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The existence of dissipative conductivity due to the mutual scattering of carriers is considered. It is shown
that in a d.c. field such a conductivity exists only in a carrier system for which the total charge is zero.
No magnetoresistance of this type exists. In a high frequency field the conductivity due to the mutual
scattering of carriers exists in a system of carriers having different e/m.

PACS numbers: 72.10.Di

INTRODUCTION

There exists two types of scattering of carriers in a
solid: scattering by the lattice, i.e., by phonons, im-
purities and defects, and scattering of the carriers by
one another. These two types of scattering are basical-
ly different—in scattering by the lattice, the momentum
obtained by the system of carriers from the external
electric field is transferred to the lattice, while in
scattering of carriers by one another, this momentum
remains inside the carrier system. Here we must im-
mediately make two stipulations. We shall assume that
the phonons are in equilibrium and form a thermostat;
therefore, the transfer of momentum to the lattice is
equivalent to momentum dissipation. Further, we shall
not consider the scattering of carriers by one another
with participation of the lattice, i.e., umklapp process-
es and processes of the transfer of a carrier from one
valley to another (in such processes, the momentum is
also transferred to the lattice). Moreover, it is as-
sumed that the system is spatially homogeneous, i.e.,
such situations as, for example, the anomalous skin
effect and thin plates are excluded.
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Since the two scattering types mentioned above have
different characters, they are not “additive.” This
means that if the scattering by the lattice is character-
ized by a relaxation time 7, and the scattering of the
carriers by one another by another time 7,,, then there
does not exist an effective relaxation time 7* which
would be determined by the relation

1/x=tit,+1/t... (1)

This is seen even frou.wi the simplest example for con-
ductivity in a static electric field. If there is no elec-
tron-electron scattering, then the conductivity is

n

2 (T, (2)

m

o=

Here n is the concentration o1 the electrons, m is their
effective mass, and ({...) denotes averaging over the
energy €. If the interelectron scattering predominates,
i.e., T, <7, then, as is well known,™}

o ne’ <1_ "'. (3)

m Ty
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and nowhere is there

nl

; (Toed, 4)

o=

as might be inferred from (1).

If we exclude the case of a strong dependence of 7,
on €, then the quantities (r,) and (1/7,)™ have the same
order and, regardless of the pace of the interelectron
scattering, the order of magnitude of the conductivity
is determined only by the scattering from the lat-
tice.!**! In this connection, the following question
arises: does there exist generally such a dissipative
conductivity whose order of magnitude is determined by
the mutual scattering of the carriers? This question is
important, for example, in connection with the inter-
pretation of experiments on the magnetoresistance of
bismuth which, in the opinion of several authors,™! is
determined by the electron-hole scattering.

When the conductivity is determined by the mutual
scattering of the carriers, it is naturally possible to
calculate it by neglecting the scattering of the carriers
by the lattice. Under these conditions, no momentum is
transferred to the lattice and a stationary state of the
system of carriers is possible only in the case in which
the momentum is not transferred from the field to this
system (at least when averaged over the time).

In a static electric field, the momentum from the
field will not be transferred to the carrier system only
if it is compensated, i.e., the total charge is equal to
zero (as for example in bismuth). In an alternating
electric field or in the presence of a magnetic field, we
might think that the total force acting on the system
averages out (over the period of vibration of the field
and/or the period of cyclotron rotation). We therefore
initially study the case of conductivity in a stationary
field, and then the magnetoconductivity and the conduc-
" tivity in a high-frequency field. Cyclotron resonance is
the natural generalization of the last two cases.

2. FORMULA FOR THE CONDUCTIVITY

We shall not be interested in the effect of scattering
between carriers on the method of averaging of the lat-
tice relaxation, since this effect does not determine the
order of magnitude of the conductivity but affects only
a numerical factor of the order of unity in the rate of
lattice relaxation. Therefore, in place of the kinetic
equation, we can use the equations of motion. We shall
assume that there are two groups of carriers with
charges e, and e,, isotropic masses m, and m,, lattice
relaxation times 7, and 7,, and a coefficient of mutual
friction 7. Then the equation of motion for the particles
of group 1 will be

ap: =e,Ee“"“+-i'—[v,><H]—p—’—nnz(v‘—v2); (5)
dt c Ty

there will be a similar equation for particles of group 2.

