
Abstract. Metal ± insulator transitions and transitions between
different quantum Hall liquids are used to describe the physical
ideas forming the basis of quantum phase transitions and the
methods of application of theoretical results in processing ex-
perimental data. The following two theoretical schemes are
discussed and compared: the general theory of quantum phase
transitions, which has been developed according to the theory of
thermodynamic phase transitions and relies on the concept of a
partition function, and a theory that is based on a scaling
hypothesis and the renormalization-group concept borrowed
from quantum electrodynamics, with the results formulated in
terms of flow diagrams.

1. Introduction

Quantum phase transitions that occur in an electron gas and
result in localization represent the mainstream in the study of
electrons in solids; it is directed toward low temperatures and
interactions. We think that a dangerous gap between theory
and experiment has appeared in this field of science. The
related theories are so complex that experimentalists, as a
rule, use ready recipes and formulas of these theories without
knowing (and, hence, without controlling) all the initial
assumptions and limitations.

In this review, we try to close this gap. Our review does not
contain a sequential description of the mathematical techni-
ques involved in formulating hypotheses and theories.
Instead, we outline the physical ideas, concepts, and assump-
tions that are often omitted in theoretical works and reviews,
especially at the stage of a developed theory. This specific
feature is thought to make our review interesting and useful
for experimentalists.

On the other hand, we did not tend to accumulate,
classify, and estimate the huge experimental data obtained
in this field. We address experiment to demonstrate the use of
a theory for its interpretation and the related difficulties and
problems. This specific feature is thought to make our review
interesting and useful for theorists.

We first qualitatively discuss the ides that constitute the
basis of the theory of quantum phase transitions. We then
consider how the general theoretical scheme can describe the
well-known data on metal ± insulator transitions and transi-
tions between different quantum Hall liquids.

1.1 Thermal and quantum fluctuations
Before discussing quantum phase transitions in essence, we
briefly recall some facts from statistical physics. We
consider a macroscopic system consisting of a huge number
of particles. This system is almost isolated and behaves
mainly as a closed system; however, it can exchange
particles and energy with a larger system, which serves as
a reservoir. In other words, our system is a subsystem of this
reservoir.

We first analyze the classical subsystem at a finite
temperature T. According to classical statistics formulas, the
probability pi of the residence of the subsystem in a state with
energy ei is

pi � exp �ÿei=T �
Z

; �1�
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where the coefficient 1=Z is determined by the normalization
condition

P
pi � 1,

Z �
X
i

exp

�
ÿ ei
T

�
�2�

(hereafter, temperature is given in energy units). Z is called
the partition function and plays a key role in the description
of the thermodynamic properties of classical objects. That the
subsystem energy obeys distribution (1) rather than being
fixed means the presence of classical thermal fluctuations.

When quantummechanics appeared, the basis of classical
thermodynamics and its principal formulas were revised. The
classical expressions were found to have a limited field of
application. Quantum statistics requires an advanced appa-
ratus of quantum mechanics. Before addressing this appara-
tus, we assume that the subsystem is completely closed and
does not interact with the larger system. As a result, we can
use the standardmethods of quantummechanics and describe
the subsystem by the SchroÈ dinger steady-state equation. The
resulting set of steady-state energies ei and the corresponding
wave functions ji�q� of the subsystem can be considered
subsystem attributes in the zeroth approximation. These
energies ei enter Eqn (2). The set of ji�q� functions is
convenient because it is related to the subsystem under study
and is complete; therefore, it can be conveniently used for
series expansions.

The presence of a huge number of particles in the
subsystem implies that it has a very dense energy distribution
of quantum levels. Due to a weak interaction with the
reservoir, the subsystem is in the so-called mixed state, in
which no measurement or a set of measurements can lead to
unambiguously predicted results. By the definition of a mixed
state, the repeated measurements of any physical quantity
give a near-average result that differs from the previous one.
The scatter of the measured physical quantities is interpreted
as a result of fluctuations.

Because the subsystem interacts with the environment, it
cannot be described by a wave function; therefore, the wave
function is substituted by a density matrix,

r�q 0; q� �
�
c ��q 0;X �c�q;X � dX ; �3�

where q corresponds to the set of subsystem coordinates,
X are the remaining coordinates of the system, and c�q;X � is
the wave function of the closed system.

The mean values of any physical quantity hsi are now
calculated using the density matrix

hsi � 1

A

�n
ŝ
�
r�q 0; q��o

q 0 � q
dq ; A �

�
r�q; q� dq �4�

rather than awave function. In Eqn (4), we apply the operator
ŝ, which acts on functions of the variable q, to the density
matrix r�q 0; q�; we then set q 0 � q and integrate. The operator
that formally enters the expression for the normalization
factor A is identically equal to unity; therefore, the condition
q 0 � q is naturally taken into account in the integrand.

According to general rule (4), the mean of coordinate hqi,
for example, is given by

hqi � 1

A

��
c ��q;X �qc�q;X � dq dX �

�
qr�q; q� dq�
r�q; q� dq : �5�

The physical meaning of the density matrix can be
clarified if we write it in an explicit form for the subsystem in
statistical equilibrium at a finite temperature T,

r�q 0; q� �
X
i

j �i �q 0�ji�q� exp
�
ÿ ei
T

�
: �6�

For the subsystem in statistical equilibrium, it follows from
Eqns (5) and (6) that

hqi � 1

A

X
i

�
j �i �q�ji�q� exp

�
ÿ ei
T

�
q dq

� 1

A

X
i

hqii exp
�
ÿ ei
T

�
;

�7�
hqii �

�
j �i �q�ji�q�q dq :

The averaging with the density matrix performed in Eqn (7)
accounts for both the probabilistic description in the form of
hqii in quantum mechanics and incomplete information on
the system (statistical averaging).

We use the ji�q� functions and write the function r�q 0; q�
in the matrix form

r�q 0; q� � kri jk �
�
j �j �q� r�q 0; q�ji�q� dq





 



 : �8�

In Eqn (4), we then have

hsi �
P

i j si j rj iP
i ri i

�
X
i j

si jwj i ; wi j �
ri jP
i ri i

: �9�

The wi j matrix constructed from the set of ji�q� functions is
called the statistical matrix and, in essence, is the normalized
density matrix.

We replace ŝ with the energy operator bH in Eqn (4) and
obtain

hei �
X
i

wi iei : �10�

This means that the probability pi of detecting the energy ei
in the subsystem is equal to the diagonal element of the
matrix wi i,

pi � wi i : �11�
Equation (11) is the quantum analog of Eqn (1).

The statistical matrix has a number of universal proper-
ties. By definition, it is normalized:X

i

wi i � 1 : �12�

As follows from Eqn (6), the statistical matrix is diagonal in
statistical equilibrium. Its diagonal elements are functions of
only the energy ei of the corresponding subsystem state. As
long as at least one wi i with i 6� 0 has a nonzero value, the
subsystem state remains mixed, and any measured quantity
undergoes fluctuations.

Themacroscopic system is in amixed statemainly due to a
finite temperature. A comparison of Eqns (1) and (11)
demonstrates that in the high-temperature limit, the statis-
tical matrix obeys the Gibbs distribution

wi i � exp �ÿei=T �
Z

�13�

with a good accuracy.
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Because the integral of the squared wave function ji�q�
over the entire coordinate space is�

j �i �q�ji�q� dq � 1 ;

the partition function Z can be represented as the sum of the
diagonal matrix elements of the operator exp �ÿ bH=T � over
the complete set of eigenfunctions ji:

Z �
X
i

�
j �i �q�ji�q� exp

�
ÿ ei
T

�
dq

�
X
i

�
ji

���� exp�ÿ bHT
�����ji

�
: �14�

Here, we use that ji are eigenfunctions of the Hamiltonian bH
to obtain

exp

�
ÿ
bH
T

�
ji � exp

�
ÿ ei
T

�
ji :

A comparison of Eqns (4) ± (7) with Eqn (13) gives
another form of the partition function,

Z �
�
r�q; q� dq � Sp

�
r�q 0; q�� : �15�

If Z is regarded as a normalization factor, Eqns (4) and (9)
demonstrate that representation (15) is valid in both the
classical limit and general case.

Because the subsystem is open, it interacts with the
environment. Even if this interaction is very weak, the states
of a macroscopic system become mixed in a certain small
energy range due to the extremely high density of the system
energy levels. Therefore, even at zero temperature, the
unclosed subsystem is in a mixed state. This means that as
the temperature decreases, each wi i �i 6� 0� does not tend to
zero exponentially but approaches a temperature-indepen-
dent constant, which depends on ei and the sizes and
properties of the subsystem. Thermal fluctuations are
replaced by quantum fluctuations. This statement is illu-
strated by Fig. 1a, which qualitatively shows the temperature
dependence of the probability pi of detecting the energy ei in
the subsystem. The dashed lines separate the regions of
predominantly quantum and predominantly thermal fluctua-
tions. The limiting value pi�0� is specified by the energy ei,
sizes, and properties of the subsystem.

In this subsystem, pi�0� obviously decreases with an
increase in ei. We assume that this dependence is a power-
law function, pi�0� / 1=e ai , and obtain the lower estimate of
the exponent a. The energy of thermal fluctuations is taken
from the reservoir. A finite, not exponentially small,
probability of detecting the subsystem in a state ei 4T
means a violation of the energy conservation law. This
violation may occur, but must be constrained by the
uncertainty relation

eiti � �h ; �16�

where ti is the lifetime of the state ei. Therefore, even if
transitions to all ei states were equiprobable, pi�0� would
decrease according to the law pi�0� / eÿ1i , as follows from
Eqn (16). As a result, we have

a5 1 : �17�

It is essential that the energy range in which quantum
fluctuations occur is temperature independent, which fol-
lows from uncertainty relation (16).

