- Пудалов В.М. и др. Письма в ЖЭТФ 65 887 (1997) [JETP Lett. 65 932 (1997)]; cond-mat/9707054
- 16. Simonian D et al. *Phys. Rev. Lett.* (1997) (in press)
- 17. Bishop D J, Dynes R J, Tsui D C Phys. Rev. B 26 773 (1982)
- 18. Pudalov V M et al. (to be published elsewhere)
- 19. Pudalov V M et al., in *Proc: EP2DS12* (Tokyo, 1997)
- 20. Lyanda-Geller Y U B, Mirlin A D Phys. Rev. Lett. 72 1894 (1994)
- Finkel'stein A M Z. Phys. B 56 189 (1984); *X*∂*T*Φ 84 168 (1983) [Sov. Phys. JETP 57 97 (1983)]; Sov. Sci. Reviews/sect. A-Physics Reviews (Ed. I M Khalatnikov) Vol.14, part 2, 3 (1990)
 Belitz D, Kirkpatrick T R, cond-mat/9705023
- Dobrosavljevic V et al., cond-mat/9704091; *Phys. Rev. Lett.* 77 455 (1997)

Переход сверхпроводник – диэлектрик и диэлектрики с локализованными электронными парами

В.Ф. Гантмахер

1. Введение

Среди различных сценариев переходов сверхпроводникдиэлектрик (SIT) существует сценарий, предложенный Фишером [1]: переход в двумерных сверхпроводниках, вызываемый и контролируемый полем. Он предполагает существование при T = 0 делокализованных куперовских пар и локализованных вихрей ниже перехода, при полях *B* < *B*_c (сверхпроводник), и локализованных пар при делокализованных вихрях выше перехода, при $B > B_c$ (диэлектрик). Ряд экспериментальных работ [2, 3], повидимому, подтверждает эту модель, описывая полученные результаты при помощи предложенных в [1] скейлинговых соотношений. Как следствие подхода, развитого в [1-3], следует предположить существование диэлектрика с локализованными куперовскими парами и магнитным полем структурированным в систему вихрей. Свойства подобного диэлектрика до сих пор не обсуждались.

Некоторые экспериментальные наблюдения действительно свидетельствуют в пользу существования локализованных пар [4]. В частности, одним из таких свидетельств является отрицательное магнетосопротивление в некоторых массивных материалах, в которых сверхпроводимость уступает место диэлектрическому поведению [5]. Это отрицательное магнетосопротивление является результатом того, что магнитное поле разрушает щель в спектре локализованных электронов, устраняя ее влияние на процесс одночастичного туннелирования [6].

Наши сведения о локализованных парах пока очень скудны. Существующие эксперименты вызывают некоторые вопросы. Аморфные пленки Мо-Ge [3] в пределе сильного магнитного поля лишь на 5 % увеличивают сопротивление при десятикратном уменьшении температуры и ведут себя не как изолятор, а скорее как металл с малыми квантовыми поправками к сопротивлению. Измерения на пленках In-O [2] были сделаны в квазивозвратном режиме. Поэтому проблема локализованных пар требует дальнейших экспериментальных наблюдений.

В настоящей работе описаны два эксперимента, имеющие отношение к этой проблеме. В первом эксперименте изучается магнетотранспорт в аморфных пленках¹ In_2O_x и на основе сделанных измерений обсуждается существование скейлинговой переменной [1]

$$x = \frac{(B - B_c)}{T^{1/y}}$$
(1)

(у — произведение двух критических экспонент согласно теории [1]). Наши результаты не отвергают возможности фазового перехода, вызванного полем, но указывают на более общие скейлинговые соотношения.

Во втором эксперименте реализован другой подход: сделана попытка обнаружить явления, в которых бы проявилось существование в изоляторе локализованных пар. С этой целью изучались транспортные свойства высокорезистивного метастабильного диэлектрического образца Cd-Sb [7], где были основания ожидать наличие таких пар. Этому эксперименту посвящен последний раздел статьи.

2. In-O — скейлинговые соотношения¹

Для двумерных систем существуют два основных типа эволюции кривых R(T) в процессе SIT, происходящего при изменении магнитного поля. Различия состоят в поведении кривых при температурах ниже начала сверх-проводящего перехода T_{c0} (рис. 1).

