extremum, u”

= 8%u(py)/ 8p3. Unlike the case of the limiting poirt, in
{6.8) there appears a singularity of the type x 2 at
k: = 27/u,. Calculations similar to those given above
yield the following field distribution:

Ty (2) == Ay (s 2 exp (ikiz j;%f) ; (6.9)

(6.10}

All the formulas presented above are valid when the
carditions 6 K u < [, 2 are satisfied. Fromn a compari-
son of {(6.9) and (6.5) it is seen that the amplitude of the
wsecillations is larger by a factor (z/u)'?<n tle case of
extremal helical trajectories than in the case of a limit-
ing point. The amplitude of the oscillations due to the
clectrons near the Jimiting point is independent of H in
this case.

6.3. Open orbits. Drift of the ineifr«iive ¢lectrons
into the metal is possible alse when the wagnetic field
is paralle} o the surface'®/. To this end it is neces-
sary that the Fermi surface be open and e vector H
pe orthogonal to the mean direction of the opening. It
van be shown if the electrons un the open periodic arbits
arve ineffective, and the corresponciag rangential com-
ponent of the velocity contains oniy the first harmonic
in 7, then the following formulz i3 valid for ok

BB L i s f. AUNEYY
ok =y v | seg) ] ! (6.11)
Expression (6.11) is obtained irom (5.41) if account is
taken in the latter of the rescaant interaction with only
one component of the wave packet. The field AP is des~
cribed in this case by the function

Y

STy e By A | e S WL SN AU | NS
AT ) = i'Byyd }} !;3. »;(»%)3]“ ol \3

1%3 z
a A, cos (——r)w,-.g ‘._) .
u 5

(6.12)

where 6 is determined %y 15.42).

The amplitude of the hurmonic oscillations (6.12) de-
creases slowly over th characteristic length I of the
mean free path of the ¢lectrons on the open trajectories.
The quantity A, does not depend on the magnetic field
and is of the order of BGZZ, where 8, is the depth of the
skin layer at H = 0.

We have considered above only the simplest cases,
when the normal component of the velocity v, does not
depend on 7, and e tangential components of the veloc-
ily contain eply ti {irst harmonics in 7. In the general

case when v, dépends on 7 and higher components are
present in the Fourier expansions of v (7) and vy(‘r),

higher harmonics of the type cos{(2mz/u) appear also
in the distribution of the field E(z}. When v, is strongly
dependent on 7, effective points vz(‘r) =0 can occur on
the trajectories of the drifting electrons. In this case
the AP can be interpreted as propagation in the metal
of a large number of weakly-damped harmonic plane
waves, the interference of which causes the appearance
of the narrow peaks. The dependence of v, on 7 should
also lead to a dependence of the amplitude of the har-
monic oscillations on the polarization of the external
field. For an elliptic limiting point the degree of ellip-
ticity of the standing wave coincides with the ellipticity
of the limiting point.

7. Singularities of Anomalous Penetration of the Field
Into a Metal at High Frequencies. New Mechanisme of
Cyclotron Resonance

So far we have considered the A¥ of & ficld iat: a
metal at low frequencies (3.19). Okviously, the AP
mechanisms described above are effective aiss at high
frequencies w > v. A characteristiv property of metals
in this region of frequencies is the resonas dependence
of the surface impedance on the magneti~ ficid. The
cyciotron resonance (CR) connected with muitisie return
of the effective electrons to the skin iayer is most
sharply manifest when the vector ¥ s parailel to the
surface of the metal. At large inclin
¢ > 8/1, most electrons fall ints the ski !
once, after which they go off nto the mietsi ox
collide with its surface. In this case e OF du
multiple return of the effective cleciruns o the &l
sa singu-

7 oangies

r only

layer becomes impossible. The sxinicnce an.

larities of CK in an ixclined rnets field™  Lre con-
g

necied with the AP of electromagnetic wave in ihe

metal.

7.1. Chain of trajectories in an inciined nognatic
field and cyclotron rescrance. Let us consider a metal
with a spherical Fermi surface. Under the conditions of
strict resonance w = nfl, the field distribution in the
metal will be practically the same as at low frequencies
(see Sec. 4.2). With increasing ‘*detuning’’ of the reson-
ance, an increase takes place in the “*dephasing’’ of the
electrons that produce the peaks, and the ampiitude of
the peaks decreases!’®?, Accordingly, the impedance
increment AZreg lue to lne field AP in the metal 1l
the trajectory chain should experience 1¢gonance os-
cillations. In a parallel field, this addition is a smail
correction to the main effect. In an inclined field, it
plays a decisive role in determining tiie {orm and the
amplitude of the CR.

According to'®/, the Fourier component of the con-
ductivity oxx(k) is of the form (we omit the vector in-
dices)

a § du (1 —p?) [J; (kR cosp |V T—ji2))*

v —i{0—naQ-—koy sin ¢)

3.Ne?

o (k)= S— (7.1)

Raz— o0 —

This formula can be obtained directly from the general
expression (3.12), by calculating the integrals with
respect to T and 7’. The effect considered by us takes
place in the region of small inclination angles

@ <{(6/D)¥? < 1. Therefore all the functions @ in (7.1)
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can be ex.anded in series, retaining the first nonvanish-

ing term: ¢f the expansion. The region of small ¢

breaks u» in turn info several regions, depending on the

efficien: y ¢ the mechanism by which the electrons are

select 3 by diameters as a result of their drift motion.
In iae angle interval

[ (bD,,)’ 2

o< (7.2)

the scatter of the diameters of electrons with small |u |

is much larger than the depth 6 (see Sec. 4.2). There-

fore the field peaks attenuate rapidly with increasing

distance, and the amplitude of Az g is small. The con-
Anctivity ofk) has in this region the form

\ do;, 2. .
g (k) - H.’%@-{i—%snn(kbo-nn)» . (7.3)
Vhe parameter
Oy (472 v i e
w- - (k"Q} ! V’u:i\“f (Aw = 0--n{) L4

characterizes the scatter of the diameters cf the elec-
irons that return many times to the skin layer (cf. (4.20))
and in the region (7.2) we have |w| > 1.

&mng io the smallness of the oscillating term in
T3, the field peaks decrease exponentially (see (4.14)
{4.16))

T (nDg) ~ ()™ T (0), (7.5)

to the first peak, which is 1oca-
ad g . As they uiove along the trajec-
vy, the o % return to tmD surface nf the metal
Zom 0 phr o ¢ the finld ( w™') of the first peak, which
is weakev oy a factor w™' than the field on the surface
itsell. Indeed, if we substitate (7.3) in (3.18) and expand
T(0) in powers of the small parameter 1/w, we get

KALY

T e g
AZ jes 5 £ = Lo Thetly

A==, (7.6)
il

where 5 is given by (4.22). The relative amplitude of

e
2V et Texp (

(7.1

the resonance, obviously, is of the order of (l¢/v27Do0)2.