The relative role of thermal and quantum fluctuations is
illustrated in Fig. 1b, which shows the excitation spectrum of
the subsystem in one of the phases, i.e., far from the phase
transition point x � xc. The brace in the bottom left part of
Fig. 1b indicates the temperature-related scale. Only modes
with frequencies oi 9T=�h are classically excited modes. The
range of thermal modes is bounded from above by tempera-
ture, but they have large occupation numbers. Modes with
oi > T=�h are mainly excited due to quantum processes and
have small occupation numbers. However, as the temperature
decreases, the role of quantum excitations increases.

2. Quantum phase transitions

2.1 Definition of a quantum phase transition
Quantum phase transitions are phase transitions that can
occur at the absolute zeroT � 0 and consist of a change in the
ground state of a system in the case where a certain control
parameter x takes a critical value xc. (By the ground state, we
mean the lowest possible mixed state.) The control parameter
can be a magnetic field or an electron concentration.
Quantum phase transitions belong to the class of continuous
transitions at which none of the physical functions of state has
a discontinuity at the transition point.

A quantum fluctuation is the only cause that can change
the ground state of the system at zero temperature; the phase
transitions under study are therefore called quantum phase
transitions. As in the case of thermodynamic transitions, the
concept of a correlation length �x�, which has the meaning of
the average quantum-fluctuation size, is introduced into the
theory of quantum phase transitions. At the absolute zero
temperature, x is determined only by the deviation dx of the
control parameter from the critical value. The dependence of
x on dx is assumed to be a power-law function,

x / jxÿ xcjÿn : �18�

Real experiments are always performed at finite tempera-
tures, where thermal fluctuations exist in addition to
quantum fluctuations. The theoretical goal is to predict the
manifestation of the phase transition that occurs only at zero

p

pi

Thermal
êuctuations

Quantum
êuctuations

ei T

Zÿ1 exp �ÿei=T �

a b

�h=ti

ei � �hoi

T

Figure 1. (a) Low-temperature behavior of the diagonal elementswi i of the

statistical matrix corresponding to low energies. (b) Simultaneous excita-

tion of thermal and quantum fluctuations.

January 2008 Localized ë delocalized electron quantum phase transitions 5



temperature in the properties of the system at a finite
temperature.

The theory of quantum phase transitions (see, e.g.,
book [1] or reviews [2, 3]) is analogous to the theory of
thermodynamic phase transitions. In the �x;T � plane (i.e.,
in the plane control parameter ± temperature), the quantum
transition point can be the endpoint of the line of thermo-
dynamic transitions, xc�T � ! xc�0� as T! 0. For example,
this behavior is characteristic of magnetic transitions with the
magnetic field used as a control parameter. Quantum phase
transitions of another type also exist; they are represented by
an isolated point xc on the abscissa axis of the �x;T � plane.
The metal ± insulator transition is an example of such a
transition. In this review, we restrict ourselves to the case of
isolated-point transitions.

2.2 Parallels and differences
between classical and quantum phase transitions
As noted above, quantum phase transitions belong to the
class of continuous transitions; there are no two coexisting
competing phases and, hence, no stationary boundary
between them. This class also includes thermodynamic
second-order phase transitions. At a thermodynamic phase
transition point, the system transforms into another phase as
a whole as a result of thermal fluctuations. Fluctuations exist
on either side of the transition, and their characteristic size x is
called the correlation length. As the transition is approached
from either side, x diverges [5, 6].

It is natural to expect a similar situation to occur in the
vicinity of a quantum transition with the participation of
quantum fluctuations. An analogy between classical and
quantum phase transitions does exist, and it is rather
unexpected. The behavior of a quantum system in the vicinity
of the transition point at a finite temperature in a d-dimensional
space is analogous to the behavior of a classical system in a
space with dimensionD > d.This statement requires extensive
explanations, which should include an algorithm for the
introduction of such an imaginary system and the determina-
tion of its dimension.

First, we have to clearly distinguish between the dimen-
sion of the geometric space in which the system is located and
the dimension of the space of generalized coordinates, which
depends on the number of particlesN in the system. If % is the
density of particles in space, we have N � � � � % d dX, where
the dimension d determines the multiplicity of the integral.
Usually, a d-dimensional space is assumed to be infinite in all
directions, but the range of one or several Xi coordinates can
be limited.

Second, we note a similarity between the operator
exp �ÿ bH=kT �, which was used to write Eqn (14), and the
operator bS that describes the time evolution of a closed
quantum system in accordance with the SchroÈ dinger equation

i�h
qc
qt
� bHc ; bS � exp

�
ÿ i

�h
bHt

�
: �19�

This similarity becomes obvious if we change the variables as

it

�h
� 1

T
: �20�

With substitution (20), we can interpret the matrix
elements in Eqn (14) differently. The element

i
�� exp �ÿ bH=T ���i � can be regarded as the amplitude of the

probability that, starting from a state hi j, the subsystem

evolves under the action of bS and returns to the initial state
ji i within an imaginary time ~t, which is equal to ÿi�h=T. The
imaginary time ~t is often called the Matsubara time. For
definiteness, we assume that the number of steps is fixed and
equal to N� 1, N4 1, and that, in time i�h=T, the subsystem
has passed through N virtual states and occupied each state
for a time �d~t �j; as a result, we haveXN

j� 0

�d~t �j �
i�h

T
: �21�

The amplitude of `the probability of returning to the
initial state' is the sum of the amplitudes of the probabilities
of returning for all possible trajectories in the space of states.
We consider a set of trajectories consisting of N steps. The
operator entering each matrix element in Eqn (14) is
represented as

exp

�
ÿ
bH
T

�
� exp

�
i

�h
bHXN

j� 0

�d~t �j
�
: �22�

We take a complete set of wave functions jmji of an arbitrary
operator that does not commute with the Hamiltonian and
assume that the trajectories are realized in these states. Then,
instead of Eqn (14), we obtain

Z �
X
i

X
m1;m2;:::;mN

�
i

���� exp�ÿ i bH�d~t �1
�h

�����m1

�

�
�
m1

���� exp�ÿ i bH�d~t �2
�h

�����m2

�
. . .

�
mN

���� exp�ÿ i bH�d~t �N
�h

�����i� : �23�

The product of the matrix elements in the summand
corresponds to a chain of consecutive virtual transitions.
The summation over all the fmjg combinations means that
all possible closed chains of N links are taken into account.
The modification of the expression for ZÐthe replacement
of Eqn (14) with Eqn (23)Ðmeans that we take the quantum
properties of the system into account by adding virtual
transitions to real ones.

The introduction of virtual transitions is illustrated
in Fig. 2, where the abscissa axis stands for the initial
d-dimensional space fdXg and all possible classical states of
the system are located along this axis in the order of increasing
energy. All other horizontal lines are copies of this space.
These copies form a set ofN elements in the segment �0; �h=T �.

i�h=T

�d~t �j jmji
jmj�1i

jmjÿ1i

ei

ei

�d~t �jÿ1

0

~t

dX

Figure 2. A set of quantum statistical d-dimensional systems located in a

one-dimensional strip of width �h=T and virtual transitions between them.
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The black dot on the abscissa axis represents the initial state
of the system with an energy ei. The second black dot on the
upper horizontal line corresponds to the `final' state of the
system with the same energy ei at the maximum value of the
imaginary time j~t j � �h=T. The arrows indicate the chain of
virtual transitions through the set of virtual states jmji
designated by white dots. These are mixed states without a
definite energy; therefore, they are not eigenstates of the
operator bH. The virtual transitions reflecting the quantum
properties of the statistical system under study are shown by
arrows. The chain of virtual transitions shown in Fig. 2
corresponds to one term in the sum in (23). The summation
over all fmjg combinations means that we account for all
possible chains between the fixed initial and final ei points.

Now, the problem is to construct a classical system whose
partition function is represented by Eqn (23). In the original
Eqn (14), the summation over imeant the summation over all
states realized in a d-dimensional system. The number of
terms in the sum is now increased, and our real system does
not have such a large number of different states. Nevertheless,
we can construct an imaginary higher-dimensional classical
system using the scheme shown in Fig. 2.

We add an extra imaginary-time axis to the d axes of the
original space. In the graphical terms of Fig. 2, thismeans that
an ordinate axis is added to the abscissa axis. It is seen from
Eqn (21) that the coordinate along this new axis changes in
the range

04 j~t j4 �h

T
: �24�

The width of strip (24) in Fig. 2, in which the image point
representing a virtual state of the quantum system is located,
increases with decreasing the temperature. At T � 0, the strip
transforms into a half-plane; an increase in the temperature,
in contrast, narrows the strip and decreases its contribution to
the statistical properties of the quantum system.

We copy the d-dimensional classical system N times by
placing replicas along the imaginary time ~t axis at a distance
�d~t �j from each other. The states of the replicas in this
ensemble can be different. Let these states be mj. We fix a
certain `initial' state of the `lower' subsystem ei. The energy of
the formed classicalD-dimensional system is equal to the sum
of the energies of all layers, with allowance for the interaction
between them. Each ei;fmg corresponds to a certain energy ei of
the original d-dimensional classical system and a certain chain
of states entering Eqn (23). Therefore, the number of terms in
the sum

P
fmg si;m in Eqn (23) is equal to the number of

different ei;fmg energies. We note that each si;m term in sum
(23) has a form typical of partition functions, since the
product of the matrix elements in this term eventually
reduces to the product of exp

ÿÿiej�d~t �j=�h
�
. The only

difference is that for the classical system, each term in Z is a
real positive number, but in Eqn (23), a real positive number is
represented by the sum si �

P
fmg si;m over fmg of all si;m

products. With this difference neglected, we can consider
Eqn (23) the partition function Z of the imaginary D-
dimensional classical system.

Of course, in the general form, the resulting mathematical
construction is absolutely impractical. However, as is
customary in deriving scaling relations, it is important to
reveal some significant properties of sum (23) rather than to
calculate it. As is shown in Section 2.3, one of these properties
is anisotropy, i.e., nonequivalence of the axes of the
D-dimensional space.

