EXPERIMENTAL INVESTIGATION OF SCATTERING OF ELECTRONS BY DISLOCATIONS IN COPPER

V. F. GANTMAKHNER, V. A. GASPAROV, G. I. KULESKO, and V. N. MATVEEV

Institute of Solid State Physics, USSR Academy of Sciences
Submitted June 20, 1972

The dependence of the electric resistance and amplitude of the radio frequency size effect lines on dislocation density in copper is investigated. The transport cross section for electron scattering by edge dislocations is derived from data on the electric resistance; the total cross section for two orbits—for that on the neck and that on the belly with \(\mathbf{H} \parallel [111] \) is derived from data on the size effect. The transport scattering cross section is found to be several times larger than that quoted in the literature; it is suggested that this may be due to the fact that in all previous investigations the measurements were carried out for higher dislocation densities and a correlation between the dislocations existed. A comparison of the transport cross section with the total cross section indicates that the scattering occurs predominantly at small angles. The difference between the total scattering cross sections on different orbits can be ascribed to anisotropy of the deformation potential.

DISLOCATIONS occupy a special place among the different types of crystal-lattice periodicity disturbances that lead to electron scattering. First, they are sizable defects and extend over hundreds of thousands of interatomic distances. Second, the perturbations introduced into the lattice by a dislocation decreases very slowly in a direction perpendicular to the dislocation axis. These specific features of dislocations must undoubtedly be reflected in scattering. We have undertaken a cycle of investigations of this question, performing parallel experiments on the influence of dislocations on the electric resistivity and on the amplitude of the radio-frequency size effect. The object of the investigation was copper, for which the principal data on the influence of dislocations on the de Haas-van Alphen effect are already known\(^{1,2}\).

Measurement of the electric resistivity yield the transport cross section \(\sigma_T \) for scattering by dislocations, averaged over all the electrons; the scattering through small angles \(\theta \) enters in this cross section with a weight factor \((1 - \cos \theta) \). If \(\rho_d \) is the change in the residual resistivity following introduction of \(N \) dislocations per \(\text{cm}^2 \), then

\[
\sigma_T = (N \rho_d)^{-1} = n e^2 \mu_e / \rho_d N
\]

(\(l_T \) is the transport mean free path, \(\mu_e \) is the Fermi momentum, \(n \) is the density of the electrons in the metal, and \(e \) is the electron charge). Since the calculation is carried out per unit dislocation length, \(\sigma_T \) has the dimensions of length and not of area, and is thus the scattering diameter.

The scattering diameter obtained by measuring the amplitude of the size-effect lines differs from (1) in two respects. First, the size-effect line is formed by a relatively small group of electrons that are located on the Fermi surface near some extremal section\(^{2,k}\). Therefore all the scattering data pertain precisely to this group. Second, the line amplitudes are equally affected by scattering through small and large angles, since any collision that takes the electron out of the effective region on the Fermi surface is important. (There exists, of course, a certain minimum angle, to scattering by which the amplitude of the size-effect is sensitive. This angle can be estimated from the relative line width\(^{3,k}\). In our experiment it was of the order of \(1 - 2^\circ \).) What is measured in the size effect is therefore not the transport scattering diameter but the total scattering diameter \(\sigma_T \), and furthermore it is averaged not over the entire Fermi surface but only over one of its extremal sections.

In the measurements we used the size effect on closed trajectories, and the sample thickness were such that even prior to the introduction of the dislocations the mean free paths \(l_0 \) were sufficient for only half a revolution, for the path \(\chi \) from one side of the plate to the other. Under these conditions, the amplitude of the line \(\chi \) (the change of the signal between two characteristic extrema of the line) is

\[
A \propto e^{-\chi / l_0}.
\]

Assuming additivity of the reciprocal free paths \(1/l_0 \) on the introduced dislocations and \(1/l_0 \) on all the remaining previously existing disturbances of the lattice periodicity, we find that the line amplitude after \(N \) dislocations [\(\text{cm}^{-1} \)] are introduced is \(A(N) = A_0 \exp (-\chi / l_0) \), where \(A_0 \) is the line amplitude prior to the introduction of the dislocations. Hence

\[
l_0^{\chi} = (\ln A_0 - \ln A) / \chi.
\]