Figure 10 shows the depundence of the real and imagin-
ary parts of the resonas! addition to the impedance on
at

in the region (4.18}, tue celection of electrons by
diameters is quite effeciive, and the fieid peaks along

x
w/y= 5
1 d 4
, W FIG. 10.
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T‘ha disiriurion
< {arinulas

the trajectory chain atienuate b’owly
of the field in the metz! is descis
{4.21) —(4.24), in which cosing/3) @ ,-t ve replaced hy
[cosnn/2)j(1 + 2w/9). The form of the suiface-impad-
ance resonance curve is determined near the maximum
by the formula

dq
2=Zygr (e,
OZn ¢ (1—sing- w)'’4

(7.8)

which is valid when |w| < 1. The nonresonant factor Zo
is determined by (7.7). When |aw| < ¢Q(Dqy/5)Y2, the
quantity |w| is small, and the impedance Z is larger
than Z, by a factor 1.4, Figure 11 shows the schematic
form of the resonance curves. Their characteristic
width AH/H ~ @(Do/6)"/? is due to the scatter of the
diameters, and not to the electron collisions.
Finally, in the angle interval

—,%— <@ (%0 ) (7.9)
the oscillating ‘part of the conductivity o(k) is deter-
mined as before by one resonant term with w =~ nf2, and
the part of ofk) that depends smoothly un k is given by
(5.34). In other words, the skin layer iz formed by all
the electrons (which are mostly nonr~:onant), and the
bursts are produced by a smali growu of resonant parti-
cles with small py. The addition t» (ae impedance is
due to the partial return of the field irom the first bur=t
to the surface on the metal, and is of the form

oz wdE . 20 . ‘/déa_ 7. i“")
2Ty F G R (.50
165 wdy n o LR .. .
T BV RIS E o
The function

) R x(: iy ::f . sin gf? . ;

Flods 50\ ooy 3] - exp (idw) (7.12)
1 {l

describes the form of the resonant peaks. Near reson-
ance |w| < 1 and F{w) =~ In(1/w), i.e., the CR is logar-
ithmic. When ¢ > (6¢/Do)"/?, the width of the maxima
becomes larger than the distance between them and the
CR vanishes (Fig. 12).

}ﬁ/ﬁp A%

TN A

a4

@

FIG. 12. Schematic form of the dependence of the relative ampli-
tude of the resonance on the inclination angle ¢.

Estimates of the amplitude in the corresponding regicn of angles are
marked near the curves.
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fnasmuch as in an inclined field the CR is due to AP
i) vlectromagnetic waves in the metal, the resonant
wiiues of the impedance have a maximum and not a
minimumn, corresponding to a larger transparency of
the metal. The width and the form of the resonance
curves is determined not by the dissipative processes
(collision frequency v), but by the scatter of the diam-
eters of the electrons that produce the ‘‘chain’’ of
trajectories.

If the electron dispersion is nonquadratic, the cyclo-
iron frequency f depends on py. Near the central
(extremal) cross section of the Fermi surface, the
resonance condition

1

® == nQ,.-;u,‘T (7.13)

nQpk + kv, (pn)
is satisfied by two groups of electrons, and not by one
as in the case when 2(py) = const (the prime denotes
here differentiation with respect to py). It is shown
inl®] that this leads to an appreciable decrease of the
maximum amplitude of the peaks and of the resonant
value of the impedarce. In particular, in the angle reg-
101’1 (4.18), the maximum value of AZyeg is only 3% of

. This decrease of AZ s compared with the case of
quadratic dispersion is due to the fact that the skin layer
is formed by both groups of the resonant electrons
{7.13), whereas the peaks of the field and AZ o4 are
determined by cne group in which the scatter of the
diameters AD iz small compared with 6. In all the re-
malning cases ¢ deviation of the electron dispersion
from guadrati i not play an important role.

It is of intersst L0 compare the considered AP mech-
anis with the =nechanism wwrpbj a chain of trajec-
‘ories 18 produced when ¢ = 0 in metals with nonquad-
valiv dispersion saw'*), In the case investigated by
Arbel’, the selection of electrons by diameters is as a
result of the UR itself. This selection mechanism is
effective it (see Sec. 4.2) R/8 < w/v. The theory de-

veloped above for CR in an inclined magnetic field is
valid under the opposite condition, R/6 > w/v. Conse-
piently, the mechanism proposed mLZU for AP and CR
i 20 inclined field is to a certain degree an alternative
2nd a complement to the mechanism considered int*’

Inversion of the CR peaks on the central sections of
the Fermi surface following inclination of the magnetic
tield waz observed in potassmm[ 1, copper[
axhpv‘ra” bismutnt®’? | and apparently in cadmium{?®,

vigure 13a shows the experimental curves for copper.

7.2. Focusing of electrons from the vicinity of the
limiting point and doubling of cyclotron resonances. The
field peaks produced in a metal by the electrons of the
limiting po:nt also lead to interesting features of CR.
This effect was first observed and correctly interpreted
qualitative by Grimes et al.[*J in an investigation of
CR in aluminum (Fig. 13b). It was later observed also
in indivm=*"

The phase of the fizld in the r-th peak at the instant

18

where wi-phuse of the field on the surface. The elec-

trons moving from inside the metal negotiate the Jlis-
- peak o the surface within the same

he phase difference hetween the external

[N
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field and the peak field “‘returning’’ to the surface is
obviously 4rrw/Qo. If 47w/ Q6 = 270, i.e., w = nf2/2, then
the external field and the fields from all the peaks (with
arbitrary r) are in phase. Consequently, a ‘‘doubling’’
of the resonant frequencies takes place (2 = 2w/n).

The formulas obtained in Sec. 5.2 for the field dis-
tribution in the metal are valid also in the region of high
frequencies w > v, but, unlike the low-frequency case,
they contain an additional phase factor exp(2rinw/f).

To determine the change of the surface impedance AZ

of the half-space due to the AP in a metal, it is neces-
sary to calculate AT(0) (see (5.21)). To this end it is
necessary to take intc account in (5.18) all the peaks in
the volume of the metal. Since the diffuse scattering of
the electrons by the surface of the metal does gy
an important role and changes only a numari f ;
on the order of unity in AZ, it is pessible to neglee: i
g-function in {5.16}, avs? wriie ajy(z) i e inrn

ger e Vom i@ fep
Afy(z) = gt ) —2nn-
Afy(z) AEYS Ky 4 CLp g n Q, J 3,\.\ )
o -
»\
X [ E, (z— ntg - = RUA '}

(7.14)

Let us change to Fourier component:

for éfy(k} we ¢h-
tain Eq. {3.13}, in which

FI1G. 13. a) CR in copper; ELH |} (100} The -0y :
i indicated on the curves (from [*5}). b3 CR at #5: {0557y oe
umninum; Oz {| [100} H i (111} (from {9}
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The function o¢(k) is given by formula (5,19} ard x is
given by (5.23). Substituting (7.15) in (3.18) we get

o0

§ d,
~8iwugc™? 4 —

Sg—i () 114 Vaar 0
(6 is determined by formula (5.21)). In the integral with
respect to g, at large values of ud/ 6, the principal role
is played by large q ~ uo/ 6. Therefore the change of the
impedance AZ can be obtained with the aid of a formal
expansion of the integrand in (7.17) in powers of ap(q).
The term linear in a (and in p(g)) is small, owing Lo the
ropid oscillations of the function p(q) at large values of
q. Therefore