At a thermodynamic phase transition point, the parti-
tion function Z has a special feature. The sensitivity of
function (14) to the presence of a phase transition is caused
by the fact that in approaching the transition, the energy
range T determining significant terms in sum (14) contains
not only ji levels from the set corresponding to the
equilibrium phase but also j 0i levels from the nonequili-
brium phase (Fig. 3). This allows fluctuation transitions
between ji i and ji 0i levels from different sets. Additional
possibilities appear after Eqn (14) is replaced with Eqn (23).
If the temperature is low �jDej > T �, the fluctuation-induced
appearance of another phase is also possible, but due to
quantum fluctuations.

2.3 Critical region of a quantum phase transition
The region in which all physical quantities depend only on the
correlation length x always exists in the phase plane near a
classical phase transition. This region is called the critical or
scaling region. Near a quantum phase transition at T � 0,
there also exists a control parameter dx range in which
physical quantities are expressed through the length x
determined by Eqn (18). In Section 4, we show this behavior
by the example of a metal ± insulator transition in a three-
dimensional system of noninteracting electrons and deter-
mine the boundaries of this region. At a finite temperature
T 6� 0, however, the scaling region of a quantum phase
transition is more complex.

The space fdX; ~t g has dimension d� 1 because of the
extra imaginary time axis.We introduce correlation lengths in
the space fdX; ~t g. We retain the traditional notation for the
correlation length �x� in an ordinary d-dimensional subspace
and let xj denote the correlation length along the additional
axis. The subscript j is a reminder that xj is related to the
quantum aspect of the problem and to the specific features of
wave functions. The dimension of xj is �h=T rather than
length; that is, it is measured in seconds rather than
centimeters.

As x! xc and T! 0, both correlation lengths diverge at
the transition. According to the theory of continuous
thermodynamic transitions, the divergence is described by
power-law functions; but the exponents of the two correlation

De

T

xxc

e02 ÿ e01

e02

e01

dx

Phase 2 Phase 1

Figure 3. The difference in the lowest energies of two phases De � e02 ÿ e01
versus a control parameter (dashed line). At a control parameter

x � xc ÿ dx, phase 1 is subjected to fluctuation excitation inside equili-

brium phase 2. Because jDej < T, thermal fluctuations play a key role in

this excitation.
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lengths can be different in general. This is usually written as

x / dxÿn ; dx � jxÿ xcj ; �25�
xj / x z : �26�

The exponents n and z are called critical indices; z is called the
dynamic critical index. Both names and designations origi-
nate from the theory of thermodynamic processes. In
particular, the dynamic critical index in the theory of
thermodynamic processes enters the relation between the
lifetime and size of thermal fluctuations, t / x z. In the
quantum problem at T � 0, the situation is similar: the
length x characterizes spatial correlations, i.e., the character-
istic size of quantum fluctuations, and the time xj char-
acterizes time correlations.

Formula (26) immediately fixes the dimension of the space
in which the imaginary classical system should be placed. A
real length must be the coordinate along all axes of this space;
that is, length axes should be made from the ~t axis. As follows
from dimensional considerations and Eqn (26), the length
equivalent to the `correlation pseudolength' xj is propor-
tional to x 1=z

j ,

z / x 1=z
j ; �27�

and therefore the volume element in the space is

�dx�d dxj / �dx�d�dz�z ; �28�

and a z-dimensional subspace with the conventional `spatial'
coordinates appears instead of the one-dimensional imagin-
ary time axis. Hence, we have

D � d� z : �29�
It is convenient to discuss the consequences of Eqns (25)

and (26) using the �x;T � plane (Fig. 4). At T � 0, the control
parameter x on the abscissa axis of the �x;T � plane only
affects one independent correlation length �x�, and xj (and
the length z) can be formally obtained from x using Eqn (26).
All the physical quantities can be expressed only in terms of xc
in a certain segment jx1; x2j that contains the point xc.

We assume that T 6� 0 and move in the �x;T � plane along
a horizontal line T 6� 0 (Fig. 4, line aa) in the x! xc
direction. At a certain value of dx, the length xj, which
changes in accordance with Eqns (25) and (26), reaches its

maximum value �h=T [which is determined by inequality (24)].
At lower values of dx, Eqn (26) does not hold on line aa,
because x increases according to Eqn (25) and xj remains
equal to its maximum value �h=T. The parameters x and xj
become mutually independent. The region of this indepen-
dence is called the critical region. If we now move toward the
transition inside the critical region (e.g., along line bxc), both
parameters still diverge at the transition. However, the
divergence of one of them is controlled by dx, x / dxÿn, and
the divergence of the other is controlled by temperature,
xj � �h=T.

The name of the region derives from the fact that for a
quantum transition, the critical region is considered to be the
region where quantum fluctuations play an essential role in
mixing the two-phase states. As can be seen from Fig. 3, this
occurs only under the condition

je02 ÿ e01j > T : �30�

As the temperature decreases, the range of the control
parameter dx where condition (30) is satisfied narrows. As a
result, the shape of the critical region is unusual: it widens in
going from the transition.

Inside the critical region, the quantity xj � �h=T can be
associated with a real length. The quantity

Lj /
�

�h

T

�1=z

�31�

has the required properties: it is equivalent to the parameter
xj � �h=T and, according to Eqn (26), has the dimension of
length. The physical meaning of Lj can be understood from
the following considerations. Because of a finite temperature,
the quantum problem acquires a characteristic energy T that
separates classical and quantum fluctuations (see Fig. 1b).
Quantum fluctuations are fluctuations with energies
�hoj > T. The spatial size of these fluctuations is lj / 1=oj

and is bounded from above because the frequency oj > T=�h
is bounded from below. The length Lj is the upper boundary
of the size of quantum fluctuations. Therefore, Lj is often
called the dephasing length, i.e., the length beginning from
which coherence in a system of electrons is broken.

The appearance of two independent parameters in the
critical neighborhood of a quantum phase transition is caused
by inequality (24). A scaling description in the critical
neighborhood of a quantum phase transition is therefore
called a finite-size scaling. An imaginary thermodynamic
system is thought to exist in a hyperstrip in a D-dimensional
space with d variables ranging from 0 to 1 and z variables
ranging from 0 to ��h=T �1=z.

Inside the critical region,Lj < x, and, along its boundary,

Lj � x : �32�
The lengthsLj and x are determined by Eqns (25) and (26) up
to a multiplicative constant; however, Eqns (25) and (26)
rigidly fix a power-law relation between these variables.
Therefore, the equation for the critical region boundaries
has the form

T � C�dx�nz ; �33�
where the constant C can be different on either side of the
transition in general.

The constructed critical region is based on Eqns (25) and
(26). However, the use of Eqn (25) at all temperatures actually

T

0

Critical
region

x1 xc x2 x

dx � 0

a ab

Figure 4. Shape of the critical region of a quantum phase transition

depicted by an isolated point in the �x;T � plane.
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assumes that the length x depends only on dx and is
temperature independent. This simplified scheme was
usually applied to the transitions considered in this review.
As is shown below, this simplification is not always valid.

Because the critical region has two independent para-
meters, the scaling expressions for physical quantities become
more complex. We only present and discuss expressions for
the electric conductivity and resistivity,

s � x 2ÿdF
�
Lj

x

�
; r � x dÿ2F1

�
Lj

x

�
; F1�u� � 1

F�u� ;
�34�

where F�u� is an arbitrary function. The exponent in the first
factor in Eqn (34) is specified by how the length enters the
expressions for conductivity at various dimensions d. As can
be seen from Fig. 4, this factor is determined by the
x component of the distance from the transition. The Lj=x
ratio is dimensionless; therefore, scaling rules can be used to
regard Lj=x as an argument of an arbitrary function. This
relation depends on both T (i.e., the y component of the
distance from an image point to the transition in the phase
plane) and the distance from this point to the critical-region
boundary along the x axis.

As an argument, we can also take any power of the Lj=x
ratio; as a result, we write the argument in various forms, such
as

Lj

x
;

�h=T

xj
;

�h=T

x z ;
�h�dx�zn

T
; or

dx

�T=�h�1=zn
: �35�

These various forms elucidate various aspects of the physical
meaning of this ratio. In the last two forms, the argument is
dimensional and the dimensionality of the control parameter
is not specified a priori. These forms show how temperature
enters the argument of the scaling function.

To conclude this section, as an example, we present an
implication of Eqn (34) for the resistivity of a two-dimen-
sional system. If a quantum phase transition induced by
electron localization occurs in a two-dimensional system
and manifests itself in the transport properties of this
system, we can write

r�x � xc� � 1

F�0� ; i:e: r�xc;T � � const � rc ; at d � 2 :

�36�

This implication (a horizontal separatrix in the set of
temperature dependences at various values of x) is schemati-
cally shown in Fig. 5a. We note that it is valid only under
assumption (25), which indicates that the correlation length x
is temperature independent. At an arbitrary value of x, we
obtain the curve r�u� � r�dx=T 1=zn� with a finite slope at the
point x � xc (cf. Fig. 13).

Usually, with dx replaced by the modulus jdxj, the r�u�
curve is represented in the form of two branches as a function
of ln u (Fig. 5b). The values of zn are then chosen such that
these curves fit all the experimental points obtained at various
temperatures.

3. Flow diagrams for metal ± insulator transitions

So far, we have not specified the type of a quantum phase
transition. Hereafter, we speak about transitions related to a
change in the electron localization, which, in turn, is caused
by the degree of disorder in the system. The general theory of
quantum phase transitions initially assumes that a control
parameter affects the interparticle interaction and that a
disorder is not more than a perturbative factor in the initial
scheme of quantum phase transitions. Therefore, the applic-
ability of this scheme tometal ± insulator transitions, in which
the degree of disorder is the main factor and the interaction is
a secondary factor, is not obvious a priori.

