
Abstract. The possibility that, in spite of high valence electron
concentrations, metal ± insulator transitions can in principle
occur in materials composed of atoms of only metallic elements
is demonstrated based on the analysis of experimental data. For
such a transition to occur, stable atomic configurations forming
deep potential wells capable of trapping dozens of valence
electrons should appear in the system. This means, in essence,
that bulk metallic medium transforms into an assembly of
identical quantum dots. Depending on the parameters, such a
material either does contain delocalized electrons (metal) or
does not contain such electrons (insulator). The degree of dis-
order is one of these parameters. Two types of substances with
such properties are discussed: liquid binary alloys with both
components being metallic, and thermodynamically stable qua-
sicrystals.

1. Introduction

The band theory of metals, with its concept of energy-band
overlap, describes rather than explains the metallic properties
of matter. The fundamental reason for the existence of the
metallic state is that in an isolated metal atom the valence
electrons occupy positions close to the upper edge of the
potential well, so that in the condensed state any perturbation
introduced by neighboring metal atoms leads to delocaliza-
tion of the valence electrons. From this viewpoint, the
grouping of chemical elements into metals and metalloids is
caused by the atomic structure; metals are in the lower left
corner of the Periodic Table, and the boundary between
metals and metalloids, which is a diagonal of the Periodic
Table, is blurred and extremely conventional. The transport
properties of chemical substances and substances that are a
mixture of metal and metalloid atoms depend on various

factors. By selecting one of these factors as the driving
parameter, we can initiate a metal ± insulator transition.

The most common model describing a metal ± insulator
transition is the Anderson model [1] in which disorder is the
cause of the transition. The model examines a periodic lattice
of rectangular wells of different depths. The energy levels in
the wells are within an interval of values W, and the level
density in this interval is assumed constant. Thanks to the
tails of the wave functions, exp �ÿr=l�, there is an overlap of
the wave functions of the electrons localized in neighboring
wells. If the distance between the neighboring wells, r12, is
much larger than l, the overlap integral
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c �1 Ĥc2 d

3r � J0 exp

�
ÿ r12

l

�
�1�

is small, with the smallness determined by the factor
exp �ÿr12=l�. The quantity l is often called the Bohr radius,
by analogy with the hydrogen atom.

Two limits are possible here. Each electronmay occupy its
own well Ð this is the case for very deep but different wells.
On the other hand, all electrons may be delocalized, so that
any electron may find itself in any well. For instance, if all the
wells are the same or almost the same, the electron wave
functions are simply Bloch waves.

The ratio of two energies, the width of the bandW and the
overlap integral J, acts as a parameter in this problem. What
Anderson stated was that for delocalized states to emerge, i.e.
for metallic conductivity to set in, the following condition
must be met:
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When the ratio J=W is critical, delocalized states appear in the
center of the band at E � 0; a further increase in J=W leads to
a gradual `thickening' of the layer of delocalized states.

Plugging the estimate (1) for the overlap integral into
Eqn (2) and replacing r12 with the average distance between
the centers, nÿ1=3, we arrive at the following criterion for a
transition to occur:
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We select W as the measure of disorder and consider the
�W; n� plane. Let us assume that the Bohr radius l is constant.
The disorder introduced into the system by atomic displace-
ments has an upper limit. The limit is reached when there is no
correlation between the positions of the atoms (we denote it
by Wmax). In this limit the whole plane of possible states is
reduced to the region 0ÿWmax (see Fig. 1). The solid curve
within this region is the transition curve (3), with insulator
state to the right of the curve and metal state, to the left. The
concentration nmax corresponds to the disorder Wmax on the
transition curve. But what are the electron concentrations n in
real metals and alloys compared to nmax? If n > nmax, an
Anderson transition cannot be initiated, no matter how great
the disorder. Of course, W can be considered a quantitative
measure of disorder only very conditionally. Hence the
diagram in Fig. 1 is only an illustration. Nevertheless, the
question exists and only experiments will provide an answer.

Not only disorder but also the electron ± electron interac-
tion may serve as the driving force for a metal ± insulator
transition. A transition initiated by such interaction is called
`Mott transition' [2]. What makes it so different from an
Anderson transition is that it occurs at a fixed degree of
disorder. When the number of metal atoms is very small, even
if we were to align them inside an insulator to form a
superlattice, so that there is no disorder, the substance still
remains an insulator. It can become a metal only if we
increase n. Actually, it is impossible to vary the electron
concentration n and, at the same time, to keep the amplitude
and the characteristic lengths of the random potential
constant; it is also impossible to vary the parameters of the
random potential and keep the concentration n constant.
Hence usually it is impossible to distinguish between an
Anderson transition and a Mott transition. However, the
fact that there are two possible reasons for metal ± insulator
transitions should never be ignored.

The criterion of aMott transition can easily be written in a
form similar to (3):
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the only difference being that instead of W we have the
Hubbard energy U which describes the electrostatic repul-
sion of two electrons localized at one site, and instead of cA
we have a different numerical constant cM. The Mott's
transition curve (4) is represented in Fig. 1 by a straight
horizontal line, and the smaller the value of l the higher the
line. The two lines, (3) and (4), intersect at the point
W0 � �cM=cA�U. As long as the disorder is large
�W >W0�, the metal ± insulator transition is controlled by
it and occurs along the curve (3). Small disorder �W <W0�
does not play any role since localization is caused by the
electron ± electron interaction at concentrations n higher
than those that follow from (3).