Zy=2Z=

{1.17)

. _dite)

[T

vhere Z is given by (7.11). The main contribution to
AZ is made by the nonosciilating part of the function
5%q), which is equal to

28muia?
o B L e i
AZ =2 ~-Zy==i 53¢

(7.18)

L e

{2n)t i ntexp (41: i“%;ln) = ={2nYy 1 ln [i~- exp (——4:: v——-iii"l j .

ne

v ensequently,

IVARPAP - ~»-;%3quexp () v e (422 ] (129

Thus, the fiela peuks produced in a metal by the driit
of elecirons from the vicinity of the limiting point, iead
io & logarithmic CR at frequencies w = nQy/2. Formuia
{7.19) describes the form of the resonance lines. Just
as in the ¢ase of CR on central sections, the resonance
Lies are inveried. At resonance, the amplitudes of
JR/ A5 and 33/ #H do not depend on the number. The
widii of the resonances is determined by the electron
wsilisions. ’

ia the presence of effective electrons with extremal
displacement d.ring the period, such a CR should also
pe observed at inclination angles on the order of unity.

.

3. Connection Between the Trajectory Type of Anom-
alous Penetration of the Field Into a Metal and Weakly
Damped Blec:romagnetic Waves

The phenomena of field AP of the trajectory type and
of weakly damped electromagnetic waves in metals are
closely related and are transformed into each other
when the frequency or the magnetic field H is changed.
This connection is most clearly manifest in those cases
when the natural oscillations in the metal have a dis-
crete frequency spectrum. The skin layer can be re-
garded as a source generating oscillations with all
wave numbers, but of a single frequency w. In the case
of AP of the trajectory type, an in-phase excitation of
all the proper wavelengths takes place, and the interfer-
ence between them leads to the peaks. This is nonreson-
ant excitation. On the other hand, if the frequencies of
the external field and one of the natural frequencies co-
incide, then resonance occurs and a traveling weakly-
damped wave is excited in the metal in addition tc the
peaks.

Such a picture can take place, for example. in the
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presence of a chain of trajecteries in an inclined mag-
netic field. As shown in"'?, in alkali metals there
should exizt waves with discrete spectra of the frequen-
cies

. (8:1)‘ /2 ( Hs

O = =3 | Taler ) 92 (kR < @

(8.1)
and of the wave numbers k;, which are determined from
the equation Oyy(ky) ~ 1 — sin kyD; = 0 (cf. (4.19)).

A similar situation should occur also in CR. In me-
tals with a nonquadratic electron dispersion in the direct
vicinity of the CR, when |(w/n) — Qo] < v, there is a
system of peaks“] (see Sec. 4.2), and if H{w/n) — ol
> 1 these peaks are transformed into weakly damped
wavyes 327,

motice should also be taken of the connection between
th# field AP due to the focusing of the ineffective elec-
trons (see Sec. 6) with helical or magnetohydrodyuamic
waves, These waves exist in strong magnetic fields.
wihen R < §. With decreasing magnetic field, at & cor-
tain value of H = He, there appears a group of resona:
clectrons that absorb strongly the energy of the wave
{Landau damping). The field Hg is determined by the
equation (H 11 Oz)

E:‘J: = kw (Ht) Vhmax @

(8.2}

where Vi max—maximum velocity of the electrons along
the field on the Fermi surface, and Ky, -~ wave veClov Of
wveakly damped wave. When H> Hg. the »lecivens
responsible for the absorption are missing and the
damping of the wave is small, whereas in the rogien

H <l H, the collective oscillations becoie strongly
damped.* Gn the other hand, when H « H, the motion »f
the weefteciive electrons leads (0 AP of the trajectory
type (see Ses, 6. Consequently, the field Hep serves as
the boundarv between the regions of existence of field
AP of the trajectory type and of weakly damped electio-
magnetic waves.

II. EXPERIMENT (RADIO- FREQUENCY SiZFE EFFECTS)

9. Methods of Experimentai Observation »f ¥ield Anom-
alous Penetration of the Trajectory Type in & Metal

9.1. Nature of radio-frequency size effects. The
possibilities and methods of experimentally observing
field AP in a metal are detevmined oy the relation be-
tween the frequency w of the external field and the colli-
sion frequency v. At high frequerncies the field AP in a
metai can be observed by measuring the impedance ¢f
the hali-space, since it icads to CF. At low frequencies
(3.19), the field AP gives only the haif-space impedance
component that varies monotonically with H. aad this
component cannot be separated iu: practice. Conse-
quently, the only presently available experimental possi-
bility of studying AP at low frequencies is connected
with the radio-frequency size effects, which we shall
now discuss.

Assume that an electromagnetic wave is incident on
one side of a plane-parallel metallic plate of thickness

*The presence of «n “‘absorption edge” is also called “cy ciotron re-
sonaricr shifiod us 2 result of the Doppler effect”{33].
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d >» 6. Only part of the gystem ol peaks is contiingd in
the plate. Their number depends on the thickiness d and
on the magnetic field H. By varving H. we can satisfy
the relation

(9.1)

and by the same token ‘‘extract’’ one of the peaks through
the opposite side of the plate. The electromagnetic field
which appears there is radiated in space and can be ob-
served. With further variation of H, the conditions (9.1)
are violated and the plate ceases to be transparent to

the electromagnetic field. Thus, the electric character-
istics of the plate vary periodically as a function of the
magnetic field. This is precisely the radio-frequency
size effect (SE).

Generally speaking, the SE may or may not be con-
nected with the field AP. In a sufficiently strong mag-
netic field parallel to the surface of the metal, the elec-
trons return many times to the skin layer. When H is
decreased, the maximum diawmeter of the trajectories
increases and at a certain value H = H, it coincides with
the thickness of the plate. Owing ‘o the diffuse scatter-
ing of the electrons from the boundaries of the sample,
such trajectories are ‘*cut ofi’’. their contribution to
the cucrent turns out to be sm=!l compared with the
zontribution from the electruvs ihat are not scattered
by the surface of the plate and do not return many times
io the skin layer. When H = H,. a singularity appears on
‘he plot of the impedance against the field; the characte=
of this singularity depends on the form »f the extremal
eleciren trajectories.

This phenomenon was {irst predicted by one of the
anthors”!! and sbserved experimentally by Khaikin'*’
in exverimeuts on CR in single-crystal plates of tin
5 mm thick (Fig. '4). {n going over to higher Cit num.
hers, the dimensions of the trajectories D increase. Al
H < H (equal to 70 Oe) U:e resonant trajectories are ne
iInger contained in the plate and the CR vanishes. The

d=nDeyy oOr dr=lpeg

. '7’7{ Hz/Oe 77 590e
27 _m_
w+
a7
7
K . A L .
a a5 7 5 25
iy ,0e?