Setting E=0, H=0, and 7{'=7;'=0, we can, by sub-
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tracting the equations of motion from one another, find
that the relative velocity v, - v, relaxes to zero like

e/, where
L : (6)
T mym;

Here and below, the bar above indicates averaging over
the groups of carriers:
= (nm,+nm.)/n, n=n.tn,. (7)

It is natural to take the time 7 as the relaxation time
for scattering between carriers.

We direct H along z and introduce complex variables
according to the rule

P=P<tipy  0=0uHjcu, (8
The geometric imaginary unit j should not be confused
with the variable ¢, We then find the conductivity from
the equations of motion:

a=G/D, 9)
where
D=(vi—io) (vi—io) Tjo,(v.—io ) +j0, (vi—ie) —0,0,—ioy -+ +iby,
(10)

G=0+0Q,* (vi—i0) + Q2 (v, — i) + (0:2+0,Q:2). (11)

In (10) and (11) we have introduced the cyclotron and
plasma frequencies of the individual groups 1 and 2:

e H n.e’

Wy = ——, Qiz=_1 (12)
m.c m,
and also the averaged quantities
= - 52
=" v, B, Gl (13)
m mce m

We note the following: if we assume the particles of
the different groups to be identical, i.e., set e, =e,=¢e,
m,=m,=m and v, =y, =p, then the factor v+y —iw+y®d
can be eliminated from G and D and there remains

ne* 1 eH

, n=ntn, &=

[0 e — .
m v—io+je me

(14)

Actually, we have only the one group of carriers in this
case, and the fact that ¥ does not enter into the result
(14) means that collisions between the identical carriers
do not affect the conductivity.

3. STATIC CONDUCTIVITY

Setting H=0, w=0, and v, =p,=0 in (10) and (11), we
obtain
(15)

D=0 G=0.

If the system is uncompensated, i.e., its'total charge
ng#0, then {?#0 and o=, This means that in such a
system there cannot be a static conductivity which would
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be determined only by mutual scattering of the parti-
cles. For a compensated system, where €=0, $2=0
and an indeterminacy is obtained for the conductivity:
¢=0/0. To remove this, it is necessary to take into
account the finite scattering by the lattices. We do this
for the compensated system with

g, =—g,=e, (16)

Ry=N2=M,,

which simulates bismuth., For such a system we find
from (9)-(11)

) [ ) ] ()

where, in correspondence with (6),

0=n°e

1/r=nn,/m*, 1/m*'=1/m+1/m.. (18)
It is seen from (17) that if 7 <7, 7,, i.e., if the mu-

tual scattering of carriers predominates, then the con-

ductivity is completely determined by this scattering:

a=(n.e*fm*)v=e'l1. ’ (19)

However, it is useful to emphasize that, although o
does not depend on 7, and T, in the considered limit,
the state of the system does depend on these quantities.
The ratio of the momenta p, and p, does depend on 7,
and 7,, because the total momentum transfer to the lat-
tice should be equal to zero:

Pl/Tn+P24IT:=0- (20)

The momenta p, and p, are directed oppositely, but the
total momentum P=no(p1+p,) is generally not equal to
zero in spite of the fact that the forces acting on the
carriers of the different groups are equal in magnitude
and opposite in direction {see the drawing).