The fundamental difference between an insulator and a
metal is that the electron states at the Fermi level are localized
in an insulator and delocalized in a metal. If an insulator is
transformed into a metal due to a change in a certain
parameter, the properties of the wave functions at the Fermi
level change. The main physical property that is radically
different in materials of these two types is the conductivity,
i.e., the possibility of carrying an electric current at an
arbitrarily weak electric field. This gives a `yes ± no' type
signature: the conductivity is either zero �s � 0� or arbitra-
rily small but nonzero. However, at a finite temperature
�T 6� 0�, an insulator also carries a current owing to hopping
conductivity. Therefore, the definition of an insulator given
above is only related to the temperature T � 0, and the
concept of a metal ± insulator transition makes sense only at
T � 0.

That the conductivity s is not a function of the state
(because it is realized only under nonequilibrium conditions)
is an additional reason to doubt the applicability of the
general theory. However, Thouless [4] noted that the

T

r

rc xc

x4 xc

x5 xc

a b

Insulator

Metal

ln u

r

rc

Figure 5. (a) Temperature dependences of the resistivity r�T � at various values of xwith the horizontal separatrix x � xc. (b) Reduction of all the r�x;T �
curves to two curves (34) of the dependence of the resistivity r on scaling variable (35).
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transport properties can be used to characterize the decrease
in the wave function of an electron placed at the center of an
Ld cube in a d-dimensional space toward the edges of the cube.
Therefore, in analyzing the behavior of conductance or
conductivity near the transition, we actually follow the
evolution of wave functions.

Thus, we have every reason to apply the general theory of
quantum phase transitions to metal ± insulator transitions.
However, the first successful version of a theoretical descrip-
tion of metal ± insulator quantum transitions [7] was based on
the renormalization group theory [8] borrowed from quan-
tum field theory. The essence of its conclusions, related to
systems of noninteracting electrons in a random potential, is
illustrated in Fig. 6, which shows the logarithmic derivative of
the conductance of a sample with respect to the size L,

b � d ln y

d lnL
� L

y

dy

dL
;

at the temperature T � 0 as a function of the conductance y,

d ln y

d lnL
� bd�ln y� : �37�

The bd�ln y� curves describe the universal laws of a change
in the conductance of the system when its size changes. The
behavior of the system of noninteracting electrons in any
material is described by a part of the curve for the
corresponding dimension. The interpretation and method of
using these curves are described in detail in review [9] and
book [10].

For metal ± insulator quantum phase transitions, the
theory in [7] plays the role of an existence theorem. The
shape of the bd�ln y� curves and their position in the �y; b�
plane indicate that these transitions are absent in one- and
two-dimensional systems of noninteracting electrons and that
such a transition can occur in three-dimensional systems, with
the conductivity of the material changing continuously
during this transition. This means that sufficiently large one-
and two-dimensional samples are always insulators at
absolute zero, whereas a three-dimensional material can be

either an insulator or a conductor. Below, we discuss this
feature in detail. Here, we note that the b � bd�ln y� curves are
called differential flow diagrams or Gell-Mann ±Low curves.

On the one hand, the theory in [1 ± 3] is more specialized
than that in [7] in some respects, because it only describes the
vicinity of a quantum transition. On the other hand, the
theory in [1 ± 3] is more universal, because its applicability
is not limited by either interaction or a strong magnetic
field. Therefore, it is of interest to compare the conclusions
of these theories for the systems to which they can be
applied.

4. Three-dimensional electron gas

The possibility of a phase transition in a three-dimensional
material follows from the fact that the b3�ln y� curve intersects
the abscissa axis b � 0. A certain point on the b3�ln y� curve
corresponds to the transport properties of a sample of size L
made from a certain material (Fig. 7a). If this point is located
in the lower half-plane �b < 0�, the material is an insulator,
and the image point shifts to the left asL increases; as a result,
the conductance of the sample becomes exponentially small.
If this point is located in the upper half-plane �b > 0�, the
image point shifts to the right; as a result, the material is a
metal, and its conductance increases with the size L.

The curves in Figs 6 and 7a are not suitable for a direct
comparison with experimental data because of a special
choice of their coordinate axes. This disadvantage can be
partly corrected by integrating the equation

d ln y

b3�ln y�
� d lnL �38�

for three-dimensional (3D) systems. Because the left-hand
side of differential equation (38) becomes infinite at the point
y � yc, the curves corresponding to different integration
constants decompose into two families: one of them corre-
sponds to an insulator region and the other to a metallic
region. To show this in the simplest way, we restrict ourselves
to the immediate vicinity of point yc, in which the b3�ln y�
curve can be approximated by a straight line,

d ln y

d lnL
� s ln

y

yc
; �39�

where s is the slope of the line with respect to the abscissa axis.
Correspondingly, Eqn (38) can be replaced by linear equation
(39). The general solution of linear differential equation (39)
is given by

ln
y

yc
�
�
L

l

�s

ln
yl
yc
; �40�

where l plays the role of the initial condition that fixes the
initial point in the b3�ln y� curve; for example, it can be the
length kÿ1F determined by the electron concentration. On the
metallic side, kÿ1F is equal to the minimum free path length
lmin. The conductance yl corresponds to the point l.

Figure 7b shows particular solutions of Eqn (39). If
yl > yc, we have ln yl=yc > 0, the solution is located in the
right quadrant, and the conductance y increases with L
(metal). If yl < yc, we have ln yl=yc < 0, the solution is
located in the left quadrant, and the conductance y decreases
as L increases (insulator). The set of curves in Fig. 7b is called

b � d ln y

d lnL

1

0 yc yx

L � x

ÿ1

d
� 3

d
� 2

d
� 1

ln y

Figure 6.Universal b�ln y� functions for various dimensionalities [7].
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a flow diagram. The arrows in this diagram show the direction
of the image point motion when the system size increases. The
flow lines corresponding to the particular solutions of
Eqn (39) fill both upper quadrants of the �ln yl=yc;Ls�
plane. The boundary between them, the ln yl=yc � 0 axis, is
called the separatrix; in Fig. 7b, it is indicated by a dashed
line.

We extend straight line (39) in Fig. 7a to its intersection
with the asymptote b � 1; as a result, we approximate the
b3�y� curve in the upper half-plane �b > 0� by a broken line
consisting of segments of two straight lines. The size L
corresponding to the intersection point is called the correla-
tion length x. From Eqn (40), we have

x � l
�
s ln

yl
yc

�ÿ1=s
: �41�

With Eqn (41), we can rewrite general solution (40) as

ln
y

yc
�
�
L

x

�s

; �42�

normalize the size L by the length x (which is specific for each
material), and reduce each of the two families in Fig. 7b to one
scaling curve (Fig. 7c).

We make several remarks.
First, Eqns (39) ± (42) involve a parameter s, which is

unknown a priori. However, in the currently relevant case of a
noninteracting 3D gas, this parameter is either equal to unity
or very close to it [9]. Because s enters all formulas as a factor
or exponent, this parameter can be dropped.

Second, the flow lines in Fig. 7b are straight only because
we integrated the Gell-Mann ±Low equation only in a small
vicinity of the transition point. If we integrated the b3�ln y�
function over a wide range of its argument ln y using some
model representation, wewould obviously obtain curved flow
lines.

The third remark concerns the role of temperature. The
parameter that specifies system motion along the flow lines
indicated by arrows in Fig. 7b is the size. If the temperature is
taken to be zero (as was assumed until now), this parameter is
the sample size L. However, we can initially suppose that the
system is large, as this is done in the theory of quantum phase
transitions [1 ± 3]. In this case, the limiting size is considered to
be the dephasing length Lj, i.e., the size at which quantum
coherence in an electron system is realized. The image point
then moves along flow lines in the direction indicated by
arrows as the temperature decreases. Because Lj depends on
the temperature and becomes infinite as T! 0, this proce-
dure introduces the temperature into the set of physical
quantities related to the flow diagram. However, we do not
study this relation; based on the `existence theorem' of a
quantum transition in a 3D space, we turn to the �x;T � phase
plane (Fig. 8) to construct the critical region (cf. Fig. 4).

Let small values of the control parameter x correspond to
metallic states. Then, at small x on the abscissa axis, the

b
d
� 3

L � l0

L � l

L � x

yl yx

1

0

ln y

yc

a Ls

ln y=yc0

b

1

0 1
L=x

y=yc
Metal

Insulator

2
c

Figure 7.Noninteracting 3D electron gas: (a) differential scaling diagram from [7] (see also Fig. 6); the intersection of the b3�ln y� curve with the abscissa

axis b � 0 signifies the existence of a quantum phase transition; (b) flow diagram for a noninteracting 3D electron gas in the vicinity of the transition

point; and (c) two universal curves of the dependence of the conductance of a 3D system on its size L obtained by scaling.
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Figure 8.Vicinity of themetal ± insulator transition in a noninteracting 3D

electron gas in the �x;T � phase plane.
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Drude formula s � s3 � ne 2l=�hkF holds, and, at small x and
finite T, the quantum correction

s � s3 � e 2

�h
Lÿ1ee ; Lee �

�������
�hD

T

r
; �43�

where D is the diffusion coefficient, is added to s3. The
diffusion length in Eqn (43) is taken to be the length Lee

determined by the Aronov ±Altshuler effect [11], i.e., by the
electron ± electron interaction. In other words, we assume
that dephasing is caused by internal processes that occur in
the electron gas in the time

tee � �h

T
�44�

without external impacts, such as the electron ± phonon
interaction (see analogous discussion of the physical mean-
ing of Lj in review [2, p. 324]).

At any control parameter x, another special point xm (the
Mott limit) exists on the right of the transition point xc. At
this special point, we have

s�xm;T � 0� � sMott � e 2

�h
kF � e 2

�h

1

l
: �45�

In the range between xc and xm, the Drude formula is invalid:
describing conductivity with this formula implies introducing
a free path length l that is shorter than the de Broglie
wavelength. In this range at T � 0, s is expressed through
the correlation length x; as we know, this agrees with the
general scheme of the theory of quantum phase transitions.
As a result, the conductivity along the abscissa axis is
expressed as

s�T � 0� �
�
e 2

�h

�
�

0 ; x5 xc ;
1

x
; xc 5 x5 xm ;

�kFl�2
l

; x4 xm :

8>>>><>>>>: �46�

To match the last two expressions at x � xm, it suffices to set
x�xm� � l.

