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Various phenomena which aid in understanding the concept of localized superconducting pairs
�the behavior of granular superconductors, the parity effect, the Berezinski–Kosterlitz–Thouless
transition� are discussed. Experimental evidence of the existence of localized pairs is presented
and the conditions favoring their appearance are analyzed. © 2011 American Institute of Physics.
�doi:10.1063/1.3551532�
The notion that a superconducting interaction can sup-
port the dissipationless flow of current through a metal but
also facilitate localization and lead to the formation of an
insulating state seems paradoxical and has been accepted
only with difficulty. This paper is a comprehensive discus-
sion of the model of localized superconducting pairs which
lies at the center of that notion. The model provides a con-
crete representation of the idea of a Bose insulator or Bose
glass, first proposed in a study1 of Bose-Einstein condensa-
tion in a charged Bose gas in the field of charged impurities
and then developed in detail2 in an examination of phase
transitions in a system of bosons with weak repulsion located
at lattice sites.

The article begins with definitions and general notation.
This is followed by a short description of zero-dimensional
superconductivity in individual grains and the behavior of an
ensemble of such grains in a granular superconductor, as
well as of the parity effect in an isolated small grain. This is
one logical way of interpreting the concept of localized pairs,
from granules to point defects.

There is another logical path, namely: a superconductor
is a dissipative medium with an equilibrium concentration of
Cooper pairs—an insulator with localized pairs. This kind of
approach is suggested, first of all, by the Berezinski–
Kosterlitz–Thouless �BKT� transition, where there is an
equilibrium concentration of Cooper pairs on both sides of
the transition of the metal into a dissipationless state. Sec-
ond, besides the main Bardeen–Cooper–Schrieffer �BCS�
model for superconductivity, there is a model which treats a
superconducting transition as Bose-Einstein condensation
�BEC�. The use of this model or some modification of it3 is
justified, at least, for low electron concentrations. The BEC
model also contains electron pairs �bosons�, and they exist
on both sides of the BEC point. And finally, this approach is
simpler. Once it is assumed that uncorrelated electron pairs
can exist in a dissipative medium, it is natural to assume that
they may be localized.

These digressions should help the reader accept the ex-
perimental proofs of the existence of localized pairs pre-
sented in section IV of this paper: negative magnetoresis-
tance on the insulator side in the neighborhood of the
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superconductor-insulator transition, the first measurements of
the density of states near the Fermi level in this insulator, and
the first successful attempts at a direct measurement of the
effective volume of a localized pair. Then factors which fa-
cilitate pair localization are discussed: the distinctive statis-
tical properties of the random potential resulting from the
chemical composition of the material, and the closeness of
the insulator-normal metal transition.

This paper relies on a recently published review4 dealing
with superconductor-insulator transitions.

I. INTRODUCTION

We refer to an electron localized on a defect or center as
localized when its wave function is damped exponentially at
large distances r from the defect, i.e.,

� = �0 exp�− r/��, r � � , �1�

where � denotes the localization length. For an isolated de-
fect the localization length is usually identified as the Bohr
radius and denoted by aB. Since localization takes place
against the background of a random potential, the energies of
the electrons at all the centers differ slightly. However, for a
finite temperature T�0, an electron can hop from one center
to another, conserving energy as a result of accompanying
processes, such as emission or absorption a photon. These
electron hops make jump conductivity possible. At low tem-
peratures a jump conductivity �k of the form

�h = �h0 exp�− �T1/T�1/��, � = 1,2,3 and 4; �2�

usually occurs, where the particular value of � depends on
the type of jump conductivity, the density of states g��� near
the Fermi level �F, and the dimensionality.

