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Abstract. A temperature-induced crossover from hopping to metallic conductivity is observed
for barely insulating samples of Ge:As and Ge:Sb with impurity concentrationN just below
the critical valueNc0. The values of the correlation lengthξ are obtained on both sides of the
transition. A method is developed for determination of a ‘delocalization temperature’Td , which
separates the hopping and metallic conductivity. It is shown that the dependence ofTd onN for
various semiconductors can be reduced to a universal curve using normalization of theT -scale
by the mean energy of the Coulomb interactionW = (e2/κ0)N

1/3
c0 .

The metal–insulator transition (MIT) is defined by the vanishing of the dc conductivity at
zero temperature [1]: the value ofσ(0) ≡ σ(T → 0) when plotted as a function of the
impurity concentrationN , is equal to zero on the insulating side of the MIT and remains
finite on the metallic side, obeying scaling behaviour in the vicinity of the transition [2]:

σ(0) = γ e
2

h̄

1

ξ
∝ (1N/Nc0)µ. (1)

Hereγ = 1/3π2 [3], ξ is the correlation length,Nc0 is the critical impurity concentration,
1N = N −Nc0, andµ is the critical conductivity exponent which is to be determined from
experiments. The scaling behaviour ofσ(0) is conditioned by the divergence ofξ when the
transition is approached:ξ ∝ (1N/Nc0)−µ.

The zero-temperature conductivity does not behave as an ordinary metallic Drude
conductivity in the immediate vicinity of the transition point. This happens only when
it reaches the Mott minimal conductivity

σm = C0(e
2/h̄)N

1/3
c0 (2)

i.e. only whenξ reduces to the average inter-impurity distanceN
−1/3
c0 . HereC0 is a numerical

coefficient. Mott has defined its value approachingσm from the metallic side. When
approachingσm from below, it is natural to apply the scaling theory and assumeC0 = γ .

The conductivityσ(0) < σm represents a special kind of conductivity [2], which has no
clear model representation and can be named critical, or scaling, or quantum conductivity.
So, we suggest that theN -axis can be divided into three regions: insulating (I), scaling
(S), and metallic (M). Since in the S-regionσ(0) 6= 0, the S-region must be also regarded
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as metallic and the MIT takes place on the boundary between the I- and the S-regions.
With concentrationN in the I-region, the Fermi level is situated in the localized part of the
density of states; in the S-region, it is in its delocalized part.

Non-zero, but low, temperature results for delocalized electrons of the S-region in finite
phase relaxation timeτϕ and finite phase relaxation lengthL = (Dτϕ)1/2 (D is the diffusion
coefficient). According to [1] and [4],σ(T ) in the S-region can be expressed in the form

σ(T ) = γ e
2

h̄ξ
+ β e2

h̄L(T )
. (3)

Hereβ = 2/3π3 = 0.022 andγ = 1/3π2 = 0.034 are the numerical constants [3]. (We
shall assume, for simplicity,γ ≈ β.) For localized electrons of the I-region, because of the
phonons, a finite conductivity appears which is determined by the variable-range-hopping
mechanism [5] and characterized by an exponential temperature dependence.

It is now widely accepted that in the immediate vicinity of the MIT, the electron–
electron (e–e) interaction plays the leading role. For the S-region, this means that it is the
e–e interaction that determinesτϕ andL [6]:

τϕ = τee = h̄/T and L = (Dh̄/T )1/2. (4)

For the I-region, e–e interaction produces the soft Coulomb gap at the Fermi level and
brings the exponential dependence ofσ(T ) to the form of the Shklovskii–Efros law [5]

σ(T ) = σ0 exp[−(TSE/T )1/2] TSE = 2.8e2/κξ. (5)

Hereσ0 is a parameter and the dielectric constantκ is equal toκ0 far from the MIT and
diverges at the point of the MIT [7]:

κ = κ0+ 4πe2gF ξ
2 (6)

wheregF = (∂N/∂ε)εF is the density of states at the Fermi level.
In both regions around the MIT, I and S, the increase of the temperature leads to

crossovers in conducting mechanisms.
SubstitutingL from (4) into (3) and using the Einstein relationσ(T ) = e2gFD,

we obtain the following equation in dimensionless unitsx = σ(T )/σ (0), t = T/T ∗,
T ∗ = β/ξ3gF [8]:

x3/2 = x1/2+ t1/2. (7)