FIG. 14. Plots of CR cutoff in tin.

Oz It {100}, E |} [010], H || [001), frequency f~ 103!'? Hz, T= 3,75 K.
Curves i and 2 — d = 2 mm, curve 3 — d = | mm. Curve 2 - part i
I plotted with a larger magnification. The figures along the curv-« ¢
the number of the CR (from [¥%]).
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CR cutoff was observed subsequently aiso in other me-
tals (38,37) .

The same cutoff effect is obviously possible also in
the region of low frequencies (3.19)*°*), The phase of
the alternating field in the skin layer remains unchanged
for each passage of the electron through the skin layer.
The cutoff SE in the case of low frequencies has the form
of an isolated peak on the plot of the impedance of the
plate against H (see Figs. 15 and 16 below). Recently
this SE became an important method of investigating the
Fermi surfaces of conduction electrons in metals %,

9.2. Methods of exciting the electromagnetic field in
the plate. The metallic plate can be oriented in different
manners relative to the source and the receiver of the
electromagnetic field. This governs the character of the
measured quantities. The plate can be oriented such that
the wave is incident on it only on one side, and the re-
flected signal is measured. At high frequencies, such an
experimental scheme can be realized by letting the sam-
ple serve as the wall of a resonator, and at low frequen
cies, by iccating the sample near the end of an induc-
tance coil perpendicular to its axis. In such experimeii:
one measures the quantity
- B0

{0

Z4 == 4ni (9.4
When the experiment is so performed, it is most con-
venient tu observe the cutoff SE, since the second side
of the plate, z = d, serves only as a ‘‘barrier’ for the
electrun trajectories. Indeed, as shown in®*' | ths
ciangs of the plate impedance Zg(¥) due (o the “‘cutcie”
of the eiectrons with extremal diameter D, . is given
by fne formuia

Zg ) 2w ()
Zoo (HY T

1 | 7 i
l £ O o UL S
‘J! ‘ 5 M\I‘” FEY
L i~ |/
i \\ A, ?ﬁ
: y ’\g By f
B , éﬂﬂ;
ALV :
M M
) Y NAVAVS / pest |
[ \T\ TR TN T DS D
2 7 4 4 0e 7 zZ g 4 li/ Oe:i
FIG. {5 Plois of the SE in FIG. i6. Plots of the SE

in rubidium.
d = 0.19 mm, frequency

hismuth 3t different directions of
the magnetic field in the plane of

ih sample
Oz {jCy,d = 1 mm, frequency
f= 1. MHz, T = 1,8°K. The upper
figure shows the arrangement of
the electron ellipsoids and the
polarization of the electsic field.
The indices of the vector H and
;b entremal sections S and §°
-t the mumbers of the

19.5MHz, T=1.4°K,E L H.
The peaks near 4.5 kOe re-
present a partly saturated
NMR signal from protons and
fluorine nuclei (from [*])
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where a, is a constant on the order of unity (for a Fermi
sphere, a; = 4/3n). The derivative of the impedance
with respect to H {all the experiments describad below
consisted of measurements of the der 1va*wn) has a
singularity of the type (1 - Z/Dext) . The reason why
8Z/0H becomes infinite at d = Doyt is that no account
was taken in (9.3) of the smearing of the singularity as
a result of the inhomogeneity of the field in the skin
layer. It is quite obvious (as is also confirmed by exact
calculation "7} thai the smearing of the singularity as a
result of the finite skin-layer thickness 6 leads to the
pstimate
dyi/2
~(5)"

On the other hand, the impedance (9.2) changes as a
vesalt of the AP of the field in the metal. In order to
estiniate the contribution made to Zg by the field AP
effects, we write down Maxwell’s equations
FRELRY 2250 - 2E (d) ksin kd - 2F (d) cos kd == 4o Zo(k)S(/x()a .

)
{(’,"ontinuation of the field E(~z2) = E(z), E{z) = 0 when
| > d.) We neglect the influence of the finite thickness
i rho plate on the conductivity o(k). The term with E’(d)
run be disregarded, since it follows from the
* condition at z = d that cE’(d) = --iwE(d).

H 382

a2 (9.4)

max

oy
p ST 20 Lo 09)
savstituling here in lieu of E{3) /W' (%) i ¢ optantity
270085 ¢ wee obtain
gﬁé:@.“‘.: . ”f\{ 5 a_d_ﬂ(d\ (8.7}

"":v change of the impedance of the plate dus &
s proporticnal. :u the case of unilateral

i, 16 TY(d) and nos tn T(d} in the first power.

is connected with the fact that the field peak emer-

fes 0 the surface z = 0 after ‘‘reflection’” from the
‘,<,\1.{t!‘, wide cf the plate. Therefore the change of the

vivative ot the xmped:mce from even the first peak is

Smalics by a factor (d/8)'"* than from the cutoff SE.

The experiment cap be performed differently, namely,
<7 wreadiating the nlate on one side and measuring the
wirctromagaetic ficis on the other "***’. The measured
<l 1 proporiioral to

e
This
28]

e 20T (d), (9.9)

©#., 10 e first power of the function T(d). In this case
> 6 18 due o ike field AP in the sample, and the cut-
ffect plays no role
<ioally, if th« saraple is placed inside a resonant
cavity'™ or zice inside an inductance coil®®’ | two-
S.l(hi(‘, symmetrical excitation of the plate is possible,
with H(0) = H(d) and E(d) = — E(0). In this case each side
of the plate is simultaneously a transmitter and a re-
ceivar, thus ensuring the possibility of observing all the
kriown SE, including the cutoff effect. At low frequen-
cies, this is precisely the excitation method employed.
The coit with the sample serve as part of the tank cir-
cuit of a radio-frequency oscillator. The measured
qnmntit?°~ -the change of the natural frequency of the
fank clrouit ¢ = w/27 and of its Q-—depend on the depth
Of peretration of the alternating magnetic field in the
piate

DT R LEOTRGCM ..

T LA R 99

(9.9)
where M0 7(z0 s 00
field inside the :net;:
plate [rom one side.

gt
G Curs

VSN avioeaating magnetic
\vmch 16 due to excitation of the

] Usmg I\/‘Jwr"" i efguation

Y - = iwilg’, we can rews e (7.9) in the form

—2{ED(G) -+ (g
8y = THEZOTAE (9.10)

Here E'”(d) i the electric field on the second side of
the plate, due {c the AP of the field in the metal. On the
other hand, the term with E“)(_O) describes the cutoff
SE. From a comparison of (2.3) with (9.8) i {oliows that
for closed orbits and {or 4 = Duyt the contribuiions o
&4 from the cutoff +ffeits and from AP are of the s
order of magnitude.

