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Scaling relation between residual .t\ and temperature-dependent R,
parts of the sample electrical resistance in the vicinity of a metal-
insulator transition can be a guide in examining the structure of the
material. Three possible values of the exponent v in the relation
R, c (Ro)' are discussed. v : I is typical for a random mixture of
metallic and insulating domains, v : 0 for granular metals. A special
case v : 0.75 which has been observed recently corresponds to a
fractal structure of the insulating phase with the classical size effect
governing the conductivity of the metallic channels. Experimental data
on Zn-Sb and Al-Ge alloys are presented.
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I. INTRODUCTION

TRANSPORT phenomena in inhomogeneous media
are usually considered by applying the percolation
theory []. However, the material science has at its
disposal a lot of geometrical patterns which are not of
a simple random nature. For instance, granular metals
contain in essence a correlated system of rather
fbgularly alternating metallic and insulating regions.
An excuse for applying the percolation theory to
granular metals lies in possible existence of random
holes in the intergrain insulating films or in random-
ness of thickness of these films. However, the exper-
iment does not qualitatively fit the percolation theory
as far as the metal volume fraction is considered [2].

Much more complicated and interesting struc-
tures may occur when the solid mixture arises as a
result of an agigregation process or of a phase tran-
sition in some parts of the sample [3]. If these two
phases have different conductivities, for instance,
when a metal-insulator transition takes place, one
should describe conducting network and the total
conductance of the sample. In a medium with a corre-
lated structure an essential difference from the pre-
dictions of the percolation theory during the metal-
insulator transition may be observed [4]. It arises from
the strong space-time correlation among macroscopic
volumes which undergo the phase transition.

In this content the term "metal-insulator tran-
sition" has two meanings: "point transition" when a

lsmall volume becomes dielectric, and "sample tran-
sition" when the conductance of the whole sample
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drops to zero. We shall concern ourselves only with
studying the metallic side of the sample transition. The
main idea is that while analyzing scaling relations for
the sample resistance one can judge what type of the
structure is realized in the sample and distinguish, for
example, a fractal pattern from a random one.

, 
2. FRACTAL PATTERN OF THE SAMPLE

STRUCTURE

We shall discuss an inhomogeneous structure
created in the course of the special kind of phase
transition, namely, the amorphization of the meta-
stable phase of alloys Zn-Sb and Al-Ge quenched
under pressure [5, 6]. The initial state is crystalline and
metallic while the final one is amorphous and insulat-
ing. The amorphization process could be led slowly by
the low temperature annealing. It could be repeatedly
interrupted by returning to nitrogen temperatures.

This transition to the amorphous state has the
following important features:

l. The specific volume increases significantly
during the transition [5].

2. The sample resistance R increases by orders of
magnitude while the sample remains metallic at low
temperatures, i.e. while it retains ANAT > 0 [7].

3. The large increase of the resistance is accom-
panied by a very small decrease of the temperature d
of the superconducting transition. This point contains
the evidence that the sample is macroscopically
inhomogeneous in the intermediate states of the tran-
sition [7].
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Fig. L Two-dimensional cross-sections of the supposed
fractal structure of the amorphous phase at various
stages of the transition. The dashed lines are traces of
the surfaces at which the current paths are disposed.

Basing on the first point of this list and on the
resistance data which will be presented below and
using arguments of the theory of elasticity a fractat-
like model of the intrinsic structure of the sample was
proposed in [8]. It supposes the growing insulating
amorphous inclusions to be cactus-like with leaves
branching many times. These leaves, or sheets, are
supposed neither to intersect each other nor to merge
(Fig. l). This maintains the existence of current paths,
i.e. conductive channels, at the far-gone stages of the
transition, in contrast with the percolation model.

The development of the "cactus" structures can
be described by a parameter d which has the meaning
of the mean distance between the leaves and between
the sidebranching lines. According to the arguments
proposed by Esipov [8] the current paths are located at ..
the surface with fractal dimension three which separ-
ates two "cactuses"; from the mathematical point of
view the current paths are similar to trajectories of
brownian particles, i.e. random-walk trajectories [9].
The fractal dimension of such a trajectory is two: its
length is proportional to squared radius K of the
domain it occupies.