In the low-temperature limitT � T ∗, x → 1 and the solution of (7) is

x = 1+ t1/2 σ(T ) = σ(0)+mT 1/2 m = β1/2(e2/h̄)g
1/2
F ξ1/2. (8)

In the opposite limitT � T ∗, from σ(T )� σ(0) it follows [4, 9, 10] that

x = 2
3 + t1/3 σ(T ) = a + bT 1/3 a = 2

3σ(0) b = β2/3(e2/h̄)g
1/3
F . (9)

The equationT = T ∗, i.e.

T (S)crs = β/ξ3gF (10)

defines the crossover line in the S-region [8]. It separates temperature regions where the
relation1σ ∝ T p has indicesp = 1

2 and 1
3. For T < T (S)crs the diffusion coefficientD is

determined by the static random potential and forT > T (S)crs by charge fluctuations.
The ‘T 1/3-dependences’ (9) have been observed in different doped semiconductors:

InSb [11], GaAs [11–13], and Ge [14]. The MIT in these experiments was approached by
changing both the impurity concentrationN (N -MIT) and the magnetic fieldB (B-MIT).
The measurements in Si were usually interpreted in terms of (8), as a ‘T 1/2-dependence’
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[15–18]. It is not always simple to decidea priori what scale,T 1/2 or T 1/3, is better. We
have replotted here the data of [17] and [18] on theT 1/3-scale. In contrast, data for Ge:Ga
were presented recently in theT 1/2-scale [19]. However, usually both presentations give
practically the sameNc0 value.

Insertingt = 1 into (7), one obtainsx ≈ 1.75, i.e.σ(T ∗) ≈ 1.75σ(0). This defines the
self-consistent procedure for the analysis of the data in the S-region. One would expect the
T 1/3-scale to be applicable in the nearest vicinity of the MIT only [20].

The crossover line exists also in the I-region. For variable-range hopping to occur, the
hopping lengthrSE

rSE = 1
4ξ(TSE/T )

1/2 (11)

must be longer thanξ . From the equalityrSE = ξ and from expressions (5) forTSE and
(6) for κ, the equation for the second crossover line follows

T (I)crs =
β ′/ξ3gF

1+ κ0/4πe2gF ξ2
β ′ = 0.014. (12)

The value ofβ ′ follows from the numerical coefficients in (5), (6), and (11). In the
immediate vicinity of the MIT (12) becomes similar to (10) for the S-region.

The change of the conductivity along the crossover line (12) in the I-region is more
fundamental as compared to the crossover in the S-region (10). In the I-region, a transition
takes place from the exponential to the power law in the temperature dependence of
the conductivity. The conductivity has insulator-like behaviour belowT (I)crs and metallic-
like behaviour aboveT (I)crs . We shall refer to this effect as to a temperature-induced
metal–insulator transition (T -MIT). In this language, the critical concentrationNc0, which
separates the samples with insulating and metallic behaviours of conductivity, shifts to lower
concentration with increasingT . With relation (1) between1N andξ , the functionT (I)crs (ξ)

defines the ‘delocalization temperature’Td at a given concentrationN and (12) gives an
implicit expression for the functionNc(T ) with Nc(0) ≡ Nc0.

A similar quasi-phase diagram in the vicinity of the MIT was proposed earlier in [8].
However, the correlation lengthξ was supposed there to be controlled by the degree of
disorder. The later cannot be quantitatively measured. Therefore the diagram was compared
with experiment only qualitatively. In this work we will concentrate on the classical heavily
doped semiconductors Ge and Si whereξ is controlled by the concentration, which can be
precisely measured. We report the observation of the temperature-induced crossover from
hopping to metallic conductivity in barely insulating samples of Ge:As and Ge:Sb with
impurity concentrationsN just belowNc0. The quantitative analysis of the vicinity of the
MIT is presented: we plot the functionNc(T ) for a series of samples of Ge:As and Ge:Sb.
We also analyse the data for Si:B and Si:P obtained by other authors. We demonstrate
that the dependence of the dimensionless quantity|1Nc/Nc0| ≡ [Nc(T )−Nc0]/Nc0 on the
reduced temperatureT/W merges for different impurity systems into a universal curve.
HereW = (e2/κ0)N