Let us define the impedance 5 of thz
case of two-sided exritation, by meany o
similar to (1.2):

Z == —hnitor 8,

fJsing (3.14) and (3.10) we can finai
the form (we omit the vector indices)

(3.1

rewctie {11} da

Z = 18iwc ™ [T (d)~- 7 {31, 91

We have facitly assumed above 72! the field disy. i-
bution in the plate coincides with th= o distribution
in the half-space. This is iyue only wihren the amuiitede
of the peak is much smailes thon o tield in the skin
layer and the muiltiple reflection ot iporfocernce of the
waves in the plate can be negls ie x4 the presentiy
known experimeants this cond': coaxralied,

10. Experimental Investigation of Aaos’
tion in a Metal with the Aid of Size Sifecis

sun Denetr -

All the experimenis desciided briow were performea
in the frequency range 1 -~ 20 Mtz wiih two-side. exci -
tation of the plates. We discuss suly those 3E which wee
connected with the trajectory type field AP in the motal.

The amplitude of the S§ iines is maximal when th:
incident-wave electric vector is paiarizeé along the
direction of the electron veic:. iiy in the effe live peing
of the extremal trajecto:y. This makes it porsible (o
separate experimentaliy ca2=/ain 5E from niners,

10.1. Size effect on irz;-ciory chaing, i
and 16 show plots of the quann icias ﬁw/dH 83 T and
8R/9H as functions of H for bismu*h'’ and rubicium "#*’,
(The experimental conditions are indicated in the figure
captions.) To identify the SE it is sufficient to verify
that the position of the observed lines does not depend
on the frequency and changes in inverse proportica to d.
Indeed, the lines are located in those places where the
condition (9.1) is satisfied. The formula for the position
of the lines of SE from a chain of trajectories consisting
of n links is

e

< ey

2pe
Hp=n ’; ,

(10.1}
where 2p is the extremal dimension of the orbit in the

z X H direction. As seen from the figures, the interval
of fields in which the SE lines are observed is not the
same in rubidium and bismuth, thus reflecting the dif-
ference in the dimensions of the Fermi surfaces of these
metals.
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From the point of view of theory, the chain of trajec-
tories in bismuth gives a *‘rapidly damped’’ system of
peaks. The damping coefficient a (see (4.16)) is differ-
ent for the two curves of Fig. 15. As is well known, the
Fermi surface of bismuth consists of three electron
‘““ellipsoids’’ and one ‘‘hole’’ surface. At a field direc-
tion H, (curve 1), the production of the system of peaks
is due to two electron Fermi surfaces, and its ‘‘spread-
ing’’ is due to the hole surface and the third electron
‘‘ellipsoid.”’ At the field direction H. (curve 2), only
one electron ellipsoid takes part in the formation of the
system of peaks, whereas all the remaining carriers
are responsible for the ‘‘spreading’’ of the peaks.
Therefure at the field direction H, the value of a is
smalier and the lines decrease more rapidly.

When investigating the iniensities of the SE lines, it
must also be porne in mind that D changes from number-
to number: D(n) = d/p anc a” ~ (06/d)™*. Iy addition,
as already noted in Sec. 9.2, the intensity of the first
line is determined not only Ly the AP, but 2iso by the
cutoff effect. Therefore a compariscr wilh theory should
be carried cut using Lues with n = 2, but i1 Tow in-
tensity vsuallv raisec difficulties.

As indicated in Sev 4.2, the attemuation of the reakg
should decraase when the vector H is inciined, owing to
ihe mere offeeri- e selection of electrons with & definite
dizmeter Do This iheoreticai conclusion i, confirmed
Ly fha curves of Fig 16, They demonstrate the pres-
eace of # weakly dampes chain of trajeciories in 2 metsl
witn '+ spherical Ferno surface. From the relative
width of the line on the apper curve it 15 wossible *4
eatimate thai & /d & 3.1 The inequaliiies (2.18), whic
represent the condition for weak damping <f ihe peaks
in ik :sformed into

e "al Are g

<7 04n (reo-4,2,2 !

S N

&
-
e
)

Fou the lowrr cuzve (¢ = 5 =~ 0.1), these = mdmuu 3 Are
apparently satistied for lmes with numbe >0 Bis
precisely these iines which increase ragiuly compas od
with the lines of the upper curve (¢ - 0;. It is interest.
ing to note that the efficiency of the selection is retained
also when & -~ Din 2> 7), when individuza! peaks morge
together and go cver into a harmonic disiribution of the
riternating field in space.

The presence of several exiremasl dianetars Ir v
creases the damping of the bursts and at the zame Lins
leads to the appearance of “*secondzxy’’ peaks at deoths
% = ZniDjy, 1.e., the chain consists of “*liuks’’ of iffzrent
diameter. An example of a line due to such 2 ckain °e
found in Fig. 21 below.

It is of interest tc trace the variations of iiie poss -
tions of the SE lines from close trajectories when the
magnetic field is inclined'®’. Their shift retlects the

#0e / ®
/
’/
o e FIG. 17. Shift of SE tine,
P potassium with increasing tching.
i tion of the magnetic fieid
wy ’/"/ Dashed — the function H: o «
I_.,A,»*’ H(0)/cos? ¢ (from [%]).
o . l
b w2 7wy
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change of the depth of the location of the peaks with in-
creasing angle ¢: the line shift in the direction of the
stronger fields denotes that the peak shifts deeper into
the metal, and a line shift in the direction of weaker
fields is evidence of a shift of the peak to the surface.

In metals with nonspherical Fermi surface, the
closed trajectory usually does not lie in a plane perpen-
dicular to H. Therefore the displacement of the electron
along the field during the half-cycle when it moves from

.the surface of the metal to the peak can be different

from zero. When ¢ # 0 there appears a projection of
this displacement along the z axis. In calculating the
position of the peak (or of the SE line), it is necessary
to take into account the velocity component vy, which
does not enter in the vector equation (2.1). Let us con-
sider, for example, a cylindrical Fermi surface with an
axis P L Oz. Let the vector H be inclined in the (z, P}
plane. The plane of the trajectory does not rotate when
the field is inclined, and the dimension of the trajectory
increases and is determined by the projection of the
vector H on the cylinder axis. It is easy to show that ihe
denth at which the burst is located is equal to

Dn (@) =Dn(0)cosg, D, (0)= \Z!}’?ﬂ.), (1¢.2)
The dependence of the position cf the SE line on ¢ is
given by

Hy (@)= H, (0) see g, (13.8)

where Hp(0) is determined by forinuia (10.1). At sroxil
values of @ the line shift is AH ~ ¢°

A linear dependence of the shift on the angie ¢ i5 aict
possible. For example, in the case of a cylinder, the
ax1s P of which is inclined to the surface at an sugle »
we have following inclination of the field in ke {z, P}
plane

/

SN a H, (011~ glgx) i A

oS (x— ~(p)

H. {4y = 1a(0) 5

The quadratic (10.3) and linear (10.4) SE line shifts
were observed experimentally in tin and in indium.