So, as far as electrical resistance is concerned, the
conductive channels are conductive brownian tra-
jectories. Now d becomes the step length of the
random walk and, with the distance between the con-
tacts Z being constant, we have the channel length
) .  q .  d - t .

It is natural to suppose that the cross-section of
the channel is d2. The simplest way to introduce this
is to use the lattice representation: when the random
walk occurs on a cubic lattice with a period d the
cross-section of the cell d2 is a natural cross-section of
the trace. The development of the fractal pattern given
on Fig. I corresponds to decrease of d. This. in turn.
means that instead of a lattice with a fixed period we
deal with a series of lattices with gradually decreasing
periods. Here is, again, a remarkable contrast with the
classical percolation theory.
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Fig. 2. Scaled temperature dependence of the Zn_Sb
alloy resistance in the sample states l_5 _ solid line.
The same for the sample in the state 6 - dashed line.

3. Zn-Sb DATA

The experiment with the Zn-Sb alloy and its poss-
ible interpretation were discussed in detail in [7, g].
Here we'll first summarize briefly the results.

Figure 2 demonstrates the low-temperature
dependence of the sample resistance during the
amorphization. It is drawn with the use of a simple
rescaling. For each experimental curve the residual
resistance & : R(?" = 7.1K) was subtracted first;
then the ordinates R(7') - Ro were divided by the
slope coefficient D = @RIAT)r=rox. Note that after
these two manipulations: the shift of the origin and the
scaling, all the curves coincide not only at two points
but within a rather large temperature interval. The
further the amorphous phase evolves the less is the
region where the temperature dependence is universal.
However, even with Ro increased by three orders of
magnitude the region remains rather large. It is only at
the last stage of the transition that the scaling pro-
cedure fails to reproduce the universal function (curve
6 in Fig. 2).

tg Ro

lig, 3 Double-logarithmic plot of the derivative
ARIA! dependence on the residual resistance rRs for
two Zn-Sb samples. Fullcircles - data obtained irom
the curves presented in Fig. 2. Straight line corre-
sponds to the exponent a : 0.75.
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In Fig. 3 the slope coefficient D is plotted against
the residual resistance Ro chosen to be a measure of
amorphization.

The experimental results demonstrated in Figs. 2
and 3 can be described by the relation

R@, r) : Ro(d) + Rt(d)f(T)

Here d is the amorphization parameter and d* is its
initial value, factorization for R(I) - & is a conse-
quence of the universal temperature dependence illus-
trated by Fig. 2, the exponent c = 0.75:

D oc R3t' . (2)

Let's represent the resistance R as a product of a
resistivity p by a geometrical factor @ (the latter equals
Z/S (length/cross section) for a homogeneous cylindri-
cal sample). Then

R : p(d, T)$(d) : lpo@) + p,(d)f(d))Q@).

(3)

From (2) and (3) it follows

p { d )  q  [ p o @ ) ] l Q @ \ - ' .  ( 4 )

So not only the factor { but also the resistivity
"knows" about the parameter d. As d is the width of
the conductive channels, this may be explained with
the help of the classical size effect in the resistance.
Let's introduce /0 - the mean free path in the bulk
material determined by the scattering by point defects
and the temperature dependent part /, of the bulk
mean free path i(?n): /; ' : [(I)]-' - /t '. The usual
expression for resistivity is

p :

(n is the carrier density, p. is the Fermi momentum).
For a wire with diameter d 4 16 the mean free path /o
can be, within a rather good accuracy, replaced in (5)
by d [0]. Then, with whatever relation between /, and
d. one has

po(d)  r .  d- t  ,  p , (d)  t  do.

Combining this with (4) we finally obtain:

Q(d) q ddt/g-t) :  d-t,  (7)

where the right exponent corresponds to experimental
value a :  0.75.