1/3
c0 is the mean energy of the random potential caused by the Coulomb

interaction between charged impurities.
Two series of uncompensated samples of Ge metallurgically doped by As and Sb with

impurity concentration close to the MIT were cut from crystals grown by the Czochralski
method. The effective concentrations of impurities responsible for the low-temperature
conductivity were calculated directly from the resistance measurements using the method
and scale proposed in [21]. TheN -MIT in these series of samples was described earlier
in [14]. It was shown there thatNc0 = 3.5× 1017 cm−3 for Ge:As and 1.44× 1017 cm−3

for Ge:Sb and thatµ = 1 for both series. Figure 1 shows the temperature dependence of
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Figure 1. The temperature dependence of conductivityσ(T ) for a series of Ge:As samples.
Impurity concentration from top to bottom in units of 1017 cm−3: 5.38, 5.15, 4.60, 4.45,
4.17, 3.91, 3.82, 3.58, 3.56, 3.50, 3.00. The dashed lines show the extrapolation procedure to
T = 0. The arrow shows the ‘delocalization temperature’Td for the insulating sample with
N = 3.00× 1017 cm−3.

conductivityσ(T ) for the series of Ge:As samples in terms ofσ againstT 1/3. One can see
that the functionσ(T ) is well represented by the power law (9) not only in the metallic
S-region, but in the I-region as well (see the sample withN = 3.0× 1017 cm−3), with the
difference that in the I-regiona < 0 and theT 1/3-dependence is observed only atT > Td .

Figure 2 shows the conductivity as a function ofN at differentT for these samples.
We notice first the linear dependence of the limiting values ofσ(T → 0) obtained from
σ(T ) curves by extrapolation toT = 0. It confirms that the critical indexµ in (1) is equal
to unity

ξ ∝ (1N/Nc0)−1 (13)

and gives the value of the critical concentrationNc0. From here we receive the lower scale
for the x-axis, in units1N/Nc0.

The linear behaviour ofσ(T ) againstN persists at non-zeroT as well. We see from
figure 2 that all the lines intersect in one point, at1N/Nc0 ≈ 0.27. At this concentration the
conductivityσ hardly depends onT (see figure 1, the sample withN = 4.45×1017 cm−3).
We believe that this occurs because the temperature-dependent quantum corrections to the
conductivity (3) and the classical contribution of the temperature-dependent scattering, being
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Figure 2. Dimensionless conductivityσ(T )/σm as a function of dimensionless impurity
concentration1N/Nc0 for a series of Ge:As samples (Nc0 = 3.5 × 1017 cm−3, σm =
C0(e

2/h̄)N
−1/3
c0 = 14 S cm−1, C0 = 0.12). The top axis shows the reciprocal correlation

lengthξ−1 in dimensionless units(ξN1/3
c0 )
−1.

of opposite signs, nearly compensate each other. Hence, we suggest that at this concentration
we are at the border between the S- and M-regions. This gives the 1/ξ -scale along thex-axis
which is plotted above:ξ−1 is zero at1N = 0, andξ−1 = N1/3

c1 at1N/Nc0 ≈ 0.27 (here
Nc1 = 1.27Nc0)†. The scale, according to (13), is linear with1N . As a result, one can
obtain in the S-region a coefficientcs between the two related scales:

(ξN
1/3
c0 )

−1 = cs(1N/Nc0) cs ≈ 4. (14)

(14) is valid only in the S-region: there is no cause for it to be the same in the I-region
where the parameterξ is called the ‘localization length’ξ loc.

The given interpretation of the intersection point defines also the reduced scale along the
y-axis: the conductivity at the S–M-boundary is expected to beσm; hence, the coefficientC0

in (2) is 0.12. This value is lower than the value of 0.3 used in [14] but it is derived straight
from the experiment and is closer to the theoretical valueγ which enters the expression (1).