The metal ± insulator transition has been realized in
dozens of experiments. But all these experiments involved
systems in which the metal atoms were diluted by nonmetal
atoms which are not inclined to provide electrons for the
general `pool' (see Fig. 2, which has been taken from
Ref. [3]). As techniques for fabricating amorphous metals
(completely disordered materials based on metal alloys)
developed, it seemed that metal ± insulator transition
would be discovered in them. However, even with the
enormous diversity of such alloys, their resistivity never
exceeds r� � 200ÿ400 mO cm [4].

For a given concentration n of carriers in the metal,
n � k 3

F=3p
2, maximum resistance occurs when the mean free

path l is at its minimum lmin which is expressed in terms of the
Fermi wave vector kF as lmin � kÿ1F . Then, to within
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Figure 1.Diagram illustrating the possibility of an upper limit for electron

concentrations that allow for anAnderson transition as disorder increases.
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numerical factors, we have
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Assuming that the average atomic separation a in
condensed matter is approximately 3 A

�
, we can introduce

the electron concentration in a standard metal

n � � aÿ3 � 4� 1022 cmÿ3 : �6�

The maximum resistivity of a metal with such a carrier
concentration is achieved with a mean free path l � lmin of
order of the average distance �n ��ÿ1=3 between the carriers
and approximately equal to the de Broglie wavelength kÿ1F :

r� � �h

e 2
�n ��ÿ1=3 � �200ÿ400� mO cm : �7�

The resistivity of almost all amorphous metals is just of
the order of r�. It occurs that in condensed media consisting
only of metal atoms (they are called metal alloys) a rise in
disorder does not by itself lead to localization. By introducing
maximum disorder into the alloy we only bring it closer to the
brink of localization. For the transition to occur, a fraction of
the metal atoms must be replaced by metalloid atoms, which
drives the concentration n of the delocalized electrons down
to its critical value.

Injection of metalloid atoms can prove to be twice as
effective in the sense that the concentration of metal atoms
does not always uniquely determine the concentration n of the
delocalized or potentially delocalizable electrons. If the metal
and metalloid atoms can form stable chemical molecules,
metal electrons leave for chemical bonds: from the shallow
potential well of a metal atom they go to a much deeper
potential well of the molecule and, therefore, remain
localized, notwithstanding the surroundings of the molecule.
Hence the effective electron concentration n, which affects the
position of the material on the metal ± insulator phase
diagram, decreases even more due to the emergence of
chemical bonds.

Bearing in mind the tying-up of a fraction of the
potentially free valence electrons into chemical bonds, we
can formulate the following question: Is there a way to build
deep potential wells, with only metal atoms on hand, which
would transform a material that contains no metalloid atoms
and must be a metal with the standard concentration (6) into an
insulator? The experimental data discussed in the present
paper show that this is possible.

2. Intermetallic complexes
in two-component melts

For a long time it has been known that the resistivity of a
liquid melt of two very good metals may change severalfold,
even by a factor of 10, depending on the relative concentra-
tion of the two components, and reach its maximum at a
certain rational ratio of the atomic concentrations, such as
1 : 1, 1 : 3, or 1 : 4 [5, 6]. To gather such data, one must know
how to measure the resistivity at a fixed temperature as a
function of the alloy component concentration. A description
of the respective experimental facilities can be found in
Refs [7, 8].

Figure 3 shows the results of measurements of the
resistivity of Na ±Pb melts at 725 �C done by Calaway and

Saboungi [8]. Clearly, the concentration ratio Na :Pb � 4 : 1
is preferred. An addition of 20% of lead increases the
resistivity compared to that of pure Na by a factor of about
20. Here the peak value of resistivity is of order of the
maximum possible value r� of a standard metal. The Li ± Pb
system behaves in a similar manner.

Replacing Li andNawith a heavier alkali metal, K, Rb, or
Cs, changes the concentration vs. resistivity diagram signifi-
cantly. For example, Fig. 4 shows the diagram for the Rb ±Pb
system taken from Ref. [9]. The peak has shifted to another
rational ratio of the component concentrations
Rb :Pb � 1 : 1, while the peak value of the resistivity
increased severalfold. Now this value exceeds the maximum
resistivity (7) of a standard metal (6) by a factor of 10. The
survey diagrams in Fig. 5 show thatmelts of alkali metals with
another tetravalent metal, tin, behave in the same manner
[10]. Even higher resistivity values are realized in Cs-based
melts.

The high values of resistivity mean that near the respective
concentration ratios the melt ceases to be a standard metal, in
the sense that a fraction of carriers in it are bound in some
manner and the remaining effective concentration
neff 5 4� 1022 cmÿ3 [cf. (6)]. Indeed, for the Rb ±Pb system,
the value r � 2200 mO cm is about 10 times greater than the
maximum value for a standard metal, r� � 200 ± 400 mO cm.
According to equations (5) and (7), this implies that the
number of free carriers in the melt is no greater than
10ÿ2ÿ10ÿ3 of the ordinary number of carriers in a standard
metal.

From the rational component-concentration ratios it
follows that the increase in resistivity is due to formation of
complexes within which most electrons prove to be locked.
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Figure 3. Resistivity of melts in the Na ±Pb system at 725 �C. The peak

value is reached at a lead concentration CPb � 20%, where stable PbNa4
configurations emerge [8].
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The position of the peak in resistivity in Li- and Na-based
melts unquestionably points to the existence of Na4Pb and
Li4Pb complexes in the melts. The five atoms comprising such
a complex have eight electrons in their valence shells.
Apparently, they form a single stable outer shell of the Pb4ÿ

ion, while four alkali ions held together by Coulomb forces

are the surroundings of that ion. The four ions form a barrier
thanks to which the eight electrons in the outer shell of Pb are
kept within this electrically neutral atomic configuration and
do not participate in conduction (Fig. 6a).