Рис. 1. Температурные зависимости сопротивления двух разных аморфных пленок In–O в магнитном поле. Толщина обеих пленок 200 Å. Наборы кривых на рисунках 1а и 16 иллюстрируют два типа изменений свойств пленок (см. текст).

Первый тип более сложный. Если поля достаточно малы, то кривые имеют максимум вблизи T_{c0} , а ниже имеют положительную первую производную, т.е. сопротивление монотонно уменьшается, пока не достигнет нуля (впрочем, этого может и не произойти). Если поля достаточно велики, то первая производная везде отрицательна. Но при этом существует диапазон промежуточных полей, где кривые R(T) имеют два экстремума: максимум при $T_{max} \approx T_{c0}$ и минимум при более низких температурах. Последний отщепляется от максимума и смещается в сторону более низких T при уменьшении поля.

Второй тип более простой. Нет диапазона промежуточных полей и вообще нет кривых с минимумом; увеличение поля приводит к смещению максимума в

¹ Эксперименты были выполнены вместе с М. Голубковым на пленках, любезно предоставленных А. Фридманом и Ц.Овадьяху из Иерусалимского университета (еще не опубликовано).

более низкие значения *T*, пока он не пропадает. Авторы работы [8], базируясь на результатах, полученных на ультратонких пленках металлов, считают второй тип идеальным, а низкотемпературный минимум при первом типе эволюции (так называемый "квазивозвратный переход") объясняют наличием неоднородностей и одночастичным туннелированием между сверхпроводящими зернами.

Поведение пленок In-O, описанное в [2], соответствует первому типу эволюции, а аморфных пленок Мо-Ge [3] — второму типу. Введение скейлинговой переменной (1) оказалось оправданным в обоих случаях. Оба эксперимента имели одно общее: температура *T*_{с0} в обеих пленках была низкой — меньше 0,3 К. Поскольку Т_{с0} является основным параметром размерности энергии, определяющим энергетическую шкалу задачи, для пленок с большими T_{c0} следует ожидать подобных скейлинговых соотношений при более высоких температурах. Мы проверили это в экспериментах на аморфных пленках In – О толщиной 200 Å. Значение T_{c0} в этих пленках зависит от содержания кислорода, и потому может быть изменено термообработкой [5, 6]. Мы остановились на значении $T_{\rm c0} \approx 2 \, {\rm K}$. При этом у нас встречались пленки обоих типов. На рисунке 1 представлены соответствующие примеры для двух пленок с примерно одинаковыми значениями T_{c0}. Ниже приведен детальный анализ измерений пленки второго типа, которая предполагается более однородной [8].

Анализ в работах [2, 3] начинался с определения значений критического поля B_c и критического сопротивления R_c ; для этого использовалось условие

$$\frac{\partial R}{\partial T}\Big|_{R_{c}} = 0 \tag{2}$$

при самой низкой температуре и предполагалось, что изомагнитная кривая R(T) сохранит при $B = B_c$ нулевой наклон вплоть до T = 0. В нашем веере кривых нет горизонтальной (см. рис. 2). Поэтому мы поступили иначе: отметив максимумы на кривых $R(T)|_B$ и используя линейную связь между сопротивлением в максимуме

Рис. 2. Центральная часть набора кривых рис. 16, представленная с меньшим шагом по полю. Экспериментальные точки поставлены только на одной кривой, снятой в поле B = 5,0 Тл. Штриховой линией показаны положения максимумов $R_{\max}(T)$, экстраполированные до T = 0. Пунктирной линией показана линейная экстраполяция к T = 0 измерений в поле B = 5,0 Тл.

и его положением на шкале температур, экстраполировали функцию $R_{max}(T)$ к T = 0 и получили предельное значение R_c (штриховая прямая на рис. 2). В веере кривых на рис. 2 одна, записанная в поле B = 5 Тл, очень близка к прямой линии; она разделяет кривые с положительной и с отрицательной второй производной. Экстраполяция ее к нулевой температуре (пунктирная линия) приводит практически в ту же точку R_c . Это дает основание утверждать, что, хотя мы остаемся довольно далеко от перехода по оси температур, при температурах T > 0, 3 К, мы можем из рис. 2 определить критические параметры изучаемого состояния образца:

$$B_{\rm c} = 5 \, {\rm Tr}, \qquad R_{\rm c} = 8 \, {\rm kOm}.$$
 (3)