10.2. Size effect in inclined field in a metal with a
spherical Fermi surface. In the study of the SE in
potassium, Koch and Wagner““ observed that the SE
lines of the electrons of the central section of the Fermi
surface shift towards stronger fields with increasing
angie » (Fig. 17). At the same time, z (the projection of
the central diameter) decreases like c08 ¢ in the cutoft
field H,. An explanation of this apparent contradiction
<an be found in Fig. 5. Owing to the presence of an ex-
tremum on the u;" (pg) curve, the peaks of the field and
the SE are due to electrons with u{dxt, and not with
pyg = 0. Using formula (5.4), we can show that the in-
equality ule)xt Do is always satisfied. In the case of
small ¢ we have u, éxt Dy(1 + 0.75¢%. From the plots
of u{" it follows also that the SE should have a maximum
intensity at ¢ = 25°. This conclusion was also confirmed
by experiment'®’,

In"® they observed also SE lines connected with ex-
irema of the displacement u{'’ near the boundary section
of the Fermi surface. They confirm the conclusions of
Sec. 5.3 that field peaks exist in a metal at large in-
<lination angles ¢.

10.3. Size effect due to the drift motion of the elec-
irong inside the metal. We start with a discussion of
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FIG. 18. Plot of SE at the limiting point in indium
Oz || (OU],EH{111).¢=7°15",d = 0.3 mm, frequency f= 1.6
Mi{z, The upper curve was plotted with the gain increased 16 times.

ihe experimental data on the SE from elliptic limiting
paints. Tue veiocity of the electrons at thése points is
narallet to the vectisr H and therefore the amplitude of
the 8K s maximal when the current j is polarized along
the prejection of the vector H on the surface of the me-
tal {the y axis}. A sample piot of this SE in indium is

shown i *ig. 18'7). It is easily distinguished from the
other 5% by the strong dependence of the period of AH
oo the inclipation angle ¢

AH -~ —»A’n" * sin g. (10.5)
Aceording o Jovionlas (8.12), (5.19), and {5.22) we have
AL cp g { PNy 8
o iCodl™ nxp l - T'") K ;’\—-«»Gﬁi} s
A IR S I (10.6)
Tha decresnne of the amplitude of 82Z/6H with increasing
. 1/} iz due to the increase of the absolute
e v sy he amplitude of the field E in the peaks

Laes ot depend on the number, since the path

remains anchanged (see (5.22))

e derondencs of the line amplitude for indium
>es wett with 116.6). No such a$re¢=mem was 0o~
.1 U the experiments with tin It is possible
it tie ohserved difference is connected with the field
‘nden e of the effectwe {requency vg ph of the
on-nhocus ¢ollisions 7,

Witk increasing augle ¢, the SE due to the limiting
o1t goes ¢var snuothly into the SE due to the electrons
EN boundary section {see Sec. 5.3). The formula
{1u.5) for the peris! of AH then goes over smoothly into
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but so far o~ troasition
been traced direatly.
All the 51 cousidered above could actually be inter-
preted in termi of the model of a metal with a spherical
Fermi surface. In a metal with a complex Fermi sur-
face, there appear a number of specific possibilities for
field AP and for SE (Secs. 5.2 and 5.4).
The anomalous penetration of the field as a result of
the drift of the effective electrons on open orbits at
¢ =07 is illustrated by the plots of Fig. 19. The pres-
ence of intermediate lines offers evidence of the com-
plicated shape of the trajectories and of the existence
of an additional sequence of points ux‘l” (5.2). The funda-
mental pericd is determined, in accordance with (5.6),
by the formula :

from (10.5) to (10.7) has not

(10.8)

Characteristically, ihe lines woare observed at all polar-
izations of the current i This is connected with the
presence o an emive layer of open orbits with identical
period, which ars eguivaient irorm the point of view o
the contributicn o the efiect. The directions of the ¢
tron veiocities it the efiesctive points depend in this
case, probably, or pyy, forming a unique *‘fan’’ in the

%, y plane,

Other interesting possibilities of ihe appearance ot
SE are connected with the existence of extremal helics,
irajectories rof the type shown in Fig. 3. Ag ind!
Sec. 5.1, surk a toxisctory in an inclined magnetiz 7
should lead in the gppearance, generzlly speaking,
twe sequences of k8 7 v oup and 2 = ay’ 1o a semi
infinite metel  Sach o0 fhe peaks can serve in turv 2
an initial sk Gayer Yor s jecondary sequence ai e
x;‘) sug ot ¢ peaks vesult from a vnigquo
bination of twi avsrhonisms of tie field AP a‘oro o
chain or trajocinries and 53 a result of the #rift oo
of the electr The amplitude of the prima:
ces decresg2s with increasing number like exui- 4,
where Ay io the ength of the section of the ix
from the su.-face of the meial to the correspon
(Fig. 20). Tive amplitude of the secondary srouvenc
tains, besides the product of the amplitudes ) the fadiial
bursts, also a creall ““‘transfer coefficient’ a {nee Jev,
4.1).

In a prrallel Deld we have u, : A
= 2D, ..., .2, theve exists the same gystem ~f peaks as
that due iv 2 chain of closed traiectorins. Figure 24
shows schemalicalis the leeation and the relative ampii-
tudes of the peaks in g half-space in an inclined fiela.
The satae figure s¢xves as a scheme for the ariange.
ment of the SE lines as a function of the magnetic field,
the oniy difference being that in a plate i is impossible

\',' 5\'(‘1;;“.’ it
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F1G. 19. Plot of SE on open trajectories in tin.
07 1] [001], H i [110), T = 2°K, frequency f = 3.2 MHz. Upper
curve for E L H, lower — for E || H (from ['*];.

34 2 mug g sin 2. (16.7)
The SE from ihe bouadary section was observed in'*®? y
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1 Peaks from drift motion Peaks from chains e g e .
e EFIG, G0 Schematic
" y) 22 distribistion of the ampli-
! ! i tudes of the peaks in an
! i ! inctined field H in the pre-
! Qs‘ sence of an extremal non-
AT % central trajectory. The
Vet \ e Fo % ; .
¥ \ O amplitude of the electric
N X 2 .
\ \ N L field at the surface is taken
&+ .
\ \ l S as unity.
~ N N
r L
s PP -

t0 observe the SE due to peaks at a depth up, owing to
the collisions between the elecirong with the surface of
the plate.

A similar picture was observed experimentally in
indium '’ in which there exists x helical trajectory
with extremal diameter D 2 u {(because of liig all thy
guantities u;)“ reach the extremura simultaneouslyi.
Figure 21 shows the splitting of th: line D inte the lines

uet and ul"’ when the fl?xd ig inciined (the remaining
lines are not seen, owing to ihe relatively small mear
Y ee path) the line al the deptt. 2D was split intc three
\Aug 'u(')U sud”, 2ui'h.