4. MAGNETORESISTANCE

Setting w=0 and v, =v,=0 in (10) and (11), we get
from (9)°

o=—j{néc/H). (21)

This means that if there is only mutual scattering, and
there is no scattering by the lattices, then the dissipa-
tive conductivity is lacking in a magnetic field. The re-
sult (21) is evident when scattering within the system of
carriers is excluded; it is important that it does not
depend on this scattering. One can give the following
illustrative interpretation to this assertion. If the
charged particle acquires the momentum Ap in the mag-
netic field, then the center of its orbit is shifted by
AR=(c/eH?*)Ap XH. If several particles collide, then
the total charge transfer is

3 ear= (i) [ZAle] (22)

since the total change of momentum of all the cdlliding
particles is ZAp=0. Therefore, the inclusion of mutual
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scattering does not change the current and the conduc-
tivity in any essential way. In other words, there can
be no magnetoresistance whose value would be deter-

mined by the mutual scattering of the carriers.

The situation seems especially paradoxical for a
compensated system, for example (16). In this case,
we can write down the general formula for the conduc-
tivity tensor in a magnetic field:

T T T\ T -
o=n,e* (—‘ + —i) [ 1+ (-—) (-—‘ + —z) + j (0T T 02T2) — 01 T0: T2 ]
mg m, m my; my

(23)
From Eq. (23), as H~ <, we get
n,¢ ms »
Reu——f?—('t_‘-'-?z-). (24)

Thus, while for H=0 the conductivity at T <1,,7, was
entirely determined by the electron-hole scattering (see
(19)), for H— =, it is determined by scattering from the
lattice, regardless of the relations between 7 and 7, or
Ty

The magnetoacoustic resistance in complex form is
calculated simply as p=1/0. It is then seen from (23)
and (17) that the difference p(H) — p(0), generally does
not depend on the electron-hole scattering although p(0)
does depend on it. For this reason, the temperature
dependence p(H) — p(0) = T2, observed in an experiment
on bismuth,™? cannot serve as an argument in support
of electron-hole scattering.

5. HIGH-FREQUENCY CONDUCTIVITY

Setting H=0 and v, =v,=0 in (10) and (11), we find
the dissipative component of the conductivity from (9):

=Y 10:02—0= T M(.’_‘_i)'
Reo 1=+m1["' Q-] ¥+o! nmetn,m, \m, m,) ' (25)

Thus, if not all the carriers have the same ratio e/m,
then there exists a dissipative conductivity whose value
is determined by the scattering between carriers, 1t is
not difficult to understand this result physically.

When there is no scattering between carriers, their
velocities oscillate in the field with amplitudes
v=(-eE/iw)(e/m). I all the e/m are identical, then
there is no relative motion of the carriers and the in-
clusion of scattering between them changes nothing. X
there are carriers with different e/m, then the inclu-
sion of such scattering leads to the appearance of a
frictional force in phase witht he velocity; the action of
this force produces the dissipation.

Simplifying (25) in the case of the conditions (16), we
can see that the correct static limit (19) follows from
(25) at w=0. Therefore, we can expect that, at all fre-
quencies down to w=0, Eq. (25) is valid in the case of a
compensated system at ¥ <y. We can establish this by
writing the formula for o with account taken of v, and
v, for the system (16):

nee® v (yv—e®)to’y

m (v —e?)te’?’ 26)

Reo=
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FIG. 1. Two different states of a compensated system (ei=—ey,
n1=ng; l—electrons, 2—holes) with one and the same current
(the circles are regions of occupied states) A—T(= Ty Ty,

P= 0 b—T1>T2>>Tee, P =0,

A similar formula for the uncompensated system shows
that we can neglect the scattering from the lattice only
at w> (Hy)/2, At lower frequencies, the conductivity
depends essentially on the scattering from the lattice.

We note that Eq. (25) can be applied to electrons in a
nonparabolic band, by regarding the band as a system
of carriers with different e/m. We can therefore expect
that in this case, in a high-frequency field, there exists
non-zero dissipative conductivity determined by elec-
tron-electron scattering. That this is actually so is
easily established by solving the kinetic equation with
the model derived electron-electron collision term used
in Ref. 1. We then have the factor

1— oY p oy 27

in (25) in place of the expression in the square brackets.
This factor is equal to zero only for a parabolic band
(the angle brackets denote averaging over the equilibri-
um distribution).