An increase in the size of the alkali atoms leads to a
qualitative change in the forming complexes, with the ability
of these complexes to act as electron traps gaining in strength.
Such structures are well known and are called Zintl's
structural units (named after the German chemist who, in
the 1930s, discovered the rule of formation of ionic config-
urations [11]). If an electron goes from an alkali atom to the
lead atom, the Pb1ÿ ion will have five electrons in the outer
shell, the same as in the P or As atoms. As is known, in the
gaseous phase these two elements form tetrahedral molecules
P4 or As4. Here there are eight electrons near each atom of the
molecule: five electrons belonging to the atom proper and one
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Figure 4. Resistivity of melts in the Rb ±Pb system at different tempera-

tures [9]. The peak value is reached at a lead concentrationCPb � 50%; the

Pb4Rb4 configurations are stable.
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Figure 5. Survey diagrams of the resistivity vs. concentration dependence for melts of Sn ±B and Pb ±B systems (B is an alkali metal). The resistivity of

alloys with Li and the Pb ±Na alloy has a maximum at CA � 20% �A � Pb; Sn�; the resistivity of the Sn ±Na alloy has two maxima at CSn � 25% and

45%; the rest have a resistivity maximum at CA � 50% [10].
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Figure 6. (a) Ionic configurations consisting of Pb or Sn atoms and a light

alkali metal Li or Na; (b) the same with a heavy alkali metal K, Rb, or Cs.
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electron from the covalent bond of each of the three neighbors
in the tetrahedron. Pb1ÿ ions also form such tetrahedrons,
and the total electric charge ÿ4e of such a tetrahedron is
balanced by the electric charge of the four alkali-metal ions
surrounding it. Sn1ÿ ions form similar tetrahedrons �Sn4�4ÿ
surrounded by four alkali ions. It is the structural unit

A4B4; A � Pb; Sn ; B � K;Rb;Cs �8�
that is the configuration within which 20 valence electrons are
locked (Fig. 6b).

Binary melts consisting of alkali metals and some other
metals behave in a similar manner. The absolute champion
when it comes to forming effective electron traps is the
isoatomic melt of two ideal metals, the alkali metal Cs and
the noble metal Au. As Fig. 7 shows, the formation of
complexes in the melt reduces the conductivity by a factor of
10000 [12]. Here the conductivity is comparable to that of salt
melts (3 Oÿ1 cmÿ1 for CsAu and 1 Oÿ1 cmÿ1 for the CsCl salt
melt).

3. The model with structural disorder

Quantum chemistry and chemical thermodynamics have the
tools that are needed to answer the questions of where, when,
and how many Zintl configurations can form in a metallic
melt and what are the binding energies of these configura-
tions. Since melts, by definition, exist at high temperatures,
the curves in Figs 4 and 7 should not be considered a
demonstration of metal ± insulator transitions. To bring

these materials into the realm of objects described by the
theory of metal ± insulator transitions, they should be
quenched by transforming them into glass. Then, for
example, the low-temperature dependence of the transport
characteristics can, probably, be used to determine the
quantitative parameters of the electron traps. So far nothing
is known of any attempts to quench such melts with a view to
investigating their low-temperature properties.

At the same time, it is true that localization undoubtedly
occurs when component concentrations are stoichiometric.
Therefore, when discussing the results of experiments in this
area of research, it seems appropriate to use the concepts and
models developed for describing metal ± insulator transitions.

Earlier we mentioned the most common model of
regularly arranged potential wells of different depths, or the
Andersonmodel. Each well is formed because of the potential
of an impurity atomÐdonor or acceptor. For the levels in the
wells to form a continuous band, the wells must be arranged
against a background of smooth random fields, say, the
electric fields of charged acceptors or donors with partial
compensation of impurities (see Chap. 3 in Ref. [13]). Such
broadening of a level into a band may be called classical
(Fig. 8).

The alternative of theAndersonmodel, for the description
of a transition in a system of noninteracting electrons that is
initiated by a change of disorder, is the model with structural
disorder. Here the randompotential is built from identical but
randomly distributed wells each of which contains a level E0,

V�r� �
X
Ri

v�rÿ Ri� ; �9�

with the disorder determined by the randomness of the set of
vectors Ri. The model contains no classical random fields.
Despite the fact that all the wells are identical, the level E0 in
this model also broadens into a band. The broadening is
caused by the quantum interaction of the wells due to the
overlap of their wave functions [14].

