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RESISTANCE SCALING 1N INHOMOGENEOUS MEDIA IN THE VICINITY OF A METAL-INSULATOR TRANSITION
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Scaling relation between residual R and temperature-dependent B parts of the sample electrical
resistance in the vicinity of a metal-insulator transition can bé a guide in examining the struc-
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ture of the material. In the relation Rid(ﬂo) the exponent value V=1 is typical for a random mix-—

ture of metallic and insulating domains, V=0 for granular metals. A special case V=0.75 has been
observed recently. It corresponds to a fractal structure of the insulating phase with the classi-
cal size effect governing the conductivity of the metallic chamnels. Experimental data on Zn-Sb

and Al -Ge alloys are presented.

1. INTRODUCTION

Transport phenomena in inhomogeneous media
are usually considered by applying the percola-
tion theory (1). However, the material science
has at its disposal a lot of geometrical pat-
terns which are not of a simple random nature.
tor instance, granular metals contain in essence
& correlated system of rather regularly alterna-
ting metallic and insulating regions. Much more
complicated structures may occur when the solid
mixture arises as a result of a phase transition
in some parts of the sample. If these two phases
have different conductivities, for instance,
when a metal-insulator transition takes place,
orie should describe conducting network and the
total conductance of the sample.

In this content the term "metal-insulator tra-
risition” has two meanings: "point transition”
wnen a small volume becomes dielectric, and "sa-
mple transition” when the conductance of the
whole sample drops to zero. We shall concern
ourselves only with studying the metallic side
of the sample transition. The main idea is that
while analyzing scaling relations for the sample
resistance one can judge what type of the struc-
iure is realized in the sample and distinguish,
for example, a fractal pattern from a random one.

2. RESISTANCE SCALING
Let’s represent the resistance R as a product
of a resistivity P by a geometrical factor ©
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R=p(T = lpgto, (TN = =5 (7 +7 ) e /1/
ne 8} T
(pF is the Fermi momentum, mean free path
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1 =1O +11 ) .When the changes in the resistivity
are controlled by the carrier density n as well
as when the resistance changes are due only to
the alternation in the shape of the conductive
channels, i.e. of the factor ¢, then relation

_ 1
R <R = [R] /2/

holds. The latter case apparently takes place
during approaching the transition in a random
mixture of two phases. Indeed, when approaching
the threshold, what alters is the size of the
cells of the conductive backbone in the infinite
cluster, i.e. the factor .

Insulating films in an ideal granular metal
are connected in series with metal volumes. As
the tunnel resistance of the films does not
depend on T one gets

R, = const « [RO]O. /3/

3. FRACTAL PATTERN OF THE Zn-Sb ALLOY STRUCTURE
The exponent wvalues V=1 from Eq./2/ and V=0
from Eq./3/ are not the only possible ones. Be-

:F{QW follows an example with V=0.75: an inhomoge-
neous structure created in the course of a spe-

cial phase transition, namely, the amorphization
of the metastable phase of alloy Zn-Sb quenched
under pressure (2,3). The initial state is crys-
talline and metallic while the final one is
amorphous and insulating. The amorphization pro-
cess could be led slowly by the low temperature
annealing. It could be repeatedly interrupted by
returning to nitrogen temperatures.

This transition to the amorphous state has
the following important features:

1. the specific volume increases significant-—
ly during the transition ;

2. the sample resistance R increases by or-
ders of magnitude while the sample remains me—
tallic at low temperatures, i.e. while it
retains 3R/OT0;

3. the large increase of the resistance is
accompanied by & very small decrease of the tem—
perature I; of the superconducting transition.
This point contains the evidence that the sample
is macroscopically inhomogeneous in the interme-
diate states of the transition (2)

A fractal-like model of the intrinsic struc—
ture of the sample was proposed in (3). It sup-
poses the growing insulating amorphous inclu-
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sions to be cactus-like with leaves branching
many times. These leaves, or sheets, are suppo-
sed neither to intersect each other nor to merge,
This maintains the existence of current paths,
at the far-gone stages of the transition, in
contrast with the percolation model.

The development of the "cactus" structures
can be described by a parameter d, mean distance
between the leaves. According to (3),the current
paths are located at the surface with fractal
dimension three which separates two "cactuses";
from the mathematical point of view the current
paths are similar to trajectories of brownian
particles. The fractal dimension of such a tra-
jectory is two: its length is proportional to
squared radius K of the domain it occupies.

So, as far as electrical resistance is con-
cerned, the conductive channels are conductive
brownian trajectories. Now d becomes the step
length of the random walk and, with the distance
between the contacts L being constant, we have
the channel length Acd Supposing in addition
that the cross—section of the channel is we
obtain tp’!id—

To get an exponent in Eq./2/ different from
Vz1l we need some dependence of ¢ on d. Such de-
pendence can exist due to the dc size effect.
For a wire with diameter d<1_ the mean free path
10 can be, within a rather good accuracy, repla-
ced in Eq./1/ by d (5).Then, with whatever rela-
tion between lT and d, one has

o (d) = d " p (d) = d /4/
Combining this with ¢ « cl_3 we finally get
-4 -3 0.75
Rodd N Rlad \ Riﬁ[RO] . /5/

That is just what follows from the experiment .
(Fig.1). Note, in passing, that in the percola-—

tive system the links between the nodes of its
backbone always contain so called red bonds, re-
gions with minimal possible cross-sections (1).
This means that- the dc size effect cannot
influence the vV value.
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4. Al-Ge DATA
The experiment with the Al-Ge alloy was perform-
ed similarly to those with Zn-Sb. The differen-
ces were only quantitative, However, the results
are quite different, as it can be seen from the
comparison of Figs.1l and 2. Note that Fig.2
demonstrates the exponent V=1 instead of V=0.75.
Similarity of the processes in the both alloys
gives reason to suggest that the structures in
both are the same and that the relation between
1 and d is the main source of the difference.
Exponent 0.75 is the result of the combina—
tion of a fractal structure of the insulating
phase and a rather long mean free path 1. If,
instead, I € d holds one will find vV=1.

" CONCLUSIONS

. in conclusion, the scaling relations between
the parts of the resistance in the vicinity of
the metal-insulator transition contain informa-
tion about the macrostructure of the sample. Eqs
/2/ and /3/ express the two limiting cases which
correspond to a random mixture of,phases and to
& granular metal. The exponent UV can be changed
by the dc size effect. The Zn-Sb experimental
data give such an example.
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