High-frequency absorption of a similar type takes
place also when the mass difference is connected with
anisotropy of the energy spectrum of the carriers, as,
for example, for electrons in germanium and silicon.
To establish this fact, it suffices to consider the equa-
tions of motion of type (5) with effective mass tensors
for the two identical ellipsoidal valleys, one turned
relative to the other. Here, for w>y, we obtain

Re 6=(noezlmz)nm(lﬁ."‘—rfzz“)i (28)

where & is the conductivity tensor, and #:, and m, are
the effective-mass tensors; 7 is assumed to be a scalar.
It is seen from this formula that the absorption takes
place also in the case in which the field is oriented
symmetrically relative to both valleys and the ohmic
masses are the same (for example, El|| [100] in german-
ium). This absorption is connected with the fact that,

in contrast to the isotropic case, there exists relative
motion of the carriers from the different valleys in a
direction perpendicular to the field.

6. CYCLOTRON RESONANCE

When w#0 and H#0, the formulas are too compli-
cated to write down even at v, =v,=0. We therefore
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give the result only for the resonance value of the dis-
sipative conductivity under the conditions v, =v,=0,
Wy, W, >7Y., We have

Reclu_m=i9,=(1+ il ) _Am .1 (29)
2y nam,

Thus, if there are two groups of carriers, then their
mutual scattering assures a finite value of the reso-
nance absorption at the resonance frequency of each
group. It is natural that the value of the absorption is
proportional to the concentration of carriers of the res-
onance group, and is inversely proportional to the con-
centration of carriers of the nonresonance group, wluch
assume the role of scatterers.

For the compensated system (16) we have

2
Re 6loee, = if—=ia(m=o, H=0), ‘ (30)
2 1 2

i.e., as is usual for 2 single group of carriers, the res-
onance conductivity is equal to one half the static con-
ductivity. For a noncompensated system there is no
such relation.

7. CONCLUSION

It follows from the results of Secs. 3-6 that the dis-
sipative conductivity, due to scattering between parti-
cles, exists under the following conditions:

(1) static conductivity in a system of carriers whose
total charge is equal to zero (compensated system);

(2) high-frequency conductivity (in a magnetic field or
without a magnetic field) in a system of carriers with
different e/m; if the system is compensated, then such
conductivity exists at all frequencies down to w=0, if
there is no compensation, it exists only at frequencies
w> (1,7,,)Y 2

Magnetoresistance due to scattering between carriers
does not exist. Thus, the analogy between high-fre-
quency conductivity and conduetivity in a magnetic field
disappears here.

The existence of dissipative conductivity without scat-
tering by the lattice does not contradict the law of en-
ergy conservation, as it might seem at first glance.
The situation here is entirely analogous to the case of
static conductivity due to elastic scattering by impuri-
ties. In the latter case, the seeming paradox is re-
solved in the following fashion: although the ohmic con-
ductivity depends only on the momenfum relaxation
time 7, and does not depend on the energy relaxation
time 7, the range of fields E in which the Ohm’s law
is valid does depend on 7;; this interval is proportional
to 7;1/2.'5) In mutual scattering of the carriers, the
ohmlc conductivity cannot depend on the mechanism of
energy dissipation, i.e., on the scattering by the lattice,
but the region of applicability of this ohmic conductivity
is determined by the scattering by the lattice.

Sometimes one encounters in the literature the asser-
tion that the cause of the finite static conductivity, due
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to electron-electron scattering, can be the difference
in the masses of carriers of a single sign.”"" The
logic is probably as follows: If the masses of all the
particles are the same, then conservation of momentum
in the collision leads to current conservation:

AT=e Avite Av, = %—(Ap.h&pg) =0. (31)

If the masses are different, then the current is not con~
served but “relaxes”:

AJ=e(£&-+-§p—=) =0. (32)

n m,

However, such a “relaxation of the current,” if impor-
tant at all, matters only in the alternating field. Ina

static field, in a system of carriers of the same sign,
a stationary state cannot exist (see also Ref. 1).
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