Thus, to describe conductivity in the metallic region, we
introduced two parameters, x and Lee, which have the
dimension of length and the properties required for the
critical region (they are mutually independent and diverge at
the point xc). Following [12], we construct the following
interpolation function in the critical region:

s � e 2

�h

�
1

x
� 1

Lee

�
� e 2

�h

1

x
F

�
Lee

x

�
; F�u� � 1� 1

u
: �47�

Expression (47) matches Eqn (43) on the straight line x � xm
and gives the correct values of conductivity in the
xc < x4 xm segment at T � 0. The second form of the
function demonstrates that function (47) satisfies general
relation (34).

We now move from right to left along the line T � const
(Fig. 4, line aa). As long as the quantum correction is
relatively small, electron diffusion occurs via scattering by
impurities; i.e., it is controlled by the first term in Eqn (43).
Therefore, the diffusion coefficient D in Lee is temperature
independent. But as we enter the critical region, s3 transforms
into �e 2=�h�xÿ1 and begins to decrease rapidly. Under these

conditions, D ceases to be a constant: diffusion is likely to be
caused by the electromagnetic-field fluctuations that deter-
mine Lee; as a result, this diffusion becomes temperature
dependent. We can then write a set of equations for the s�T �
and D�T � functions with the Einstein relation

s � e 2

�h

�
1

x
�

�������
T

�hD

r �
;

s � e 2gFD ;

8><>: �48�

where gF is the density of states at the Fermi level, used as a
second equation.

We eliminate D from Eqn (48), use that 1=x5 1=Lee near
the transition, and obtain the temperature dependence of the
conductivity on the right-hand side of the critical region [12,
13],

s�T � � e 2

�h

�
1

x
� �TgF�1=3

�
� a� bT 1=3 : �49�

This means that inside the critical region, Lee is not
determined by Eqn (43) but is given by

Lee � �TgF�ÿ1=3 : �50�

Exactly at the transition, we have x � 1 and a � 0.
Temperature dependence (49) was repeatedly detected in

experiments performed on a variety of materials [14 ± 17].
Figure 9 shows two examples in which the control parameter
is represented by the electron concentration and magnetic
field.

Using condition (32) and Eqn (49), we can write the
relation

T / �gFx 3�ÿ1 �51�

for the right boundary of the critical region. If the
relation x / �dx�ÿ1 holds (i.e., if n � 1, as is assumed in
Fig. 8), the boundary of the critical region is represented
by a cubic parabola T / �dx�3. In the general case, we
have n 6� 1 and

T / �dx�
3n

gF
: �52�

A comparison with Eqn (33) demonstrates that in the metal ±
insulator transition in a 3D system of noninteracting
electrons, the dynamic critical index is

z � 3 : �53�

Below curve (52) in the xc > x > xm segment, the
conductivity is also described by Eqn (47); however, Lee

enters Eqn (47) in the initial form (43) with the diffusion
coefficient D � const. Therefore, the temperature depen-
dence of the conductivity in this region must have the form
s�T � � a� bT 1=2.

Up to this point, we have discussed the right-hand side of
the phase diagram. The left-hand side of the phase diagram,
i.e., the insulator region (where hopping conductivity is
realized), also has two characteristic lengths. First, there is
the decay length x of the localized-state wave functions,
c / exp �ÿr=x�. Far from the transition, x decreases to the
Bohr radius aB � k�h 2=�m �e 2� (where k is the dielectric

12 V F Gantmakher, V T Dolgopolov Physics ±Uspekhi 51 (1)



constant and m � is the effective electron mass); at the
transition, it diverges because the electrons become deloca-
lized. Second, there is the average hopping distance r. If the
hopping conductivity is described by the Mott law, the
average hopping distance is [10]

r �
�

x
gFT

�1=4

: �54�

The lengths r and x cannot be used as two independent lengths
in the critical region because they are connected by relation
(54). However, using Lee determined by Eqn (50), we can
rewrite Eqn (54) as

r � �xL3
ee�1=4 : �55�

We take into account that expression (50) for Lee does not
contain the kinetic characteristics of the electron gas and
consider Lee the dephasing length over the entire critical
region, including its left-hand side, above the xi > x > xc
segment on the abscissa axis. Equation (52) then determines
both the right and left boundaries of the critical region.
Equations (54) and (55) demonstrate that r � x � Lee at the
left boundary.

That Lee can be considered the dephasing length over
the entire critical region is supported experimentally: as can
be seen from Fig. 9, the s�T � temperature dependences
straighten in terms of the �T 1=3; s� axes, not only in the right
part of the critical region but also for those values of the
control parameter x at which the system is in the left part of
the critical region (e.g., at the electron concentration
n � 3� 1017 cmÿ3 in Fig. 9a). However, the free term a in
Eqn (49) becomes negative. This means that we should
either assume that the correlation length x is negative in the
insulator region or (which is formally preferred but is
essentially the same) should replace interpolation formula
(49) on the left-hand side of the critical region by the

formula

s�T � � e 2

�h

�
ÿ 1

x
� 1

Lee

�
: �56�

As follows from Eqns (55) and (56), we have s � 0 along
the left boundary of the critical region, which means that the
conductivity along this boundary is determined up to an
exponentially small hopping conductivity.

The hopping conduction mechanism is still operative
below the lower boundary of the critical region above the
xi > x > xc segment, and the wave function decay length is
x4 aB rather than aB [19]. Therefore, aB does not enter the
expression for the hopping conductivity, and s is expressed in
terms of the correlation length x (see Fig. 8):

s / exp

�
ÿ r

x

�
:

The �x;T � phase diagram in Fig. 8 accumulates the results
of the long-term experimental studies of the low-temperature
transport properties of conducting systems, namely, the
quantum corrections to metallic conductivity, the evolution
of electron spectra during metal ± insulator transitions, the
temperature dependences of conductivity in the vicinity of the
transitions, and hopping conductivity. In essence, this phase
diagram was plotted irrespective of the theory of quantum
phase transitions [1 ± 3] in order to reveal the compatibility of
all experimental data. Nevertheless, the considerations given
above demonstrate that this diagram is absolutely adequate
for the concepts following from this theory.

5. Two-dimensional electron gas

5.1 Noninteracting electron gas
We now pass to 2D systems. According to the theory in [7], a
2D �d � 2� system of noninteracting electrons is always an
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Figure 9. (a) Temperature dependences of the conductivity of Ge:As samples with various levels of doping in the region of a metal ± insulator transition

(borrowed from [18]); the critical concentration is determined by the extrapolation of the experimental data toT � 0. (b) Temperature dependences of the

conductivity of a GaAs sample in various magnetic fields in the region of a metal ± insulator transition (borrowed from [16]); the critical field determined

by extrapolation is 9.78 T.
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insulator in the sense that localization should inevitably occur
in a sufficiently large sample �L > x� at a sufficiently low
temperature �T < Tx� and an arbitrarily small disorder. This
statement follows from the fact that the d � 2 flow line in
Fig. 6 asymptotically approaches the b � 0 axis but does not
intersect it (this line is shown in Fig. 10a). But in weakly
disordered films, the correlation length x, which bounds the
size L from below, can be unrealistically large, and the
temperature Tx of the crossover from the region that
contributes to the logarithmic quantum correction to the
conductivity to the region that is characterized by an
exponential temperature dependence is, in contrast, too low.
Such films are called metallic films.

Estimates of x and Tx can be obtained from the
assumption [20] that the logarithmically divergent quantum
correction Ds to the conductivity

s � s2 � Ds � e 2

�h
kFlÿ e 2

�h
ln

Lee

l
�57�

is of the order of the classical conductivity s2, and hence s � 0
and

ln
Lee

l
� kFl : �58�

The diffusion lengthLee over which electron dephasing occurs
is determined by Eqn (43). The value of Lee determined from
Eqn (58) is called the correlation length x,

x � l exp �kFl� ; �59�

and the temperature

Tx � D�h

x 2
�60�

determined from the relation Lee � x using Eqn (43) is called
the crossover temperature. Of course, the conductivity does
not vanish at T � Tx; however, the theory of weak localiza-
tion is obviously not valid at this temperature, and the
resistivity should begin to increase exponentially with

decreasing the temperature at T < Tx in samples of size
L > x.

We now plot function (60) and, for convenience, direct
the 1=x axis to the left (see Fig. 10). As a result, this diagram
can be conveniently compared with the diagram for a 3D
system shown in Fig. 8. We add an axis of the control
parameter x as abscissa; this parameter characterizes the
degree of disorder, with x � 0 corresponding to an ideal
system with no disorder.

It is easily seen that the T�1=x� curve in Fig. 10 represents
the left-hand side of the phase diagram in the vicinity of a
metal ± insulator transition in a 3Dmaterial (cf. Fig. 8) whose
phase transition point is located at the edge of the diagram, at
the origin �T � x � 0�. Curve (60) is then the left boundary of
the critical region, and the dynamic critical index is

z � 2 : �61�
Using Eqns (53) and (61), we can conclude that for metal ±
insulator transitions in systems of noninteracting electrons,
the dynamic critical index is equal to the dimension, z � d.

Thus, systems with dimension d � 2 turn out to be
boundary systems: a quantum transition is still present in
the �x;T � phase plane but is shifted toward its corner, to the
unreachable point x � 0. The boundary properties of 2D
systems can also be found from the flow diagram in Fig. 6.We
imagine that the dimension d is a continuous parameter, not
restricted to integer values. Straight lines b � dÿ 2 represent
the asymptotic positions of the flow lines at large values of y.
Therefore, the flow lines of a system with dimension
d � 2� E > 2 inevitably cross the abscissa axis b � 0, and
such systems have a metal ± insulator transition (Fig. 10a). As
E! 0, the transition point shifts toward high conductance
and goes to infinity.