SAMPLES

The samples for the measurement of the electric resistivity (R1 – R4) were prepared in the following manner:

a) A single-crystal plate measuring 0.6 \times 12 \times 200 mm was grown by the Bridgman method. A blank of brand OSh (specially pure) copper (resistance ratio \(\gamma = R(273^\circ \text{K}) / R(4.2^\circ \text{K}) \approx 200 \) having the indicated dimensions was placed in a dismountable graphite mold, molten, and subjected to directional crystalliza-
The roughnesses on the sample surfaces were removed by mechanical polishing with silicon-carbide powder M-10, followed by etching in the reagent mentioned above. The ratio γ for these samples was ≈ 6000, and increased after annealing in oxygen to ≈ 14000. The sample thicknesses were 0.25 (S1), 0.58 (S2), and 0.71 mm (S3), the normals to the surfaces coincided with the [110] axis within one degree, and the bending axis was directed along [111].

According to estimates based on the etch pits, the initial dislocation density in all the investigated samples did not exceed 10^{8} cm$^{-2}$.

RESULTS

The electric resistance was measured at 4.2°K by the usual potentiometer method (current through samples 2–5 A, voltage sensitivity of circuit 1×10^{-8} V). The measurement results are shown in Fig. 1. The ordinates show the residual resistivity $\rho = \gamma \times 1.56 \times 10^{12}$ cm, and the abscissas show the reciprocal bending radius $1/r$ and the density of the introduced dislocations, calculated from the formula

$$N = \left(\frac{\rho \cos \varphi}{b} \right)^{-1},$$

where $b \cos \varphi = 2.55 \AA \times \cos 30°$ is the projection of the most probable Burger's vectors, at the given bending, on a line perpendicular to the bending axis on the plane of the sample. Strictly speaking, this is the minimum possible number of introduced dislocations, determined from geometrical considerations; pairs of edge dislocations of opposite signs, not taken into account in formula (4), could be simultaneously produced. However, as shown by Livingston's experiments[4], the overwhelming majority of dislocations obtained in single crystals of pure copper by such bending are of the same sign, and their number practically coincides with that calculated from formula (4). Livingston[4] has also shown that in bending about the [111] axis the dislocations are distributed quite uniformly, without clusters. Our control experiments in which the dislocations were displayed by etching yielded the same results.

The additional resistance ρ_d that appears when dislocations are introduced, normalized to one dislocation, is found from the three lower straight lines (samples R1–R3) to be equal to $\rho_d/N = 2.2 \times 10^{-18} \Omega$-cm$^{-1}$, i.e., it is approximately 10 times larger than in all the preceding measurements[5–7]. In [5–7] they measured the change produced in the residual resistance by tension or rolling; this always introduced appreciable dislocation densities, $N > 10^8$ cm$^{-2}$. In a series of control experiments, we measured the change of the resistance of a single crystal with normal to the [110] surface, rolled along the [112] direction; the number of introduced dislocations was determined with an electron microscope. We obtained a value $\rho_d/N = 1.8 \times 10^{-19} \Omega$-cm$^{-1}$, which practically coincides with the results of[5–7].

We propose that the reason for the observed discrepancy is that at high densities the dislocations are correlated to a large degree, their slowly-decreasing fields become superimposed, and the total action of these fields decreases. It is possible that in[5–7] the
dislocation correlation was enhanced by the very method of introducing the dislocations.

Another possible reason for the discrepancies is connected with the presence of impurities. It is known that impurities tend to concentrate along the nuclei of dislocations. Therefore, if the number of impurities is large, their capture by the dislocation nuclei, which leads to a decrease in the number of independent scattering impurity centers, can become manifest in an apparent decrease of σ_{d}. That such an effect exists is evidenced by our experiments with sample R4, which was not annealed in oxygen. For this sample, the value of ρ_{d}/N turned out to be 35\% less than for R1–R3, namely $\rho_{d}/N = 1.5 \times 10^{-7} \Omega \cdot \text{cm}^3$.

The amplitude of the radio-frequency size-effects was measured with an autodyne radio spectrometer operating at ~3 MHz, using the partial derivatives of the active point of the surface impedance against the magnetic field (the field modulation frequency was 18 Hz, and the sensitivity was calibrated with a Pound-Knight calibrator\(^{(1)}\)). To avoid the harmful effect of disorientation of the sample surface and of the crystallographic axes relative to the direction of the magnetic field as a result of bending, the measurements were made only in a field H parallel to the bending axis, i.e., at $H \parallel [111]$. At field directions that did not coincide with the bending axis of the sample, the lines changed in shape and became smeared out.