† In the case of Ge:Sb, the same effect is observed for the sample withN = 1.82× 1017 cm−3 (see figure 3 in
[14]), which corresponds to the valueNc1/Nc0 = 1.26, very close to that for Ge:As, while for p-type Si:B [17]
and Ge:Ga [19]Nc1/Nc0 = 1.08. It is interesting to find this ratio for other doped semiconductors.
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The straight linesσ(1N/Nc0) cross they-axisN = Nc0 at σ values

σ = (e2/h̄)β2/3(gF T )
1/3. (15)

From here we can obtain the density of statesgF just at the point of the MIT:

gF0 = 3× 1016 cm−3 K−1. (16)

Extrapolating the straight linesσ(1N/Nc0) to σ = 0, denoting the intersection point
with the x-axis asNc(T ) and assuming (Nc(T ) − Nc0)/Nc0 � 0.27 one obtains from
similarity of triangles the expression

(Nc(T )−Nc0) ∝ (gF T )1/3 (17)

which, in view of the proportionality (13), is equivalent to the equations of the crossover
lines (10) and (12). Hence, the procedure described above permits us to measure the
crossover line (12) and to determine the critical concentrationNc(T ) at which, at givenT ,
the leading transport mechanism changes from hopping to scaling conductivity.

The procedure of extracting the functionNc(T ) by extrapolation of the linear part of
the functionsσ(N)|T=constant to σ = 0 was applied to the results of our experiments with
Ge:As and Ge:Sb. We applied the same procedure to the data for Si:B and Si:P obtained
by other authors and published in [17] and [18]. All these results are gathered in figure 3.
It is easy to see that shifts ofNc to lowerN with increasingT are different, being higher
for materials with smallerNc.

Figure 3. Dependences ofNc(T ) for Ge doped with As and Sb (present work), Si:B [17] and
Si:P [18]. The dashed lines are guides to the eye.
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Figure 4. The vicinity of the MIT as a ‘quasi-phase diagram’: the normalized delocalization
temperatureT/W as a function of the normalized impurity concentration1N/Nc0. The mean
energy of the random Coulomb potentialW = (e2/κ0)N

1/3
c0 is 70 K for Ge:As, 52 K for Ge:Sb,

206 K for Si:B, and 200 K for Si:P. The solid line corresponds to the crossover temperature
T
(I)
crs (12) with parameters given in the text.

To merge the data for different impurity systems into a universal curve, we reduced the
temperature axis to dimensionless units, dividingT by W = (e2/κ0)N

1/3
c0 , the mean energy

of the random potential caused by the Coulomb interaction between charged impurities.
The result is presented in figure 4: all data merge into one curve. SinceW is a measure of
the Coulomb interaction in the impurity system, this is an argument which indicates that,
indeed, this interaction governs the MIT in doped semiconductors.

Our next action is to compare the universal curve obtained with the crossover line
described by (12). The solid line which fits the points is plotted in the form

T = c1x
3/(1+ c2x

2) (18)

in accordance with (12) applied to Ge:As. The value ofκ0 = 16 is used, the value ofgF
from (16) is taken as an upper limit ofgF . The numerical coefficientsβ ′ andci between two
related scales in the I-region, similar tocs defined in (14), are used as free parameters. The
fitting givesci = 12, β ′ = 0.002. The obtained value ofci is larger while the value ofβ ′

is smaller than corresponding values in (12) and (14). However, they are very sensitive to
the value ofgF used. We expect a further decrease ofgF when moving inside the I-region,
so that is the upper limit forci and the lower limit forβ ′.

To conclude, we demonstrated that the one-variable scaling theory with e–e-interactions
included can be successfully applied to heavily doped semiconductors for quantitative
description of the critical region of both sides of the MIT. The quantitative relations
between the correlation lengthξ and the impurity concentrationN were measured. On
the insulating side of the MIT, in its immediate vicinity, the conductivity has insulator-
like behaviour below some ‘delocalization temperature’Td and metallic-like behaviour
above Td . The concentration dependence ofTd , or, in other words, the temperature
dependence of the critical concentration, was measured and analysed. It turns out to be
a universal curve for different doped semiconductors after the concentration is reduced
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to the critical valueNc0 and the temperature to the mean value of the random Coulomb
potentialW = (e2/κ0)N

1/3
c0 .
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