По существу мы предположили, что в точке перехода обращается в нуль не первая, а только вторая производная; первая производная остается конечной, и линия, разделяющая на (T, R)-плоскости две фишеровские фазы, если они существуют, имеет конечный наклон. Для пленки, о которой идет речь, он равен

$$\gamma \equiv \frac{\partial R}{\partial T}\Big|_{B_c} = -0.83 \frac{\kappa O_M}{T_{\pi}}.$$
(4)

В качестве следующего шага уничтожим этот наклон, введя функцию

$$\widetilde{R} = R(T) - \gamma T \tag{5}$$

и проверим скейлинговые соотношения не для R, а для R. Построим \tilde{R} как функцию скейлинговой переменной $|B - B_c|/T^{1/y}$, сохранив величину критического поля B_c в пределах 1% от значения, указанного в (3), и выбрав степень *y* так, чтобы положить все точки на одну кривую (рис. 3). Эта процедура привела к тому же значению *y*, что и полученное в [2] и [3], а именно, y = 1, 3. В качестве дополнительного сравнения на рис. 3 сплошными линииями воспроизведены две скейлинговые кривые из [3], нормированные на значение $R_c = 8,1$ Тл.

Был также проведен аналогичный анализ данных для аморфной In-O пленки первого типа (рис. 1а). Исполь-

Рис. 3. Скейлинговые соотношения переопределенного сопротивления \tilde{R} пленки, представленной на рис. 16 и рис. 2. Различные символы соответствуют разным магнитным полям. Для сравнения сплошными линиями воспроизведена скейлинговая функция с рис. 3 из работы [3], нормированная на значение критического сопротивления $R_c = 8,1$ кОм.

зуя вместо максимумов минимумы на кривых $R(T)|_B$, мы получили значение R_c экстраполяцией к T = 0 функции $R_{\min}(T)$. Основная разница заключается в знаке наклона γ . Переопределенная функция $\widetilde{R}(T, B)$ после использования скейлинговой переменной (1) точно так же коллапсировала на две ветви и даже значение γ получилось практически то же самое.

Из изложенных результатов следует, что либо скейлинговые соотношения [1] должны быть обобщены путем замены сопротивления R на \tilde{R} из уравнения (5), либо они не столь специфичны и потому не могут быть решающим критерием существования фазового перехода при изменении поля.

3. Cd-Sb — парное туннелирование [7]

Основной процесс, определяющий низкотемпературную проводимость в диэлектриках, это туннелирование. Предположим, что в изоляторе есть локализованные куперовские пары. Для того, чтобы электрон из пары совершил прыжок, он должен "откупиться", затратив энергию связи Δ . Это вводит в выражение для проводимости дополнительный экспоненциальный фактор

$$\sigma_1(T) \approx \sigma_n \exp\left(-\frac{\Delta}{T}\right),$$
(6)

где σ_n — ожидаемая проводимость при температуре T в отсутствии спаривания. Этот процесс проявляется в виде отрицательного магнетосопротивления. Поле уничтожает щель и делает сопротивление в $\exp(\Delta/T)$ раз меньше. В принципе, из измерения отношения $\beta(T) = \sigma_n(T)/\sigma_1(T)$ можно извлечь величину щели Δ .

Отрицательное сопротивление, вызванное одночастичным туннелированием, хорошо известно в гранулированных сверхпроводниках как в пленках [9, 10], так и в массивных образцах [11].

Мы попытались измерить функцию $\beta(T)$ в высокорезистивном состоянии метастабильного сплава Cd-Sb, которое было заведомо диэлектрическим и имело отрицательное магнетосопротивление, связанное со сверхпроводимостью [12]. Образец сплава Cd47Sb53 имел форму стержня со всеми размерами порядка миллиметров. В камере высокого давления он был трансформирован в металлическую фазу со сверхпроводящим переходом при $T_{c0} \approx 4,5$ К. Охлаждением под давлением до температуры жидкого азота эта фаза была заморожена. Уже после охлаждения образец был вставлен в держатель с двумя парами золотых проволок с заточенными концами и помещен в криостат. Низкотемпературные транспортные измерения чередовались с нагревом образца до комнатной температуры, при которой сплав медленно трансформировался в состояние разупорядоченного изолятора. Трансформация отслеживалась по измерениям сопротивления и могла быть прервана возвращением образца к температуре жидкого азота. Экспериментальная методика подробно описана в [12].