We now break down all the wells into the pairs of nearest
neighbors. If the distance between the wells in such a pair is
r12, then, since the wells are resonant, i.e. the unperturbed
values of the level energy are the same, the overlap of the tails
of the wave functions transform the levels into two common
split levels with energies

E1; 2 � E0 � eres ; eres � J0
exp �ÿr12=l�

r12
; �10�

with the collective wave functions

c1; 2 �
1���
2
p �j1 � j2� �11�
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Figure 7. Conductivity of melts in the Cs ±Au system at 600 �C [5, 12].
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Figure 8. A variant of the realization of the Anderson model: periodically

arranged, initially identical potential wells against the background of a

smooth random potential (to the right is the model's density of states).
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expressed in terms of the unperturbed wave functions j1 and
j2. The quantities J0 and l contain the specific characteristics
of the wells, the dielectric constant of the material, the
effective electron mass, etc. Due to the splitting (10), both
levels E1; 2 are no longer resonant with respect to other
neighboring levels, and their interaction with such levels
leads to essentially smaller energy shifts

DE � exp

�
ÿ 2rs; t

l

�
; s or t 6� 1; 2 : �12�

Figure 9, where the resonant pairs are designated by
dotted ellipses, shows that not all centers belong to resonant
pairs. For instance, well 2, being the nearest neighbor of well
3, may have well 1 as its nearest neighbor, so that r12 < r23.
Within this triplet, the resonant shifts e1 and e2 are the biggest,
while the shift e3 is nonresonant and much smaller, since
e3 / exp �ÿ2r23=l�. Two such configurations have been
depicted in Fig. 9, a triplet and a quadruple in which
r12 < r23 < r34. But in triplets and more complicated config-
urations consisting of four or more wells there is always at
least one resonant pair with the smallest well separation and
the biggest level shift [14]. Since the characteristic width D of
the resulting density of states is determined by the resonant
well pairs and the average well separation is nÿ1=3, from (10)
we obtain

D � J0n
1=3 exp

�
ÿ nÿ1=3

l

�
: �13�

The tail of the density of states in the region jej4D emerges
due to the pairs of anomalously close wells with r12 5 nÿ1=3,
while states with small jej5D emerge due to nonresonant and
single wells ([14]; see also Chap. 2 in Ref. [13]). Formula (13)
clearly shows that the ratio of the decay length l to the
average distance nÿ1=3 between wells is the main parameter in
the model with structural disorder (as it is in the Anderson
model) 1.

The metal ± insulator transition in the region where

n 1=3l � 1 �14�

has been studied theoretically much less thoroughly in the
model with structural disorder than in the Anderson model
and, apparently, only numerically (e.g. see Ref. [16]). Still, in
this model such a transition undoubtedly exists. Since initially
all the ionic traps, or Zintl configurations, are identical, the
model with structural disorder seems to be more appropriate
for describing them. Each configuration A4B4 from (8) is an
almost spherical well for the 4� 4� 4 � 20 valence electrons
located inside it on a sequence of energy levels [17]. The decay
length l in Eqn (14) actually refers to the uppermost occupied
level. The electrons on deeper levels do not leave the well. This
reduces, by a factor of 10, the concentration of potentially
delocalizable electrons and facilitates the metal ± insulator
transition.

Thus, the number of electrons and the level structure in an
ionic trap determine by how much the concentration n in the
parameter (14) of the model with structural disorder is
reduced, while the shape of the well v�rÿ Ri� determines l.
Another control parameter in this model is the magnitude of
correlations on the set of vectors Ri: by strengthening the
correlations one can change this set from random to regular.
The result is shown in Fig. 10 which depicts the change in
conductivity of an almost stoichiometric alloy CsAu under
crystallization [5, 7]. Here the majority of the wells become
resonant and have identical and identically located neighbors.
The randomness in the location of the wells is partially
retained only to the extent to which the alloy is nonstoichio-
metric and due to the presence of crystal defects and
intercrystalline boundaries. The result of the increase in the
number of resonant wells is partial delocalization and a
tenfold increase in the conductivity of the crystal compared
to that of the melt. However, as Fig. 10 clearly shows, the
conductivity of crystalline CsAu is still about 50 times lower
than the maximum conductivity 1=r� of a standard metal
[equation (7)]. Here it is unclear to what extent and how the
conductivity depends on deviations from stoichiometry, the
number of defects, temperature, and other factors.

4. Quasicrystals

Introducing translational symmetry is not the only way to
establish long-range correlations on the set of vectors Ri.

3

r23 4 r12

r34 4 r23

r12 r12

r23

1

2

2
1

3

4

Figure 9. Random arrangement of the impurity wells. Pairs of nearest

neighbors are designated by dashed ellipses. Centers labeled 3 adjacent to

pairs whose wells are labeled 1 and 2 form triplets with these pairs. One of

the triplets enters into a quadruple.

1 In the metallic limit ln 1=3 4 1, where all the electrons are delocalized and

the potential (9) is screened and is only a scattering center, this potential is

used in the diffraction theory of electron transport in liquid metals (see

Ref. [15]).

Liquid

Cs49Au51
Solid

102

s,
O
ÿ1

cm
ÿ1

10

1
500 600 700 T, �C

Figure 10. Temperature dependence of the conductivity of the CsAu alloy

with 51% of Au in the liquid and solid states [5, 7].
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Another way to achieve the same result is to introduce
quasicrystalline long-range order (Ref. [18]).

Translational symmetry, always present in crystals, allows
for the existence of axes of 2-, 3-, 4-, and 6-fold symmetry
only. All the same, it is easy to imagine that, of all possible
local configurations of a small number of atoms, AnBmCp, of
the chemical elementsA, B, and C, the configuration with the
lowest energy has a different symmetry axis, say the axis of 5-
fold symmetry. Formation of a crystal from a material with
the composition AnBmCp then may proceed in different ways.
Sometimes optimal local symmetry is sacrificed, so that a
crystal with a different configuration of the nearest neighbors
of each atom is formed, with the loss in local configurations
energy balanced by gain caused by translational symmetry.
There is, however, another possibility. Let us arrange optimal
configurations of n�m� p atoms at the sites of a crystal
lattice, say, a body-centered cube, as in Fig. 11. Then the loss
in energy is caused by mismatch and distortions in the places
where these configurations meet, where the short-range order
is sure to be nonoptimal. Nevertheless, some substances have
such crystal structures. They are called crystal approximants
or crystal prototypes of quasicrystals [19].