This interpretation of the curve in Fig. 10 implies that the
domain above theT / �1=x�2 parabola is the critical region of
the quantum transition. For 2D systems, one scaling variable
�u� is retained in Eqn (34) written for the conductivity in the
critical region; it is equal to the ratio of two characteristic
lengths,

s � F�u� � F

�
Lj

x

�
: �62�

Ds / ln
Lee�T�

l

tee � tTx / xÿ2

s / exp�ÿ�T0=T�m�

s � e2
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Figure 10.Noninteracting 2D electron gas: (a) differential flow lines for systemswith dimension d � 2 taken from the scaling diagram in [7] (see also Fig. 6)

and d � 2� E (see text), and (b) crossover from the logarithmic temperature dependence of conductivity to its exponential dependence, which can be

treated as the boundary of the critical region of a virtual quantum transition (see text).
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In this region, however, the conductivity is typically expressed
as the difference between the classical conductivity and the
quantum correction,

s � s2 ÿ Ds � e 2

�h

�
kFlÿ ln

Lee

l

�
: �63�

We substitute the expression l � x exp �ÿkFl� in Eqn (59)
in the argument of the logarithm in Eqn (63), pull the
exponent out of the logarithm, and obtain

s � e 2

�h
ln

x
Lee

: �64�

The classical conductivity s2 cancels and the remaining part
depends only on the scaling variable, as it should be in the
critical region. Thus, in this regard, our �x;T � diagram also
satisfies the requirements of the theory of quantum phase
transitions.

Expression (64) does not hold in the entire `quasi-critical'
region T > Tx; moreover, it diverges on the x � 0 axis. But
near this axis, the elastic mean free path l!1 and the
standard expression for Lee loses its meaning because the
necessary condition tee 4 t is violated. The boundary of the
part of the region where Eqn (64) is invalid �tee � t� is shown
in Fig. 10 by a dashed straight line plotted under the
assumption that t / xÿ1.

As is shown in Section 5.3, the introduction of interaction
can lead to the appearance of a metal ± insulator transition in
a 2D system. In terms of the phase diagram shown in Fig. 10,
this means that the phase transition point shifts from the
origin to a point xc 6� 0 on the abscissa axis due to a certain
cause, and a boundary additionally appears between the
critical and metallic regions. Standard expression (63),
which was written for the conductivity in the metallic region
and was transformed into Eqn (64), was already used to
describe the conductivity in the critical region. This means
that the expression for the conductivity in the metallic region
should be radically different and that we should expect the
appearance of amarginal metal instead of a Fermi liquid. The
nature of the electronic states in this hypothetic metal should
be rather peculiar, because electrons are assumed to be
localized when interaction is turned off [21].

5.2 Spin ± orbit interaction
The boundary position of 2D systemsmakes them sensitive to
various types of interaction, e.g., spin ± orbit interaction or
electron ± electron interaction, which can cause a phase
transition.

We first consider the spin±orbit interaction. This case is
convenient because a flow diagram can be plotted using the
�y; b� axes of the initial diagram shown in Fig. 6. At large y,
the initial flow line b2�y� deviates down from its right
asymptote b � 0 because of weak localization, which results
in a decrease in the conductivity (Fig. 10a). But the spin ±
orbit interaction changes the sign of the quantum correction,
i.e., changes weak localization into antilocalization. There-
fore, the sign of the derivative on the right-hand side of the
b2�ln y� curve should change: the curve deviates upward from
the asymptote b � 0, goes to the upper half-plane �b > 0�,
and, hence, inevitably crosses the abscissa axis b � 0 and
reaches the left asymptote.

Antilocalization was studied in detail both experimentally
[22] and theoretically [23]. In the 2D case �d � 2�, the

quantum correction to the conductivity is given by

Ds2 � ÿ e 2

�h

�tee
t

dt

t

�
3

2
exp

�
ÿ t

tso

�
ÿ 1

2

�
; �65�

where t is the time between elastic collisions, tso 5t is the
time between spin-flop collisions, and tee � �h=T is the
dephasing time. The motion of the image point in the flow
diagram now depends on two parameters, the conductance y
and time tso. For various values of tso, Fig. 11 shows the
family of flow lines located between two envelope curves. The
lower curve is taken from the diagrams shown in Figs 6
and 10, and its right-hand side can be obtained from integral
(65) if we set tso � 1 in the integrand, and hence the
parenthesis in the integrand becomes equal to unity. The
upper curve has the same asymptotes; however, its construc-
tion implies that tso � t. Then, we have t4 tso in the major
portion of the integration range, and the parenthesis can be
considered equal to ÿ1=2.

We now take a sample of size L of a material with an
intermediate value of tso,

t5 tso 51 :

The size L bounds the diffusion time t of an electron in a 2D
sample until the collision with the boundary by the quantity
tL, t < tL � t�L=l �2. Therefore, to describe weak localization
in a sample of size L, we must replace the upper integration
limit in Eqn (65) with tL,

tee ! tL � t
�
L

l

�2

:

Let L be first very small �L0 1� and the temperature T � 0.
Diffusion processes then have no time to develop; electron
interference is virtually absent; the conductivity is equal to its
classical value; and the image point is on the right on the axis
b � 0. As the size L increases to

Lso � l

�������
tso
t

r
; �66�

spin-flip collisions are insignificant and correction (65) to the
conductivity is negative. The image point moves to the left
along the lower envelope curve, as in Fig. 10 in the absence of

b

ln y

0

yc

Figure 11. Flow diagram for a 2D electron gas with spin±orbit interaction.
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the spin ± orbit interaction. When the size L becomes larger
than Lso, integral (65) and Ds2 change their sign and the
image point moves to the upper envelope curve. If this
passage occurs at y < yc, the film becomes an insulator at
L!1 in any case. But if the spin ± orbit interaction is
strong, tso is small and the image point reaches the upper
envelope curve at y > yc. Then, the image point continues to
move along the upper envelope curve toward large y, and the
film retains its metallic properties as L!1. Thus, a metal ±
insulator transition could be observed in an experiment with
the spin ± orbit interaction used as a control parameter. So
far, only the transformation of weak localization into
antilocalization has been demonstrated this way [22].

5.3 Interacting electron gas
Wehave to clarify what is meant by the absence or presence of
the electron ± electron interaction. The interaction manifests
itself differently in the properties of electron systems; for
example, it determines the probability of electron ± electron
scattering. In the classical theory ofmetals, electron ± electron
scattering is considered not to contribute to conductivity,
since the total momentum of the electron system and the drift
velocity are conserved. When quantum effects are taken into
account, this statement becomes invalid because the con-
ductance depends on the dephasing length and electron ±
electron scattering changes this length. Nevertheless, if the
electron ± electron interaction affects the conductance only
through scattering, the electron system is considered non-
interacting, because the interaction affects the conductance as
an external action, e.g., scattering by phonons.

Electron ± electron scattering is not the only channel of the
effect of the interaction on conductance. By the interaction,
wemean not the bare Coulomb interaction but the interaction
between `dressed' quasiparticles, i.e., the screened interaction
that depends on the electron density, the diffusion coefficient
of electrons, and (under certain conditions) the sample size or
the quantum coherence length [24].

This interaction determines the structure of quantum
levels and the ground-state energy, affecting the competition
between phases in the vicinity of a phase transition. Electrons
are mainly scattered by a screened impurity potential, whose
properties depend on the effective electron ± electron interac-
tion. This interaction, in turn, depends on the diffusion
coefficient and dephasing length, which results in a complex
dependence of the effective interaction on all external
parameters.

The case of spin ± orbit interaction considered in
Section 5.2 illustrates a renormalization of the interaction as
the sample size L changes: the spin ± orbit interaction is
actually turned on only when L becomes larger than the
value determined by Eqn (66).

As another example, we analyze the picture of possible
states in the model with a multivalley electron spectrum
developed in [25]. In this model, a change in L causes changes
in both the conductance y and the interaction Y. Therefore,
an equation forY is added to Eqn (37). The flow diagram is a
result of the solution of these two equations. Figure 12 shows
part of this diagram calculated by the authors of [25] in
slightly different coordinate axes. The variables were changed
to facilitate a comparison of this diagramwith those shown in
Figs 6 and 10, although the quantitative information
contained in the initial diagram in [25] is lost. The abscissa
of the flow diagram shown in Fig. 12 is the conductance.
Thus, the abscissa of all the diagrams in Figs 6 ± 12 is the

same. The ordinate Y of the flow diagram in Fig. 12 reflects
the effective interaction. A noninteracting electron gas, which
was discussed in Section 5.1, corresponds to the straight line
Y � 0. As in all the previous diagrams (Figs 6 ± 11), the size
is the parameter that determines system motion along the
flow lines indicated by arrows. This size is given by the sample
size L if T � 0 or by the dephasing length Lj (or Lee), i.e., the
maximum length over which quantum coherence is retained
in an electron system.

The configurations of the flow lines in Fig. 12 clearly
display the specific feature of the interaction Y that was
discussed at the beginning of this section: as the size L or Lj

changes, the interaction in the system changes (is renorma-
lized ), and this change is different in different flow lines. The
diagram in Fig. 12 is a two-parameter diagram: two
parameters are required to specify the flow line of the image
point. The flow lines (trajectories) in this diagram occupy the
entire half-plane.

We assume that the position of a point in a flow line is
determined by Lj, i.e., the temperature. We assume that we
are at point A in a flow line that is metallic because it recedes
to the region of high conductivity as T! 0. We fix the
interaction Y and vary the conductance y; that is, we vary
the degree of disorder. This process is shown by a dashed
straight line in the diagram. When moving along this line, we
can cross the separatrix and reach point B in a flow line that
describes an insulator, because it tends to the point y � 0 as
T! 0. To specify the position of a point in line AB, we can
use a single parameter, which is precisely what we call the
control parameter.With another control parameter, the angle
of intersection of the separatrix can be different. For example,
we can initiate the crossover from a metallic to a nonmetallic
flow trajectory by changing the electron concentration and,
thus, simultaneously changing the effective interactionY and
the conductance.