Equation (7) fits the fractal model perfectly.If the
concentration of initial leaf nuclei is Ccm-3 then each"independent" fractal shown in Fig. I has the space
size of C-rlr and the length of a trajectory situated

along its boundary is C-2t3 d-t. For the whole system,
where SC2/3 trajectories are parallelly connected each
being a chain of ICrl3 links with length g-ztt 4-r un6
with cross-section d-'2. we shall obtain

o : Qls)(cd\' '. (a)
Note, that resistivity itself has sense only at "large

scale" when L > C-tt3. When t < C-'lt, the depen-
dence p on I must exist. It has not been experimen-
tally studied yet.

Let us make some numerical estimates. The
whole range of 'rariation of the resistance observed
at the metallic side of the transition (four orders of
magnitude) corresponds to tenfold decrease of the
parameter d. For the size effect to take place the larger
limit d* of the interval where the thickness d varies
(and (l) holds) must be smaller than the mean free
path for bulk material /. The latter can scarcely be
larger than (l-2) x l0-5cm. So we have

1000A - i l  2- d = 100A.

The lower limit d,;n - l00A corresponds to curves
5, 6 in Fig. 2. Using a usual estimate for the carrier
density in the metallic phase and the initial apparent
resistivity value R(S/L) r 5Og0cm [6]one gets from
(3) and (8) that C1d*1t - l-10, i.e. C = 1015-1016crn-3.
Both estimates, d,1n and C, sound quite reasonable.

4, Al-Ge DATA

The experiment with the Al-Ge alloy was per-
formed similarly to those with Zn-Sb. The differences
were only quantitative (see the Table). However, the
results are quite different, as it can be seen from the
comparison of Figs. 4 and 5 with Figs. 2 and 3. Note
that Fig. 5 demonstrates the exponent c : I instead
of a = 0.75.

Exponent 0.75 in equation (2) is the result of the
combination of a fractal structure of the insulating
phase and a rather long mean free path /. If, instead,
I 4 d^a holds one will find

R,(d) oc &(d) = [&(d)] ' .  (9)

Similarity of the processes in the both alloys [5]
gives reason to suggest that the structures in both are
the same and that the relation between / and d,,n is the
main source of the difference.

The relation (9) is far less informative than
relation (2). It holds also during a uniform transition
when the changes in the resistivity are controlled by
the number of carriers n in (5) as well as in the case
when the resistance changes are due only to the alter-
nation in the shape of the conductive channels, i.e. of
the factor {. The latter case apparently takes place

p r l  p r l l .  l \
; ?7  =  ;A \ i *  i ) (5)

(6)
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Fig. 5. The same as in Fig. 3 for a Al-Ge sample.

conneeted in series with metal volumes. As the tunnel
resistance of the films does not depend on I one gets

-

T (K)

Fig. 4. Temperature variation of the Al-Ge sample
resistance at different stages of amorphization. Each
next curve is shifted 0.02 upward for claritv. At the
right of the curves the resistance ratios Ro,/Ro, are
indicated.

during approaching the transition in a random mix-
ture of two phases. Indeed, when approaching the
threshold, what alters is the size of the cells of the
conductive backbone in the infinite cluster. However,
the links between the nodes of this backbone always
contain so called red bonds, regions with minimal
possible cross-sections Il l, l2]. So the contribution of
the size effect to the link resistivity does not alter
during approaching the transition and only the factot
@ changes.

Insulating films in an ideal granular metal are

Table l.

Zn-Sb Al-Ge

R'(d) : const oc [Ro(d)]0, (10 )

In Fig. 5 apart from the well defined region where (9)
holds there is a region where the data can be inter-
preted as satisfying (10). Probably, this reflects the
final stage of the sample transition when d becomes
too small and the insulating sheets merge. Then the
fractal structure transforms into the granular one.

5. CONCLUSION

In conclusion, the scaling relations between the
parts of the resistance in the vicinity of the metal-
insulator transition contain information about the
macrostructure of the sample. Equations (9) and (10)
express the two limiting cases which correspond to a
random mixture of phases and to a granular metal.
The exponent a in (l) can be changed by the dc size
effect. The Zn-Sb experimental data give such an
example.
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Initial "apparent" resistivity
&'S/1, pocm

Range of resistance changes at
the metallic side of the transition
&/Ro'

Shift of the superconducting
transition temperature
07, l0 ln Rn, K

Temperature at which the
sample transition occurs,
approximately, K
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