It occurs, however, that we can do entirely without
translational symmetry by densely packing the space with
optimal configurations. That this is possible is demonstrated
by the Penrose tiling in the lower part of Fig. 12; the plane is
covered perfectly (i.e. without gaps and overlaps) by rhombic
tiles of two types, with the acute angles equaling 2p=5 and
p=5. These rhombic tiles are depicted in the upper left corner
of the same figure. Since the rhombuses adjoin each other at
preassigned vertices, the correctly specified functions F �r� on
the rhombuses are not discontinuous at the junctions and
form a continuous aperiodic function whose individual
segments are repeated in the plane an infinite number of
times. In the upper right corner of Fig. 12 the arrangement of
the vertices of the rhombuses is depicted to the 1 : 2 scale.
Since there is no translational symmetry, it is rather difficult
to notice any correlations in this arrangement. However,
there is long-range order in this system: the rhombic tiles are

arranged on the plane in a well-distinguishable pattern
(although the pattern is not unique).

Quasicrystals are built according to the same principles.
Optimal configurations with high-order symmetry axes are
separated by matching spacers in the form of configurations
that minimize energy losses at the junctions. The resulting
construction has no translational symmetry but has long-
range order. Today many families of such materials are
known. Most of them are metal alloys in the sense that they
consist only of metal atoms: Al ±Mn, Ga ±Mg±Zn,
Al ±Cu ±Fe, Al ± Pd ±Re, etc. Here the local base configura-
tion may be extremely complex. For instance, in quasicrystals
with the Al ± Pd ±Mn composition the local base configura-
tion consists of three sells inserted into each other [20];
altogether there are 51 atoms in this configuration (Fig. 13).

Basically, quasicrystals are identified and studied by the
X-ray diffraction method, as are ordinary crystals. The
Fourier transform of any function of coordinates in a perfect
crystal, e.g. the density %�r�, is a sum of an infinite number of
narrow peaks (ideally, d-functions):

%�r� �
X
q

%q exp �iqr� : �15�

The set of q vectors form a lattice in the q-space with the same
symmetry as the initial lattice of atoms. To each site of this
reciprocal lattice there corresponds a Bragg reflection in the

Figure 11.A crystal packing ofMackay icosahedrons, closely resembling a

body-centered cubic packing, in the crystalline alloy a(AlMnSi), a

quasicrystal approximant [19]. Each icosahedron consists of more than

50 atoms.
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Figure 12. Penrose tiling. Below: tiling a plane without gaps or overlaps by

two types of rhombic tiles depicted in the upper left corner of the figure,

rhombuses with equal sides a and acute angles 2p=5 and p=5, respectively
(the vertices marked by open circles adjoin each other in the tiling). Upper

right corner: the set of rhombus vertices (depicted to the 1 : 2 scale) of the

tiling presented in the lower part of the figure. Although each of the sites 1,

2, 3, and 4 has its nearest neighbors only at a distance a, the configurations

of these neighbors differ considerably (see the main text). The dotted

closed curves mark a resonant pair of closely located sites and a compact

triplet of sites.
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Laue diffraction pattern. The more perfect the crystal the
sharper the reflections.

Bragg reflections are not an exceptional property of
crystals. For the Fourier transform we can initially take the
series (15) in which the set of q vectors does not possess
translational symmetry. By an inverse Fourier transforma-
tion we arrive at a function %�r� that has no translational
symmetry either. Such series are the Fourier transforms of
quasicrystals. Here the width of the Bragg reflections is still
determined by the imperfectness of the structure, namely, by
deviation of the local configurations from the ideal config-
uration, faults of long-range order because of impurities and
vacancies, etc. The sharper the Bragg reflections the closer the
quasicrystal is to a perfect one.

The following correlation is characteristic of metallic
single crystals: the higher the quality of the Laue diffraction
pattern of a single crystal of certain substance, the lower the
residual resistivity r of the crystal. The correlation reflects the
wave nature of electrons: the better the conditions for the
propagation of an X-ray wave, the smaller the scattering of
the Bloch wave. In quasicrystals it is just the opposite:
annealing, while increasing the quality of the Laue diffrac-
tion pattern, also increases the resistivity. Here the very values
of resistivity are extremely high [18]. For instance, in
quasicrystals of the Al ±Cu ±Ru composition at 4 K the
resistivity values are as high as 30 mO cm, which is
approximately 100 times higher than the value of r�

estimated by equation (5) from the concentration n of the
metallic valence electrons.

The insulating properties manifest themselves most
vividly for the Al ± Pd ±Re system, where the resistivity
values at 4 K are stably of order 200 ± 300 mO cm [18]. Ingots

of this alloy can be made by arc melting of a mixture of
extremely pure Al, Pd, and Re in an atmosphere of pure
argon. After being annealed in vacuum for 24 hours at 980 �C
the alloy becomes an icosahedral quasicrystal. However, even
after this it remains sensitive to low-temperature annealing at
600 �C. Such annealing in the course of one to two hours may
double or even triple the resistivity at 4 K, with the quality of
the Laue diffraction pattern remaining the same or even
growing.