Changing the control parameter allows passing from one
flow trajectory to another, and changing the temperature
(size) allows traveling along a flow trajectory. But because the
interaction Y can change when any of the two parameters
changes, factorization is absent; that is, we cannot suppose

Crossover

B
A

QCP

Y

yyc0

Figure 12. Part of the flow diagram plotted for a 2D electron gas with

interaction [25].
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that the length x depends only on dx and the length Lj

depends only on temperature. The consequence of this
`mixing' of variables is clearly visible in the flow diagram in
Fig. 12. As wemove along the separatrix toward the quantum
critical point (QCP), the conductance decreases and tends to
yc. Hence, we can draw the following important conclusion,
which is qualitatively shown in Fig. 13: the separatrix in the
set of temperature dependences is not a horizontal line, as in
Fig. 5.

An indication of the presence of a metal ± insulator
transition in a 2D gas was first obtained in the inversion
layer of a field-effect transistor on a Si surface [26]. The
presence of the transition was questioned for a long time,
because is was in conflict with the concepts formulated in [7]
and because the transition was not reproduced in other

materials. However, the uniqueness of silicon was found to
be related to a high electron mobility, which allows perform-
ing experiments at a very low electron density, where the
electron ± electron interaction is especially important. With
this fact, it was possible to interpret the experimental data
using not the theory in [7], which was developed for
noninteracting electrons, but in accordance with the model
in [25]. As a result, the presence of a metal ± insulator
transition was supported and a finite slope of the separatrix,
which was predicted in [25], was obtained (see Fig. 14a
borrowed from [27]).

As is seen from the flow diagram in Fig. 12, the finite slope
of the separatrix in the set of the temperature dependences of
s or R of a system of 2D electrons is controlled by the angle at
which the separatrix approaches the QCP in the flow
diagram. If the tangent to the separatrix is normal to the
abscissa axis at the QCP due to any specific reason, the
separatrix in the set of temperature dependences has a zero
derivative at T � 0. Thus, the horizontal position of the
separatrix in the set of the temperature dependences of
conductivity in the vicinity of the quantum phase transition
results from the symmetry of the flow diagram of a specific
system and is not an inherent property of all 2D systems.
Conversely, a finite slope of the separatrix is not an
indispensable consequence of a two-parameter flow diagram.

An inclined separatrix complicates scaling, i.e., the
reduction of measurements performed along different flow
lines to one universal curve by changing the scales. Never-
theless, the scaling of the resistance R�T � data is possible.
Figure 14b shows the scaling carried out in themetallic region
of the transition displayed in Fig. 14a. The three lower curves
in Fig. 14a are replotted in the coordinates r=rmax (instead of
r) and rmax ln �T=Tmax� (instead of T; here, rmax is given in
dimensionless units), and the values rmax and Tmax corre-
spond to the position of the maximum in each of the
experimental curves, which are seen to merge into one curve
and to coincide with the theoretical curve. This last curve was
plotted using the calculations in [25] and the interaction

x � xc

x <
xc

x >
xc

y

yc

T0

Figure 13. Qualitative scheme for the evolution of the conductance y�T �
curves with a control parameter in the model in [25].
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Figure 14. (a) Temperature dependences of the resistivity r�T � for a 2D gas in a field-effect silicon transistor in a concentration range containing the

metal ± insulator transition [27]. (b) Scaling of the three lower curves, which correspond to the concentrations 9.87 (&), 9.58 (*), and 9:14� 1010 cmÿ2 (�)
[27]. Theoretical results are shown by a solid line.
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parameter Y determined in the same sample from the
magnetoresistance data obtained in a field parallel to the
2D plane.

An analogous problem of an inclined separatrix is also
often encountered during the experimental processing of the
Rx�T � temperature dependences (x is a control parameter) in
the vicinity of superconductor ± insulator quantum phase
transitions. In Ref. [28], a procedure was proposed for
`correcting' the curves by introducing the additional linear
term

Rx�T � ! Rx�T � ÿ aT ; a � qRxc�T �
qT

����
T� 0

�67�

into each of them to make the separatrix horizontal and to
subsequently perform the standard scaling for 2D systems
using scaling variable (35). The idea of this procedure is to
compensate for the slope of the separatrix in a flow diagram.
However, the correctness of this procedure has not been
proved theoretically.

Formally, the �x;T � phase plane also has a meaning for a
two-parameter flow diagram. However, the critical neighbor-
hood of the transition can also be directly plotted in the
diagram (see Fig. 15). It should be noted that the two-
parameter scaling becomes one-parameter in the region
adjacent to the separatrix inside the critical region, where
flow trajectories are parallel. Indeed, as noted above, one
parameter is sufficient to specify the position of a point on line
AB, and this parameter does not change when line AB shifts
parallel to the separatrix, e.g., to positionA1B1, since the flow
lines are parallel to each other. As we move along the
separatrix toward the QCP, near-separatrix trajectories turn
aside alternately, and the strip in which the flow trajectories
are parallel, as well as the critical region, narrows.

6. Quantum transitions
between the different states of a Hall liquid

States in the plateaus of the quantum Hall effect are the
specific phase states of a 2D electron gas with special

transport properties described by the longitudinal �sxx� and
transverse �sxy� conductivities

sxx ! 0 as T! 0 ; sxy � i
e 2

2p�h
; i � 0; 1; 2; 3; . . . :

�68�
Such phase states of a 2D electron gas are quantum Hall
liquids with different quantum Hall numbers i determined by
the values of the Hall conductivity sxy, Eqn (68), in the
plateaus,

i � sxy
e 2=2p�h

; i � 1; 2; 3; . . . : �69�

The transitions from one plateau to another induced by
a change in the magnetic field or the electron concentration
are clearly visible in experimental curves. As can be seen
from Fig. 16, sxy jumps are accompanied by narrow sxx
peaks. These jumps are quantum phase transitions, and they
should fit both theoretical versions compared in Section 5.

Figure 16 only displays the plateaus of the integer
quantum Hall effect, which is considered below. The integer
quantum Hall effect can also be realized in a noninteracting
electron gas; therefore, it can be described without taking the
interaction into account.

To construct the flow diagram of a 2D system of
noninteracting electrons in a strong magnetic field, we need
two conductance components that are equivalent to con-
ductivity components sxx and sxy. Correspondingly, Eqn (37)
transforms into the set of two equations

d ln sxx
d lnL

� f1�sxx; sxy� ;
�70�

d ln sxy
d lnL

� f2�sxx; sxy� :

B

B1

A

A1

QCP

Y

yyc0

Figure 15.Critical region (indicated by a dotted curve) in the flow diagram

of an interacting 2D electron gas.
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mobility is m � 4:1� 104 cm2 (V s)ÿ1.
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Eliminating the variable L from Eqn (70), we find a
relation between sxx and sxy, which can be displayed as
curves in the �sxy; sxx� plane [30]. This yields a flow diagram
for the 2D system of noninteracting electrons in a strong
magnetic field (Fig. 17). The flow lines in this diagram are
separated by separatrices periodically repeated along the sxy
axis. This is again a two-parameter diagram, but due to a
strong magnetic field rather than to interaction. As in the
previous flow diagrams, we can move along arrows in flow
trajectories by either increasing the sample size L or
decreasing the temperature at large L, i.e., increasing Lj.

In the region below points Ci, the separatrix is split such
that two equivalent points located at the same height (B1 and
B2) appear in it. The flow lines inside the semicircles in Fig. 17
are omitted because they are thought to exist separately from
the flow lines outside these semicircles: as the control
parameter changes in the region below points Ci, the motion
leads to a jump between points B1 and B2 and to a sharp
increase in sxy. Strictly speaking, the jump should occur along
a line located outside the semicircle and bypassing the point
Ci from above. However, for simplicity, this jump is indicated
by a horizontal dashed line.

The control parameter in the quantum Hall effect regime
is usually given by the electron concentration or the magnetic
field. Their effect on the state of a real system depends on the
random field of impurities and other defects, which trans-
forms discrete Landau levels into minibands and specifies the
energy structure and the character of wave functions in them.
Because a magnetic field determines the magnetic length
rB �

ÿ
�hc=jejB�1=2 as a characteristic scale, we can speak

about two limit types of random potential, a potential with
large-scale fluctuations of characteristic sizes z4 rB and a
short-range potential with z5 rB. In the long-period poten-
tial model, an energy value ec exists near the center of each
Landau miniband such that a delocalized electron wave
function corresponds to this value. If the wave function is

strictly delocalized only at eF � ec and the random field lifts
the degeneracy of energy levels, a change in the electron
concentration results in a jump-like transformation of the
system from one phase state into another through an isolated
energy state with a delocalized wave function at the Fermi
level. This behavior is implied in the flow diagram in Fig. 17,
where each isolated metallic state corresponds to a peculiar
separatrix.

The actual width de of the energy range with delocalized
wave functions depends on finer processes, such as tunneling
between two semiclassical trajectories that are close to each
other in the vicinity of the saddle point (magnetic break-
down). In essence, de is the energy uncertainty of any
delocalized state. Another source of increasing the de range
is the finiteness of the lengths L and Lj. If the de range is
finite, a separatrix is split into two parallel lines and the phase
transition is split into two transitions: a metallic state with a
partly filled layer of extended states at the Fermi level should
appear between two Hall-liquid states whose indices i differ
by unity. The corresponding hypothetical flow diagram is
shown on the right-hand side of Fig. 17.

At first glance, it seems that experiment can distinguish
between these two hypothetical possibilities. For definiteness,
we assume that the electron concentration n changes in
experiment (considerations for a change in the magnetic
field are similar). As the concentration changes, the Fermi
level moves along the energy scale. When states at the Fermi
level are delocalized, the sxx conductivity is finite, and the sxy
conductivity is in the intermediate region between two
plateaus. Therefore, the temperature dependence of the
concentration range of the intermediate region (i.e., the sxx
peak width, the qsxy=qn derivative at the center of the
intermediate region, etc.) extrapolated to T � 0 must deter-
mine the energy range de of the delocalized states.