Измеряемое значение сопротивления образца R является по существу усредненным значением, потому что в процессе трансформации образец становится неоднородным. Согласно [13], ниже T_{c0} образец представляет из себя смесь различных "слабо-сверхпроводящих" элементов, таких, как туннельные контакты, тонкие перемычки и проволоки и т.п. Плотность и характерные размеры этих элементов меняются в процессе трансформации, приводя к эволюции поведения образца

ниже T_{c0} [11, 12]. Здесь будет описано состояние, в котором среднее состояние образца R уже увеличилось на пять порядков по сравнению с начальным, от сверхпроводимости на кривой R(T) остался лишь небольшой излом в точке $T = T_{c0}$, а сама кривая имеет везде отрицательную производную. Значение T_{c0} в процессе эволюции в это состояние лишь незначительно уменьшилось до значения приблизительно равного 3,8 К.

Низкотемпературные измерения были выполнены на рефрижераторе растворения Oxford TLM-400 с минимальной температурой 25 мК. Четырехконтактные измерения на частоте 10 Гц проводились с помощью узкополосного усилителя lock-in. Переменный ток в 1 нА не выводил измерения из линейного режима. Низкотемпературная часть кривой R(T) показана на рис. 4.

Рис. 4. Низкотемпературные зависимости сопротивления образца Cd–Sb, иллюстрирующие диэлектрический характер его сопротивления и его отрицательное магнетосопротивление.

Экспериментальные $\alpha(T, B) =$ зависимости $= R(T, B)/R(T, B = 4 \text{ T}\pi)$ от магнитного поля представлены на рис. 5. Магнетосопротивление отрицательно и насыщается в магнитных полях порядка 2 Тл, где значение α приближается к единице. Поэтому использованное для нормировки значение сопротивления в поле, равном 4 Тл, принадлежит к той области, где сопротивление уже не зависит от поля. Фигурировавшая выше функция $\beta(T) = \alpha(T, 0)$. В температурном интервале от 490 до 190 мК значение $\beta(T)$ увеличивается в качественном согласии с уравнением (6) (см. вставку на рис. 5). Это согласуется с тем, что уже наблюдалось ранее в [12] при более высоких температурах. Однако ниже 200 мК поведение функции $\beta(T)$ кардинально меняется. Она достигает максимума в районе 100 мК, а затем падает при дальнейшем уменьшении температуры. В слабых магнитных полях у функции $\alpha(B)$ появляется подъем. Однако, при любом фиксированном поле B < 2 Тл поведение $\alpha(T)$ качественно одно и то же (вставка на рис. 5). Это контрастирует с поведением нормального сопротивления, которое меняется монотонно во всем изучавшемся температурном интервале (см. рис. 4).

Наблюдавшееся падение отношения β при понижении температуры с несомненностью указывает на то, что проводимость σ_1 , обусловленная одночастичным тунне-

Рис. 5. Нормированное магнетосопротивление $\alpha(T, B)$ образца Cd– Sd как функция *B* при разных температурах. На вставке: α как функция *T* при двух значениях *B*; $\alpha(T, 0) \equiv \beta(T)$.

лированием, при низких температурах шунтируется проводимостью σ_2 иной природы:

$$\sigma = \sigma_1(T) + \sigma_2 \,. \tag{7}$$

Мы полагаем, что проводимость σ_2 обусловлена некогерентным туннелированием пар (считается, что когерентное джозефсоновское туннелирование в подобных диэлектрических состояниях отсутствует; возможно, максимум у функции $\alpha(B)$ в поле $B \approx 0,1$ Тл свидетельствует о разрушении магнитным полем остатков когерентного туннелирования). Одночастичный туннельный ток і1 описывается в первом порядке теории возмущений по прозрачности барьера *t*: $i_1 \propto t \exp(-\Delta/T)$. Он пропорционален произведению двух малых множителей, один из которых зависит от температуры. Поскольку куперовские пары находятся на уровне Ферми, два электрона, образующие пару, не нуждаются в возбуждении на уровень выше щели для одновременного туннелирования. Поэтому $i_2 \propto t^2$ и не содержит экспоненциального по температуре множителя. Когда температура достаточно низка, так что

$$t > \exp\left(-\frac{\Delta}{T}\right), \quad \text{r.e.} \quad T < \frac{\Delta}{|\ln t|},$$
(8)

одночастичное туннелирование вымерзает, а двухчастичное становится основным.