The temperature dependence of the resistivity of
Al70Pd22:5Re7:5 quasicrystals can be described in exact
agreement with the existing theoretical techniques used to
describe conduction in the vicinity of metal ± insulator
transitions in ordinary crystals. Figure 14 depicts the
conductivity as a function of T 1=3 (the four lower curves)
or T 1=2 (the three upper curves) [21, 22]. To distinguish
between the various samples and between the various states
of a single sample obtained in the low-temperature anneal-
ing process, we select the value s10 of conductivity at 10 K
as a parameter (the scales along the horizontal axes in
Fig. 14 have been selected in such a way that at this
temperature the two scales coincide, as they also do at
T � 0).

9 atoms

12 atoms

30 atoms

51 atoms

+

+

Figure 13. A sequence of shells consisting of atoms in a Mackay

pseudoicosahedron which is the base element of the structure of the

Al ± Pd ±Mn quasicrystal; the total number of atoms is 51 [20]. 24

18

12

6

0 1 2 3 54

0 1 2 3

T 1=3, K 1=3

T 1=2, K1=2

Al70Pd22.5Re7.5

10 K

s,
O
ÿ1

cm
ÿ1

Figure 14. Temperature dependence of the conductivity of the

Al70Pd22:5Re7:5 quasicrystal. In the immediate vicinity of the metal ±

insulator transition, the dependence, when represented by a function of

T 1=3, is a straight line (the four lower states). Deep in the metallic region,

the dependence becomes a straight line when represented by a function of

T 1=2 (the three upper states). The states can be labeled by themagnitude of

the conductivity s10 at 10 K. (The data has been taken from Ref. [21].)
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Figure 14 clearly shows that for all measured functions
s�T � a linear extrapolation on the selected scales makes it
possible to determine s�0� (cf. Ref. [23]). For the tree upper
states with s�0�0 6 Oÿ1 cmÿ1 we can assume that

Ds ' s10 ÿ s�0�9s�0� : �16�
This makes it possible to assume that the temperature-
dependent part of the conductivity is a quantum correction
[24], and this is why in the �T 1=2; s� plane the function s�T � is
a straight line. For the four lower states with
s109�12ÿ14� Oÿ1 cmÿ1 we have the opposite of relation
(16). This means that these states are in the critical vicinity of
the metal ± insulator transition. Hence, when built in the
�T 1=3; s� plane, the function s�T � is represented by a straight
line [24, 25]:

Ds � s�T � ÿ s�0� / T 1=3 : �17�

The function s�T � in the critical region in the vicinity of the
metal ± insulator transition should evolve in this manner (e.g.
see Ref. [26]).

Correspondence to ordinary behavior is retained in states
with higher resistivities. The extrapolation we have described
implies that the metal ± insulator transition occurs at
s�10 K� � s10 ' 9 Oÿ1 cmÿ1 (open circles in Fig. 14). For
states with smaller values of s10 low-temperature transport is
realized through the hopping conduction mechanism. That
this is actually the case is illustrated by Fig. 15 taken from
Ref. [27]. The diagram shows that the conductivity of high-
resistance Al70Pd22:5Re7:5 quasicrystals obeys Mott's law

ln s � T ÿ1=4 ; �18�

i.e. these quasicrystals are insulators. Such temperature
dependence, T ÿ1=4, implies that near the Fermi level the
density of states of the electronic spectrum has a constant,
finite value.

Thus, everything that happens with Al70Pd22:5Re7:5
quasicrystals under low-temperature annealing which
improves conditions for the propagation of X-ray electro-
magnetic waves, fully corresponds to the pattern of metal ±
insulator transitions as the parameter n 1=3l decreases.

Although the tendency of the resistivity to increase as the
Bragg reflections get narrower is a characteristic feature of
many families of quasicrystals, so far the metal ± insulator
transition has been observed only in the Al ± Pd ±Re system.
The maximum resistivity values at 4 K for the systems
Al ±Cu ±Fe, Al ±Cu ±Ru, and Al ±Cu ±Mn are smaller than
the value for Al ± Pd ±Re by factor of 10 to 100. Note that
even these values are higher than r� calculated by formula (7)
by a factor of 10 to 100.

Let us try to understand what is the structure of the
Al70Pd22:5Re7:5 insulator. Among high-resistivity quasicrys-
tals, the Al70Pd22Mn8 system is the most thoroughly studied
one and its structure differs from the structure of
Al70Pd22:5Re7:5 in only one aspect, i.e. the Re atom is
replaced with isovalent Mn. The quantitative characteristics
of these quasicrystals can be assumed to be the same.

Thus, the structure of the Al70Pd22Mn8 and
Al70Pd22:5Re7:5 quasicrystals is based on high-symmetry,
close-to-spherical, configurations consisting of 51 atoms (see
Fig. 13). According to the diffraction data, the number
density of the atoms in these substances is close to
6� 1022 cmÿ3. Since the atoms of the transition elements
`grab' some of the three valence electrons of aluminum, the
number of the remaining `potentially metallic' electrons is
somewhat smaller than two per atom, i.e. about 1023 cmÿ3.
For a substance with such a huge electron concentration to be
an insulator, the electrons must reside in deep potential wells,
or traps. In intermetallic binary melts the traps are config-
urations of type (8), while in quasicrystals they are the high-
symmetry configurations of Fig. 13, which have levels for
about 90 of the former valence electrons [20]. Under favorable
condition only one to two electrons from the upper levels may
leave a trap. Hence, initially the electron configuration is
reduced by a factor of 100, after which the more or less
standard models describing the metal ± insulator transition
can be employed.