However, the experimental results were found to be
ambiguous. On the one hand, the comprehensive experi-
ments in [31, 32] give a finite value of de. For example,
Fig. 18 shows the transition width measured from the rxx
resistivity peak width of a 2D gas in the GaAs/AlGaAs
heterojunction. The measured function is seen to be reliably
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Figure 17. Flow diagram for a 2D electron gas in a strong magnetic field

[30]. The coordinates are represented by the conductivity tensor compo-

nents sxy and sxx in dimensionless units e 2=2p�h. Separatrices are indicated
by dashed lines; Ai are stationary singular points and Ci are unstable

singular points, which are quantum transition points similar to QCP in

Fig. 12. The dashed line indicates a critical region near C2. Horizontal

dashed line B1ÿB2 indicates an image-point jump as the control

parameter changes. The right-hand side of the figure shows the hypothe-

tical flow diagram that corresponds to a split phase transition and the

appearance of a metallic phase.
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Figure 18. Temperature dependence of the peak width of the long-

itudinal resistivity rxx of a 2D electron gas in the GaAs/AlGaAs

heterojunction during the 2! 1 transition in the magnetic field about
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extrapolated to DB0 � 0:35 as T! 0. However, as we see
below, many experiments give the opposite result: as the
temperature decreases, the transition width tends to zero
(see, e.g., Fig. 20). The factor that determines de has not yet
been revealed. In any case, there is no unique relation between
de and mobility. The statistical characteristics of the random
potential, which are poorly controlled, are likely to play a key
role.

We now move to experiments that do not exhibit a finite
energy layer with delocalized states. Although the flow
diagram of i! i� 1 transitions between different states of a
Hall liquid has two parameters (see Fig. 17), it is symmetric
with respect to both the sxy � �i� 1=2��e 2=2p�h� and
sxy � i�e 2=2p�h� axes. Therefore, we may use the version of
the general theory of quantum phase transitions that is based
on Eqns (25) and (26) and assumes that scaling formulas of
type (34) are valid. Because we consider only 2D electron
systems, all resistances have the same dimension �O� and must
have the form

Ruv � Fuv

�
Lj

x

�
� Fuv

�
dx

T 1=zn

�
�71�

in the vicinity of the transition. Here, the u and v subscripts
stand for the x and y coordinates, Fuv is an unknown function,
and the argument of the arbitrary F function is written using
the last form in Eqn (35).

In contrast to the case of metal ± insulator transitions, we
analyze experimental results instead of calculating or predict-
ing the values of n and z. As an example, Fig. 19 shows the
magnetic-field dependences at various temperatures of the
longitudinal �Rxx� and transverse �Rxy� resistances of a Hall
bar in a GaAs-based heterostructure [33].

According to Eqn (71), the scaling variable

u � dx
T 1=zn

�72�

is identically zero at all temperatures in the case where the
control parameter takes the critical value; correspondingly,
we have

Ruv�xc;T � � const : �73�

Therefore, separatrix (73)must be horizontal, and all isotherms
Ruv�x;T � const� must intersect at one point x � xc. This is
the first test of the applicability of Eqn (71).

We first focus on the Rxy�T � curves. As can be seen from
Fig. 19, the Rxy�T � isotherms obtained for an AlxGa1ÿxAs ±
Al0:33Ga0:67As heterostructure with x � 0:85% [33] do inter-
sect at one point, Bc � 1:40 T. Near the intersection point, all
the Rxy�T � curves can be expanded into a series and replaced
by straight lines �qRxy=qB�Bc

�Bÿ Bc�. As the slopes of these
lines change from �qRxy=qB�Bc

to �qRxy=qB�Bc
=T k, where

k � 1=zn, all the straight lines must merge into one line. The
choice of the value of k at which the relation

�qRxy=qB�Bc
�T �

T k � const �74�

holds is the second step in the application of the scaling
procedure, and the possibility of this choice is the second
condition for the applicability of the theory. To choose k, we
plot �qRxy=qB� versus T in a logÿlog scale (Fig. 20).
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Figure 19. Transverse �Rxy� and longitudinal �Rxx� resistances of an AlxGa1ÿxAs ±Al0:33Ga0:67As heterostructure, x � 0:85%, at various temperatures.

The critical magnetic field of the 4ÿ3 transition determined from the intersection point of the Rxy�T � curves is Bc � 1:40 T [33].
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Formally, Eqn (71) can be applied to both longitudinal
�Rxx� and transverse �Rxy� resistances. However, the peak
height depends on the temperature; that is, the point of the
maximum does not satisfy condition (73). Leaving aside the
reasons for this fact, we can use the longitudinal resistance
data for scaling analysis by accounting for the integral
property of the Rxx�B� functions in the vicinity of the
transition, namely, the peak half-width DB determined by a
certain algorithm. In Fig. 20,DB is determined as the distance
between the two maxima of the �qRxx=qB� derivative.

As can be seen fromFig. 20, an analysis of both families of
functions gives the same value of the critical index k � 0:42,
which is an additional argument for our scaling procedure.

This value of the critical index k � 0:42 was repeatedly
obtained in heterostructures made from various materials.
However, contrary to expectations, this value is not universal:
other values in the range from 0.2 to 0.8were also detected in a
number of experiments on various heterostructures. This
scatter calls for explanations, since scaling relations and
critical indices are usually universal.

At T � 0, transition occurs when the condition eF � ec is
satisfied and therefore the difference de � jeF ÿ ecj is the only
`internal' control parameter of the system, with the correla-
tion length x depending on it in accordance with a power law:

x / �de�n1 : �75�

From this standpoint, the magnetic field B or the 2D electron
concentration n, which depends on the gate voltage Vg, are
`external' control parameters x,

dx � jBc ÿ Bj / �de�n2 or �76�
dx � jnc ÿ nj / jVgc ÿ Vgj / �de�n2 :

The exponent n2 is the same in both cases. This is supported by
the fact that the Ruv�B� and Ruv�Vg� experimental curves
recorded using the same sample under equivalent conditions
differ only in the scales on the abscissa axis. Eventually, we
can write Eqn (25) as

x / �dx�n ; n � n1n2 ; �77�

where the relation between the control parameter dx and the
correlation length x consists of the following two links: x
depends on the position of the Fermi level eF with respect to
the delocalized level ec, and the difference eF ÿ ec in turn
depends on dx. Correspondingly, according to Eqn (77), the
index n is the product of n1 and n2. The relation between x and
de and the related index n1 are likely to be universal and the
same for all transitions between different quantum Hall
liquids. But the index n2 is determined by the density of
states g�e� in the vicinity of the energy ec, and hence depends
on the specific features of the random potential; this potential
can be long- or short-range, statistically symmetric or
asymmetric with respect to the mean value, and so on. The
authors of [33], whose curves are used in this section, just
studied the effect of specific features of the random potential
on k.

The DB�T � curve in Fig. 20 differs radically from the
curve in Fig. 18; in the latter case, a free term DB0 was
introduced for the experimental data to be approximated by a
power function. Nevertheless, we can also perform scaling
analysis of the experimental data in this case using the second
hypothetical version of the flow diagram (see Fig. 17). With

this interpretation, the presence of theDB0 termmeans that in
the 2DB0 range of the control parameter B, the image point in
the flow diagram moves across the metallic-phase corridor
and falls on a separatrix not at B0 corresponding to a
maximum of sxx�B� and the derivative qsxy=qB but at
B0 � DB0. This problem is discussed in detail in review [34].
Here, we only note that Fig. 18 actually contains this scaling
analysis. By extrapolating the DB�T � dependence to T � 0,
we can determine the delocalized-state layer width in units of
the magnetic field 2DB0 and find that DB�T � ÿ DB0 depends
linearly on T. This means that k � 1 in this experiment. The
same value of k was obtained earlier in [31].

7. Conclusion

All the considered cases of metal ± insulator transitions were
found to be adequately described by flow diagrams. The list of
theoretical works that have successfully used this technique
begins with work [7], where a theoretical model for noninter-
acting electrons in a zero magnetic field was developed. The
last achievement in this field is the construction of a flow
diagram for a 2D model system of interacting electrons and
the demonstration of the possibility of a metal±insulator
transition in this system [25].

As regards the general theory of quantum phase transi-
tions, a phase transition in a 3D system of noninteracting
electrons demonstrates that, in principle, this theory can be
used to describe localized ± delocalized electron transitions.
Neither conductance, which is used as a physical quantity
specifying the state of the system, nor disorder, which is the
main control parameter, are substantial obstacles for this
theory. However, as usual, various particular cases require
theoretical versions of various degrees of complexity. For
example, the version described in this review cannot be
applied to the model in [25].

The relative role and possibilities of both theoretical
approaches are demonstrated in describing the integer
quantum Hall effect. The flow diagram in Fig. 17 is very
convenient for the discussion of the types of transitions that
are possible in a system and for the formulation of questions
to be experimentally checked. Many of these questions are
still open. For example, it is unclear which of the versions of
the flow diagram in Fig. 17 is realized in reality and whether
the transition between the states with quantum indices i and
i� 1,

i> i� 1 ; �78�

is split [i is determined by Eqn (69)]. There are also problems
related to the topology of the flow diagram. According to
Fig. 17, transitions where quantum number i changes bymore
than unity are impossible [35, 36]. However, when theorists
interpret many experimental data, they state that such
transitions occur (see, e.g., review [34] and the references
therein).

The general theory of quantum phase transitions does not
consider the problem of the relative position of various
transitions in the phase plane. This theory describes the
critical neighborhood of one certain transition. If we assume
that (a) a transition exists and (b) the factorization x � x�dx�,
Lj � Lj�T � occurs in its critical region, then the resistivity
can be described by Eqns (34) ± (36) (see Sections 2.3 and 5.3).
Then, we can determine the transition point x � xc and
critical indices by processing the R�x;T � curves. This
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procedure was performed in paper [33], which was discussed
in Section 6. The value of the results obtained in [33] is to
become clear when the questions formulated above and
motivated by flow diagrams are answered.
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