INTERPLAY OF SUPERCONDUCTING AND INSULATING PHASES IN THE METASTABLE HIGH-RESISTANCE STATES OF THE Ga₅₀Sb₅₀ ALLOY

V.F. Gantmakher, V.M. Teplinskii, V.N. Zverev, and O.I. Barkalov

Institute of Solid State Physics, 142432 Chernogolovka, Russia
INTERPLAY OF SUPERCONDUCTING AND INSULATING PHASES IN THE METASTABLE HIGH-RESISTANCE STATES OF THE Ga$_{50}$Sb$_{50}$ ALLOY

V.F. Gantmakher, V.M. Teplinskii, V.N. Zverev, and O.I. Barkalov

Institute of Solid State Physics, 142432 Chernogolovka, Russia

Temperature dependences of the resistance $R(T)$ of the alloy GaSb at different stages of its transformation from the high-pressure metastable metallic (M-) phase into the an insulating (I-) phase are measured. Absolute values of R at these stages span more than eight orders of magnitude. The superconducting (S-) transition takes place in the low-resistance states at $T \approx 4.6$K. It gives way to a steep increase of the resistance, i.e. to an insulating transition at the same temperature in the high-resistance states.

In three dimensions (3D), the quasireentrant superconducting (qrS-) transition usually takes place near the localization threshold [1]. Recently, some experimental indications appeared that qrS-transition can be realized not only in granular material but in the homogeneously disordered material as well [2] or, at least, in materials which cannot be treated as random mixture of conductors and insulators. In this connection, we compared in this paper the $R(T)$ dependence above the onset of the qrS-transition with that at low temperatures where R increases with reducing T.

Our material, the alloy Ga$_{50}$Sb$_{50}$, is one of those alloys which under the high pressure can be obtained in a metastable M-phase and then transformed into I-phase by heating [3]. Dosing the heating, one can get a row of intermediate states and measure the dependence $R(T)$ in them at low temperatures. The alloy Ga-Sb apparently transforms in accordance with the fractal scheme: the I-phase appears as a fractal structure thinning and entangling the current paths [4]. Indeed, even after the initial resistance of the sample has been increased by 8 (!) orders of magnitude (estimated starting value of resistivity being 100 cm) we did not reach the state which could be regarded as an I-state judging from formal extrapolation to $T=0$ of the conductance (T).

The first four orders of magnitude in changing R are not accompanied by any changes of the S-transition. This confirms that only a part of the sample is yet involved into the transformation. The physical properties of those domains where the S-transition preserved remain unchanged but their volume reduces rapidly and their topology becomes more complicate. Further increase of R leads to appearance of tails in the transition curves first and then to the qrS-transition [1,2]: the resistance fails to become zero and starts to increase with lowering the temperature.

Fig. 1 exposes the experimental data. The states are labelled by number q

$$q = \log \left(\frac{R}{R_{\text{in}}} \right)_{T=6K},$$

where R_{in} is the resistance of the sample in the initial state. It can
Fig. 1

be seen from the curve $q=7.8$ that in the high-resistance states there is no natural S-response at all: a transition does exist at the temperature T_c but the resistance at $T < T_c$ increases instead of decreasing.

It follows from Fig. 1 that at $T > T_c$ and with q large enough the changes in the conductance are proportional to $T^{1/2}$. The straight line $\sigma_0(T) = \sigma_0(0) + aT^{1/2}$ describes the data above T_c. Below T_c the difference $\sigma(T) - \sigma_0(T)$ may change the sign at some temperature T^*. Let us take $\sigma_0(0)$ as a parameter of the state and plot T_c and T^* vs $\sigma_0(0)$. Then we get three domains in the (σ_0, T) plane which can be named M, S, and I-domains - see Fig. 2.

The most natural explanation of the observed phenomenon would suppose that current paths cross a kind of a S-I-S-...-structure with non-Josephson but quasiparticle tunneling currents through I-domains. It is not clear yet whether such approach is valid. Maybe we need quantum approach instead, treating the system as a whole and involving such ideas as spin density waves, paired electron crystals [5], or supposing finite magnitude of the order parameter and existence of the Cooper pairs at the I-side of the S-I transition [6].

A similar phenomenon - a crossover between S- and I-transitions depending on the conditions of the experiment has been seen in quasi-1D conductor TaSe$_3$ [7]. The similarity is emphasized by the fact that the dimensions of the conducting domains on a fractal structure may turn to be rather low.

REFERENCES

2. V. Gantmakher, V. Teplinskii et al., JETP Letters 56, 309 (1992)