Два электрона, в начальном состоянии связанные в пару, в конечном состоянии могут оказаться несвязанными. Такой вариант туннелирования пар напоминает вклад двухчастичных процессов в туннельный ток через контакт сверхпроводник – нормальный металл (SIN-контакт) [15]. Он может оказаться особенно важным в гранулированных сверхпроводниках с большим нормальным сопротивлением.

4. Заключение

Оба описанных выше эксперимента могут быть интерпретированы как подтверждение существования локализованных пар. Но они не дают какой-либо информации о том, как эта локализация реализуется. Радиус локализации изолированной частицы ξ может оказаться либо меньше, либо больше длины когерентности ξ_{sc} . Случай $\xi \gg \xi_{sc}$ есть предел гранулированного сверхпроводника с одной парой на гранулу. Противоположное неравенство $\xi \ll \xi_{sc}$ подразумевается, например, в модели локализованных биполяронов [16]. Для того, чтобы различить эти два варианта, требуются иные эксперименты.

Благодарности. Автор благодарен А.И.Ларкину за важные замечания. Работа была частично поддержана грантами РФФИ 96-02-17497 и INTAS-RFBR 95-302, а также программой "Статистическая физика" Министерства науки РФ.

Список литературы

- 1. Fisher M P A Phys. Rev. Lett. 65 923 (1990)
- 2. Hebard A F, Paalanen M A Phys. Rev. Lett. 65 927 (1990)
- 3. Yazdani A, Kapitulnik A Phys. Rev. Lett. 74 3037 (1995)
- 4. Paalanen M A, Hebard A F, Ruel R R Phys. Rev. Lett. 69 1604 (1992)
- 5. Shahar D, Ovadyahu Z Phys. Rev. B 46 10917 (1992)
- Гантмахер В Ф и др. ЖЭТФ 109 1765 (1996) [JETP 82 951 (1996)]
 Гантмахер В Ф и др. Письма в ЖЭТФ 64 713 (1996) [JETP Lett.
- **64** 767 (1996)]
- 8. Liu Y et al. Phys. Rev. B 47 5931 (1993)
- 9. Dynes R C, Garno J P, Rowell J M Phys. Rev. Lett. 40 479 (1978)
- 10. Adkins C J, Thomas J M D, Young M W J. Phys. C 13 3427 (1980)
- 11. Гантмахер В Ф и др. ЖЭТФ 104 3217 (1993) [JETP 77 513 (1993)]
- 12. Гантмахер В Ф и др. ЖЭТФ 105 423 (1994) [JETP 78 226 (1994)]
- Гантмахер В Ф, Есипов С Э, Теплинский В М ЖЭТФ 97 373 (1990) [JETP 70 211 (1990)]
- 14. Heking F W J, Nazarov Yu V Phys. Rev. B 49 6847 (1994)
- 15. Alexandrov A S, Mott N F Rep. Prog. Phys. 57 1197 (1994)

Переход сверхпроводник – диэлектрик в неупорядоченном бозе-конденсате

А. Голд

1. Введение

В течение последних 20 лет проводились широкие исследования перехода Андерсена [1] в неупорядоченных ферми-системах. Переходом Андерсена называется переход металл-диэлектрик во невзаимодействующем электронном газе при нулевой температуре, который вызывается беспорядком. Широко распространено мнение, что неупорядоченный невзаимодействующий ферми-газ описывается скейлинговой теорией [2]. Согласно этой теории, в двух измерениях при нулевой температуре не должна существовать металлическая фаза (из-за поправок слабой локализации), а для температур вблизи нуля статическая проводимость должна стремиться к нулю. Для неупорядоченного взаимодействующего ферми-газа в двух измерениях недавно было показано, что переход металл – диэлектрик существует, и что скейлинговая теория не работает [3]. Очевидно, что металлическая фаза стабилизируется эффектами взаимодействия. Эта точка зрения была уже давно выражена в подходе взаимодействующих мод для взаимодействующего неупорядоченного электронного газа (модель неупорядоченного желе), где в металлической фазе в двух измерениях был обнаружен слабый беспорядок, а в диэлектрической фазе — сильный беспорядок [4]: эффекты экранирования уменьшают эффекты беспорядка. Аналитические результаты для статической