10.4. Size effect from elecivon trajectories with
rinks. in experiments on SE it was established that in
wotyvalent metals (e.g., mdxum[ ““* and tin"®’ Y there ex-
gt trajectories with “‘kinks.”” "We shall say that ¢
i ajectory has o ‘kink’’ 1 the electron velocity chang
neoa distandsy “ 8 by an armount of the order of ihe
'-ity ttsoll. Su«.‘h 3 singuiarity leads o an ancmaly
e discribaion of the aliernating {ield 1 the metai,
g te correspondiog SF tuwes which do not differ nut-

A

L i 1 i 1

Wi e AW W 720 4,0e

FiG. 21, les of SE in indium.

Oz || {001, E if (1004, H LE, frequency f = 5 MHz, d = 0.3 mm.
Curve | — ¢ =0, curve 2 — ¢ = 2.5%. The right sides of the curves were
plotted also with a gain increased by a factor of 5. The line mark: d -
the asterisk is the SE from chains made of different links (from {*° ‘)
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F1G. 22. Plot of SE in tin at ¢ = 80°.
z !l [100], E }| [010], T = 1.3°K, frequency f = 5.2 MHz

wardly frem other lines. The singularities ix “re dis-
tribution of the field due t¢ the kinks on the irajectories
iie between the peaks and are deternined by the field
amplitude at these peints. Accerding to (4.13), the rela-
tive inagnitude of the observed singutarity of the imped-
ance is smaller by a factor (D’ﬁ“/ ihan the amplitude of
ihe seccreding peak. Thls is precisely the ratio ob-
served ‘n exper:ment

10.5. Ineffective electrons, The harmonic component

§ the fie!d distribution inside the metal, due to the drift
of the ineffective electrons (Sec. 8}, naturally lzads o
the apypesr-ance of a sinusoidal component of the surface
iripedaur.e of the plate. The first two of the cases con-
siderc] i Sec, 6 are realized when the magnefic Nicld
directicns nve close to the norma’ Oz, Experiments in
a navmal feld were made on tin''*! (Fig. %2) ans cad-
iYL His ditficult to distinguish on these curves
the nigeillations due to the electrons of the }rmmng
possts and helical trajectories, because actualiy the on's
criforion is the relatively wesk difference n 4
deive f the amnhitude of the oseiilations on B An
sis of thiz dependence is also made difficuit oo
iz that in the region of weak fields the modutline
fieie may not penetrate fully into the sample.

It is therefors necessary to resort to indirect con
siderations: the shape of the Fermi surface, values ob
tained in other experiments for the curvature of the
surface ai the limiting points, the dependence of the
pesiod on the direction of H, etc. Such considerat:ons
qviicate that all the hitherto observed nscillations in 2
acrmal field are connecled with helical trajectories and
not with iimating points. A role is possibly played here
vy the difference in the amplitudes by a factor &/ 2
»hich is noted in the theory.

Field AP into the metal was also observed in cad
n.m @’ as a result of the drift motion of the ineffectiv:
S wcirons on open periodic orbits, when the vecior B is
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parallel io the surface of the metal (see Sec. 6. ;5“
ure 23& =hows a plot of the SE, illustrating this «:
of AP.

[

11. Line Shape of the Radio-frequency Size Effect

In the preceding section we actually discussed the
experimental proof of the very existence of field AP in
a metal of the trajectory type. The arrangements of the
lines as a function of the magnetic field, which made it
possible to classify the different types of SE, is a re-
flection of the “‘coarse’’ structure of the distribution of
the field in a metal. To explain these ‘‘coarse’’ charac-
teristics of AP and SE, it is actually sufficient to use the
siraple gqualitative considerations based on the concept
nf “effectiveness'’ of the electrons and on the ‘‘ex-
aremu’’ principle.

The stoueiurs of the electromagnetic field inside the
peaks, and the SE line shape, are more subtle charac-
tevistics of the AP phenomena, and their analysis re-
quives the ase of the rigerous theory developed in the
Fioai part of ihe peessnt review. As shown in"'®*) the
Hioune shape is datzimined completeiy by the disiribu-
pon of the electromagnetic field in the skin layer at the

af the raetal and by the shape of the electron
irajeciornies near the effective points. Therefore a study
of the e shape makes it possible to obtain direct in-
“omation on tho structure of the field in the skin laver

£
o8

3 l&_ffﬁ

S

mn—elev\ron Ri xﬁnersnm in metais. it
¥ ’)f ihe
5 dxro«'l memnu af asiigatng the

e electromavaetic field iooam ,L We

H hat the 88 ine ghuape is not connected
g 20y sxiranecas factors whatever, Ficrgt, 48 not
soted by the degree of smoothness of the wwetul sur-

when the zamples are elvhed e fine shape ve-
:ns ovinpletelv unchanged Tlonsequently, the
feoreiical assumption that <he boundary of the metal is
1 gecmetrically ideal plane ¢ verfectly admissible from
e opoint of view of 4 real exgeriment. Second, the
~redgelike nature of the sainple (the inhomogeneity of
its thickness) leads to o splitting of the 3€ lines, and
nat to their smwearing (Fig 74}, This is & vnique mani-
featation of the Cextremurs’ priaciple, bui with respect

FiG. 24. Splitting of SE lines for
2 wedge-shaped indium sample.

1 -- plane-parallel plate, d = 0.4
mm, 2 — wedge. Ad/d = 7%.

T
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to the thickness of the plate and vot with respect {o the
electron trajectories.

The formulas obtained in Ch. I, in prisciple, d2scribe
correctly the distribution of the fields inside the peak
and the law governing their decrease with increasing
depth in the metal. However, owing {0 computational
difficulties, the calculation was cavried through to con-
clusion only in the case of field AP due to the electrons
of the limiting point''?’. Using formula (10.6), it is
possible to compare theory with experiment directly.
Figure 25 shows the results of such a comparison for
indium. The scale was chosen such as to ensure the
best agreement between the theoretical and experimen-
tal curves on the right wings of the {ines. As iandicated
in Sec. 5.2, the result of the calculatizng of the form of
the burst and of the SE lines on the lefi edg? depena
strongly on the collisions of the electrons witi ine sur-
face of the metal. The discrepancy beiween ii:2 theary
and experiment in this region is duc apparenciy 5 the
fact that an approximate boundary conditicn :5,10) wasz
used in the calculations (the trajectories of tue foculing
electrons were replaced by straight lines}. it is probable
that a more accurate analysis wouid decrease the vaiue
of the function ¥,(x) at negative vaiues of the arnonent.