When the exponential tails of the wave functions of elec-
trons localized at different defects overlap, the localization
length increases and becomes greater than aB. In particular,
this sort of overlap is always observed on approaching an
insulator-metal transition. As the transition is approached the
localization length � increases and right at the transition it
goes to infinity, so that

a � � � 	 . �3�
B
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The interaction between localized electrons does not, in
general, lead to overlap of their wave functions. In particular,
it is possible to imagine that an additional superconducting
interaction takes place between two such electrons, i.e., that
they exchange virtual phonons so that the energy of both of
them decreases by 
L. Exchange requires that the separation
between the energy levels of an electron, determined by its
localized volume, be less than the energy of the phonons. If
such an interaction actually occurs, then it is possible to in-
troduce a wave function for a localized electron pair. It also
damps out exponentially at large distances,

�2 = �20 exp�− r/�2�, r � �2, �4�

with a characteristic length �2 for which an inequality simi-
lar to Eq. �3� applies in the neighborhood of an insulator-
superconductor transition:

a2B � �2 � 	 . �5�

Jump conductivity is also possible in an insulator with
paired electrons. However, one of the following two things
must happen. On one hand, both electrons can hop to new
centers simultaneously, and remain bound; this process is
little studied, although it may occur immediately adjacent to
a superconductor-insulator transition. We return to this case
below. On the other hand, as one of the electrons jumps, it
“pays off” its partner, leaving it an additional energy 
L. The
contribution to the conductivity from this type of jump with
unpairing includes an additional small factor


�h
�2� ~ 
�h exp�− 
L/T� . �6�

In any case, it is to be expected that the activation con-
ductivity of an insulator I2 with paired carriers is less than
for an ordinary insulator.

The purpose of this paper is to clarify just how realistic
such a localized pair model is and to examine experimental
data which can be regarded as proof of the existence of lo-
calized pairs.

II. GRANULAR SYSTEMS

A. Pseudolocalization of Cooper pairs in a granular metal

Let us consider a material consisting of grains of super-
conducting material in an insulating matrix. Assume the av-
erage grain size b is such that the ratio


/�� = 
gFb3 � 1, �7�

where 
 is the superconducting gap, ��= �gFb3�−1 is the
separation between electron levels owing to size quantiza-
tion, and gF is the density of states at the Fermi level of the
bulk metal in its normal state. It is, in fact, the presence of
the gap 
 in a relatively dense system of electronic levels
which allows us to refer to such a granule as superconduct-
ing. The quantity on the left of this inequality can be inter-
preted as a requirement that the number of Cooper pairs in
each granule be large, i.e.,

�gF
�b3 � 1. �8�

The superconducting state of a grain is a collective state
of all the Cooper pairs. It is described, as in a bulk supercon-
ductor, by the complex order parameter
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��r� = ���exp�i�r�� , �9�

whose modulus is the binding energy of a Cooper pair, i.e.,
���=
, and whose phase �r� characterizes the coherence of
the Cooper pairs. When there is no current in the supercon-
ductor, �r�=const.

Charge transfer from one grain to another is possible
only by tunnelling. If this charge transfer were by Josephson
currents of Cooper pairs, then the phase of the order param-
eters in all the grains would be correlated and a macroscopic
superconducting state would be established in the material.
Josephson currents, however, can be suppressed by, for ex-
ample, an excessively high normal tunnel resistance between
the granules, ��� /e2. Then charge transfer between grains
occurs through tunnelling of single particle excitations,
whose density n1 is exponentially small in the grains because
of the superconducting gap 
, i.e.,

n1 � exp�− 
/T� . �10�

Under these conditions superconductivity is established in
each grain independently. It can be said that the pairs are
localized, each within its grain, and the radius of localization
� is equal to the grain size b, i.e.,

�2 = b .

If the grain size b if macroscopic and condition �8� is satis-
fied, then this interpretation is not completely consistent with
the ordinary meaning of the word “localization.” First, the
proposed interpretation shows that the idea of localized su-
perconducting pairs is not as crazy as it seemed at the start.
Second, it encourages a close scrutiny of the transport prop-
erties of high resistance granular superconductors. These
properties are illustrated in Fig. 1, where the resistance R of
a granular In / InO system is plotted as a function of tempera-
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FIG. 1. Temperature dependence of the resistance of granular film consist-
ing of grains of In separated by oxide.5 This manifests the characteristic
increase in resistance below the superconducting transition temperature of
the indium grains.
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ture. For temperatures T above the superconducting transi-
tion temperature Tc of indium, the resistance R�Rn in-
creases with decreasing temperature in accordance with the
Mott law, as in an ordinary insulator. The R�T� curve is cer-
tainly sensitive to the superconducting transition, but below
Tc the resistance R�Rsc does not decrease, but instead, in-
creases much more rapidly.