We chose for the measurement two size-effect lines, one on the central section (cyclotron mass $m_{b} = 1.398 m_{0}$, average velocity $v_{b} = 1.16 \times 10^{5} \text{ cm/sec}$), and the other on the neck ($m_{n} = 0.46 m_{0}$, $v_{n} = 0.65 \times 10^{5} \text{ cm/sec}$). The measurements of the first were performed with the bending of the thick samples S2 and S3, and those of the second with the bending of the thin sample S1. The measurement results, reduced in accord with formula (3), are shown in Fig. 2.

DISCUSSION

On the basis of the arguments advanced in the preceding section, we propose that among all the experimental values of ρ_{d}/N it is precisely the value for samples R1–R3 of the present paper, and the quantity

$$\sigma_{tr} = 3.3 \times 10^{-7} \text{ cm} \approx 13 \ \text{b} \ (b = 2.55 \times 10^{-10} \text{ cm})$$

ensuring from it on the basis of Eq. (1), which correspond to scattering by a single dislocation that does not interact with anything in the copper crystal. It follows both from the value of σ_{tr} itself and from the dislocation-resistance values at larger densities N, which were discussed in the preceding section, that the value of σ_{tr} observed by us is determined mainly by scattering from the slowly decreasing field around the dislocation.

At such large a diameter σ_{tr}, one should expect the scattering to be anisotropic, since small-angle scattering should predominate. Actually, the total scattering cross sections obtained from the size effect for the electrons on the belly part of the Fermi surface σ_{b} and on the neck σ_{n} are much larger than σ_{tr}:

$$\sigma_{b} = 6 \times 10^{-7} \text{ cm} \approx 63 \ \text{b}, \ \sigma_{n} = 56 \times 10^{-7} \text{ cm} \approx 220 \ \text{b}.$$

It is more correct to compare σ_{tr} with σ_{b}, since the greater part of the electrons is located on the belly of the Fermi surface, and it is precisely these electrons that determine mainly the electric conductivity. The relation $\sigma_{b} = 5 \sigma_{tr}$ reflects the difference between the total and transport cross sections, thus confirming the predominately small-angle character of the electron scattering by the dislocation field.

The difference between σ_{b} and σ_{n} agrees qualitatively with the known fact that the deformation potential for electrons on the neck is much larger than on the remaining part of the Fermi surface of copper\(^{(1)}\). From measurements of the temperature dependences of the amplitudes of the size-effect lines we obtained for the ratio of the frequencies of the collisions with the phonons $f_{b}^{(nh)} f_{b}^{(ph)} \approx 10$, corresponding to a scattering cross section ratio

$$\sigma_{b}^{(nh)}/\sigma_{b}^{(ph)} \approx 20.$$

A similar result was obtained also by other methods\(^{(10,11)}\). We note, however, that the ratios of the scattering cross sections should be compared with extreme caution, since different components of the deformation-potential tensor probably make the principal contributions to the scattering by phonons and to the scattering by dislocations.

All the presently existing theories of electron scattering by dislocations\(^{(12,14)}\) yield for the transport scattering diameter a value $\sigma_{tr} \approx b$. It is difficult to explain the reasons for such a discrepancy between the theory and our result (5). We note only that the idea advanced by Kravchenko\(^{(10)}\), that the influence of the dislocations on the electric resistance may be due not only to scattering as such, but also to local dislocation-induced distortions on the electron dispersion. In any case, as shown by Watts\(^{(13)}\), the amplitude of the de Haas-van Alphen dislocations decreases when dislocations are introduced precisely because of the resultant spatial inhomogeneity of the parameters, and not because of scattering. Indeed, were we to interpret the decrease of the amplitude of the oscillations observed in \(^{(1,7)}\) as the result of scattering, then in a field $H \parallel [111]$ we would obtain for the two orbits discussed by effective scattering diameters 25 times larger than our σ_{b} and σ_{n}.

The authors thank V. Ya. Kravchenko for a discussion of the results and L. S. Kokhanchik and S. P. Gasparov for help with the experiments.

Translated by J. G. Adashko