It can thus be stated that the point cosrrspond
the condition d = nu, is located near the ie't «
SE line. This conclusion is confirmead hy !l the e¥per:-
mental data on the SE. It iz valid aot only for the Sk
from limiting points, buil alsc for all e v
of SE. in a large number of casas, th
the iines was determined by the val,
ters of the metal, which are well koo
or from other experiments (the pero
jattice in tin'''?, the dimensicn of
axis of the electron etlipsoid in bis
of the Fermi sphere in polassium’
curvature at the limiting poiutg LI gicection L
indium 7 and aluminum ™'}, in ail hese tases the
points (9.1) corresponded to the leii cdge of the lines
Consequently, in comparing exper

e oY h‘m

st 4
fre dinmote
Caussian

it

i

S
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rept wWith thecry

zH
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" kj.l__.._____l._“..g

[RRRUR . S -

J60 H, 3 320

H
]
FIG 25. Comparison of the experimertal nlots {solid) and theoreti
cal (dashed) for SE lines of limiting ponts
The ordinate scale pertains to the funct:on ¥ {see Fig. 7). The ex-
perimental curves were obtained for indium:, 3¢ 1 {001}, d <9 3 mm K
iYL e=7°n=1,T=15%, frequency ¥~ 3 Miiz,

B0 4, 0
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it 1s possible to use th regults of the calculations of

th: SE line shape withoui taking int: account the colli-
-siensg of the electrons with the surface of the metal (e.g.,
formulas (5.39) and (5.4%)), discarding the part of the
theoreiical curve for ¢ < nu.

Let us define the characteristic width Ay of the SE
lines as the distance between two neighboring extrema
of like sign. As seen {rom Figs. 7T—9 and 25, the calcu-
lated width a 11 is approximately equal to

An = (68/d) H, (11.1)
where
. f‘):-.f}_ 122] A
e X Ine ’“']‘/,mR. (11.2)

The experimentally obtained frequency dependence
of the SE tinz width 1n \ndmm["7 . bismuth™?, and potas-
sium ' . namely &g - 13 R agreeq with the theory of
the anomalous skin eff. r't It is appropriste to rrentmn
here that the width Sy dues not depend on the temipar
ture (Fig. 18). This ig aue 5 the fact thet in the anom-
alous skin effect i depth & does ne. depend on the
mean free path.

The absolute valee of v seteristis depth of the
skin layer 4 can be obtained f:¢iu che measured width
of the S¥ lines wiih the aid (.f {11.3) and from indepen-
dent messurements of the surizce impedance by means
of fermala (11.2) The correspending data for the three
ractals at 7.5 MHz are listed in the table together with
i data on the mean free pats™' . The discrepancy, by

£ c-)r* ui 3, bnctes of visnruth mav be due to the

v dew of the ratio L/w

The SE lines can he sserved with either the imagin-
ary or the veal part of %t is siown experimentally
in™7 thai the fuuctions 55 /3H and ¢X/5H vary within
the Hmity of the RE “inew always in such a2 marner thai
the extiema of one Fo fuactions approximately coin-
cide with one of the vosiriens 1f the fastest vaviation of
ihe other. This regniar v ¢sult of the structave of
tne field in the = ' (u, the imaginasy v and real
parts of To (Fig. 6}, ¥, & (¥Fig. 7}, ¥, (Fig. 8) and ¥,
(Fig. 9)).

The distribution of the field in the skin layer is the
fundamental but not the only factor of determining the
SE line shape. Under the same conditions, lines of dif-
ferent shape are observed experimentallym’ . In the
case of SE from the lim:ting point, an important role is
played by a small section of the Fermi surface, which
is well approximatad by a second-order surface. There-
fore the shape of the corresponding lines is accordingly
well duplicated in different metals. On the other hand,
when the closed trajectories are cut off, both the
parameters of the extremal trajectory itself (8v,/87 in
the effective poinis} »nd the character of the extremum
(32D/3pii) can changs arunin a wide range'™’. Indeed,

A
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the line shape of the SE from closed trajectories is /-
ferent for different extremal orbits. The entire AgRTa.
gate of the experimental data offers evidence i::
most significant factor governing the line shar:
time spent in the skin layer, characterized by the
parameter 8v,/o75%1,

Thus, the dxstrlbutlon of the field in the skin layex
determines the main general features of the SE lines~-
the asymmetry with respect to the points (9.1), their
width, the ratio of Re Z to Im Z, the character of the
electron dispersion law determines the concrete line
shape.

-1
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12. Applications of Size Effects

Radio-frequency size effects by now turned from
being an object of study into a muthod of metal research.
They are used most extensively to dzicrmine the lorm
of the Fermi surface. The variety of information that
can be obtained with their aid™ 15 connected with fha
fact that the AP of the fieid in the meisl is produced
along electron trajectories of a great variety of tyoes.

The cutoff of the clesed trajeciories determines ite
extremal dimensions of the Fermsi suifaces and their
anisotropy. A study of the behavior of the lines when
the magnetic field is inclined can ciarify the locations
of the individual sections of the Fermi surface {(ee
(10.3) and (10.4)). The limiting-point SE makes it pass -
ble to measure local values of {he Gaussisu curvature
at elliptic limiting points. A sivdy of the SE at iar ge
inclinations of the field io the surface makes it LCH i
to observe trajectories with extrernal displacenic i e
peried and to measuvre the valuss of idS/dp}:)(_,Ag 1oig
possible to prove with the aid of the SE i pragencs o
orb! s with Kinks and of cpen mb 18, and also ti Sraw
cerigin conclusions concernis eir forms

The most detailed stiviies mads with the ais : o] B
SE were those of the Ferrat surinces of tinl%es ,
indium "% and cadmium % “UEST and also ;.a}}w"n s
tungsten '’ and molybdenum ™ . In particular, it :
precisely the data on the SE wmch made it posm‘.ne ia
determine the numerical values of the coefficienis of
the Fourier expansion of the pseudopotential in tin"*?

Another important application of the S¥ iz the meay.
urement of the mean {ree path [ of individual groues
electrons on the Fermi surface. The possibi lity of
measuring / is connected with ihe fact tha.t the sopiiing:
of the lines depends in most cases on/ { exponentiaiiy

{~ exp(~A/l), whera A 1s the length of the path fror: ons
sule of the plate of the other along the ('orres.,p’mdu-v
trajectory). In this respect, the limiting-point SE i
particularly convenient, since variation of the angle
results in a change in the path length A = d/sin ». The
first such measurements were made in tin""? for two
limiting points. The mean free paths of two groups of
electrons differ by a factor of 4, although the measure-
ments were performed on a single sample. This method
was used to measure also the dependence of the mean
{ree path on the temperature in tin'®? and indium ™"}, 1t
turned out that 1/I(T) = 1/1(0) + CT®. The cubic tem-
perature dependence offers evidence that the collision
of electrons with even one phonon removes the electron
fron: the focusing group. Therefore the quantity CT? is
simply the probability of electron-phonon collision per

£} ]
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unit path. This fdet agrees with the conclusxons of the
theory of the anomalous skin effect i

We note also one interesting radlospectroscopy apg)h-
cation of the field AP in metals. Peercy and Walsh'**
succeeded in observing nuclear magnetic resonance in a
bulky single crystal of rubidium, owing to the fact that
the radio-frequency field penetrated along a trajectory
chain through practically the entire sample. The variety
of the already feasible applications gives grounds for
hoping that the anomalous penetration of the field in a
metal and the sizz effects will find wide applications in
metal physics.
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