The arrangement of the levels in all atomic configurations
that are traps is, in the zeroth approximation, the same. If the
configurations were arranged periodically, the levels would
become (in accordance with band theory) bands and the
electrons from the upper levels could become delocalized.
However, in a quasicrystal there are many ways in which the
neighboring configurations can be arranged in relation to a
given configuration. According to the model with structural
disorder, to each variant of the surroundings there corre-
sponds a specific shift of the levels in the given configuration.
Let us explain this using Penrose tiling as an example, for
which we turn to Fig. 12. The distance between a given site
and a neighboring site can be equal to the length a of the
rhombus side or to the length of the smaller diagonal of the
narrow rhombus, a1 � 0:62a, or to the length of the smaller
diagonal of the wide rhombus, a2 � 1:18a. However, the
number of variants of the surroundings which determine the
shift of the level of a specific site, is very large. For instance,
neighboring sites separated by a distance a1 may form either
pairs or triplets. Sites 1 and 2 each have five neighbors at a
distance a, but all five neighbors of site 1 enter into resonant
pairs or compact triplets with pairwise distances a1 < a, while
site 2 has no such neighbors; site 3 has six neighbors at a
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K �

5
O ÿ

1
cm ÿ

1s
10

K �
3
O ÿ

1
cm ÿ

1
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T, K

31 10.5 0.5

0.6 0.9 1.2 0.4 0.8 1.2

ln
�s�

T
��

ln
�s�

T
��

Figure 15.Mott's law for the conductivity of Al70Pd22:5Re7:5 quasicrystals

in the insulator region (the conductivities at 10 K are 5 and 3 Oÿ1 cmÿ1).
The dependence becomes a straight line only when lns is built as a

function of T ÿ1=4 [27].
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distance a, but three of these neighbors form a compact
triplet; site 4 has seven neighbors at a distance a, but six of
these neighbors form two compact triplets; etc. As a result, a
single level, which initially was the same for all configurations
(sites), becomes a band.Whether or not the states in this band
are localized depends on the parameter (14), where l is the
decay length of the wave function outside the configuration
well.

The very fact that the conductivity of Al70Pd22:5Re7:5 is so
small is, apparently, caused by the specific combination of the
parameters of the configuration well, which makes the decay
length l smaller than in other quasicrystals. In the event of
low-temperature annealing of Al70Pd22:5Re7:5, the configura-
tion wells in the quasicrystal probably undergo `internal
repair' accompanied by a decrease in the leakage of the wave
function from the well, i.e. a decrease in the effective decay
length l.

5. Conclusions

Processes that form the electronic spectrum in two-compo-
nent melts with an alkali metal as one of the components and
in quasicrystals have proved to be very similar. In such
systems the effective carrier concentration decreases and the
screening weakens, which makes an ordinary metal ± insula-
tor transition possible.

The overall scheme is as follows. Suppose that each
configuration contains N valence electrons. The potential
generated by the ion cores of the atoms in a configuration is so
strong, i.e. the potential well is so deep, that the electronic
spectrum of theseN electrons becomes radically transformed,
so that the electrons occupy `positions' on a ladder of levels.
Only one or two electrons on the upper levels have a chance of
leaving the well. As a result, the concentration of `potentially
delocalizable' electrons becomes of order n=N, where n is the
concentration of the `initially metallic' valence electrons. In
two-component melts,N is of order 10, while in quasicrystals
it is of order 100. Thus, the metal ± insulator transition occurs
in a system with a reduced carrier concentration.

The same line of reasoning can be formulated differently if
we imagine each configuration as being a quantum dot in
3D space. The concentration of such dots is of order n=N,
with each dot containing N electrons. When one electron
leaves a quantum dot, the dot's charge increases by e, and the
energy needed to remove the electron is of the order

ee � e 2

r
; �19�

where r is the radius of the quantum dot. This quantity is
similar to the Hubbard energy in the theory of Mott's
transition [2]. At the same time, e2=r is the Coulomb energy
of an isolated metal sphere of radius r carrying charge e or the
energy of the capacitor that appears in the theory of the
Coulomb blockade in nanostructures. On the metal side of
the metal ± insulator transition, the electric field of a charged
dot is screened and the energy (19) is insignificant. On the
insulator side there is no screening by free carriers, and the
number of charged quantumdots is determined by comparing
the energy (19) with the temperature. When ee 5T, the
number n of charged dots is exponentially small:

n � n

N
exp

�
ÿ ee
T

�
: �20�

Since conduction in these conditions is determined by
tunneling between charged and uncharged dots, n acts as the
number of carriers. This standard line of reasoning used to
describe granulated metals determines the activation nature
of the conduction [28].

The importance of replacing n with n=N can be illustrated
by the fact that when an amorphous alloy is transformed by
annealing into a quasicrystal, its resistivity often increases
severalfold [18]. Localization is also substantially enhanced
by the absence of translational symmetry and of universal
short-range order in the mutual arrangement of configura-
tions. Irregularity in this mutual arrangement prevents
resonant tunneling. Of course, the presence of translational
symmetry by itself cannot guarantee metallic conduction.
This is obvious from Fig. 1, where a Mott transition is
possible even at W � 0. Near the limiting values of concen-
trations, n0 nMott, disorder is essential. Indeed, when the
CsAu alloy crystallizes, its resistivity decreases by a factor of
10 (see Fig. 10).

Thus, the two classes of condensed media, briefly
discussed in this paper, provide an affirmative answer to the
question posed at the end of the Introduction: It is possible to
localize a system of valence electrons in a medium consisting
only of metal atoms. Such localization is realized through the
formation ofmolecule-like configuration at least in two cases:
in two-component melts with an alkali metal as one of the
components, and in quasicrystals.

References

1. Anderson P W Phys. Rev. 109 1492 (1958)
2. Mott N F Metal ± Insulator Transitions 2nd ed. (London: Taylor &

Francis, 1990) [Translated into Russian from the 1st ed. (Moscow:
Nauka, 1979)]

3. Edwards P P, Sienko M J Phys. Rev. B 17 2575 (1978)
4. Mooij J H Phys. Status Solidi A 17 521 (1973)
5. Hensel F Adv. Phys. 28 555 (1979)
6. van der Lugt W, Geerstma W Can. J. Phys. 65 326 (1987)
7. Schmutzler R W et al. Ber. Bunsenges. Phys. Chem. 80 107 (1976)
8. Calaway W F, Saboungi M-L J. Phys. F:Met. Phys. 13 1213 (1983)
9. Meijer J A, Vinke G J B, van der Lugt W J. Phys. F: Met. Phys. 16

845 (1986)
10. Xu R, de Jonge T, van der Lugt W Phys. Rev. B 45 12788 (1992)
11. van der Lugt W Phys. Scripta T39 372 (1991)
12. Hoshino H, Schmutzler R W, Hensel F Phys. Lett. A 51 7 (1975)
13. Shklovski|̄ B I, Efros A L Elektronnye Svo|̄stva Legirovannykh

Poluprovodnikov (Electronic Properties of Doped Semiconductors)
(Moscow: Nauka, 1979) [Translated into English (Berlin: Springer-
Verlag, 1984)]

14. Lifshitz I M Usp. Fiz. Nauk 83 617 (1964) [Sov. Phys. Usp. 7 549
(1965)]

15. Ziman J M Philos. Mag. 6 1013 (1961)
16. Ching W Y, Huber D L Phys. Rev. B 25 1096 (1982)
17. de Heer W A et al., in Solid State Physics Vol. 40 (Eds F Seitz,

D Turnbull) (New York: Academic Press, 1987) p. 93
18. Physical Properties of Quasicrystals (Springer Series in Solid-State

Sciences, Vol. 126, Ed. Z M Stadnik) (Berlin: Springer, 1999)
19. Goldman A I, Kelton R F Rev. Mod. Phys. 65 213 (1993)
20. Janot C Phys. Rev. B 53 181 (1996)
21. Wang C-R, Lin S-T J. Phys. Soc. Jpn 68 3988 (1999)
22. Wang C-R, Su T-I, Lin S-T J. Phys. Soc. Jpn 69 3356 (2000)
23. Delahaye J, Berger C Phys. Rev. B 64 094203 (2001)
24. Altshuler B L, Aronov A G, in Electron ±Electron Interactions in

Disordered Systems (Modern Problems in Condensed Matter
Sciences, Vol. 10, Eds A L Efros, M Pollak) (Amsterdam: North-
Holland, 1985) p. 1

25. Imry Y J. Appl. Phys. 52 1817 (1981)
26. Gantmakher V F et al. Zh. Eksp. Teor. Fiz. 103 1460 (1993) [JETP

76 714 (1993)]
27. Wang C R et al. J. Phys. Soc. Jpn 67 2383 (1998)
28. Abeles B et al. Adv. Phys. 24 407 (1975)

1174 V F Gantmakher Physics ±Uspekhi 45 (11)

http://dx.doi.org/10.1103/PhysRev.109.1492
ivs
Anderson PW Phys. Rev. 109 1492 (1958)

http://dx.doi.org/10.1103/PhysRevB.17.2575
ivs
Edwards P P, Sienko MJ Phys. Rev. B 17 2575 (1978)

http://dx.doi.org/10.1088/0305-4608/13/6/020
ivs
CalawayWF, Saboungi M-L J. Phys. F: Met. Phys. 13 1213 (1983)

http://dx.doi.org/10.1088/0305-4608/16/7/012
ivs
Meijer J A, Vinke G J B, van der Lugt W J. Phys. F: Met. Phys. 16

ivs
845 (1986)

http://dx.doi.org/10.1103/PhysRevB.45.12788
ivs
Xu R, de Jonge T, van der Lugt WPhys. Rev. B 45 12788 (1992)

http://dx.doi.org/10.1016/0375-9601(75)90293-5
ivs
Hoshino H, Schmutzler R W, Hensel F Phys. Lett. A 51 7 (1975)

http://dx.doi.org/10.1103/PhysRevB.25.1096
ivs
ChingW Y, Huber D L Phys. Rev. B 25 1096 (1982)

http://dx.doi.org/10.1103/RevModPhys.65.213
ivs
Goldman A I, Kelton R F Rev. Mod. Phys. 65 213 (1993)

http://dx.doi.org/10.1103/PhysRevB.53.181
ivs
Janot C Phys. Rev. B 53 181 (1996)

http://dx.doi.org/10.1103/PhysRevB.64.094203
ivs
Delahaye J, Berger C Phys. Rev. B 64 094203 (2001)


	1. Introduction
	2. Intermetallic complexes in two-component melts
	3. The model with structural disorder
	4. Quasicrystals
	5. Conclusions
	 References