This effect is qualitatively fully understandable. On top
of the ordinary processes controlling the resistance of an in-
sulator at finite temperatures, here the single particle excita-
tions in the granules which are capable of tunnelling become
frozen as implied by Eq. �10�. This introduces an additional
factor in the expression for RSC,

Rsc = Rn exp�
/T� .

If a magnetic field is used to destroy the superconducting gap
in the granules so they become normal, then the number of
single particle excitations at the Fermi level will increase and
the resistance returns to Rn. This indicates the presence of a
negative magnetoresistance, which is stronger for lower tem-
peratures, i.e.,

R�B,T�/R�0,T� � exp�− 
/T�, B � Bc, �11�

where Bc is the critical magnetic field.
In general, all of these remarks could be applied to hy-

pothetical localized pairs in a quasi-inhomogeneous material
once the word “tunnelling” is replaced by “hopping” and the
magnetic field is assumed to destroy the pairwise supercon-
ducting correlations in the localized pairs. If the localized
pairs inherit the singlet character of the Cooper pairs and the
two electrons from a pair have opposite spin directions, then
a magnetic field, which tends to align all the spins in one
direction, will reduce the energy gain from pairing and a
sufficiently high field will reduce it to zero. Of course, the
notion of localized pairs’ reacting in this way to a magnetic
field requires experimental verification. In any case, experi-
ments on granular superconductors indicate a possible ex-
perimental approach to search for electron pair localization.
If electron pairs localized on local defects do exist, then in a
strong magnetic field we should expect a negative magne-
toresistance owing to breakup of these pairs.

B. Parity effect in small grains

A parity effect has been observed6,7 in superconducting
grains with sizes satisfying condition �7� using Coulomb
blockade. Adding one additional odd electron to the electron
system increased the total electron energy EN more than add-
ing the next odd electron. The difference was equal to 2
p,
where


p = E2l+1 −
1

2
�E2l + E2l+2� �12�

is the binding energy per electron. In a large grain, 
p=
.
If the grain size is reduced, then, because of the break-

down of condition �7�, superconductivity should vanish. This
happens when b�b1, where b1 is determined by comparing
the superconducting gap 
 to the distance ��,

�� = �gFb1
3�−1 = 
, b1 = �gF
�−1/3. �13�
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However, the superconducting interaction through
phonons remains and, as before, leads to an effective attrac-
tion between electrons. Besides this, it ha been shown
theoretically8 that the parity effect also remains. The binding
energy 
p in small grains8 with

b � b1, i.e. �� � 
 , �14�

becomes a small correction relative to ��, but it is not at all
small relative to the gap 
 in the bulk material, i.e.,


p =
��

2 ln���/
�
� 
 . �15�

This analysis8 is valid as long as size quantization is
smaller than the energy of a Debye phonon ��D. This means
that there is a range of sizes of isolated grains of supercon-
ducting metal

b2 � b � b1,

b2 = �gF��D�−1/3, b2/b1 � �
/��D�1/3, �16�

within which the superconducting interaction can lead to
pairing of electrons localized inside a grain over a length b.

III. DELOCALIZED ELECTRON PAIRS IN DISSIPATIVE
MEDIA

According to the classical BCS theory of superconduc-
tivity, an equilibrium concentration of Cooper pairs appears
at the temperature Tc simultaneously with the establishment
of a dissipationless state, which we shall regard as intrinsi-
cally superconducting. Superconductivity is usually de-
stroyed by bringing the modulus of the order parameter ���
�
 to zero by, for example, raising the temperature to Tc or
the critical field to Bc. In this section we shall be interested in
the possibility of the separate onset of two events: the de-
struction of the superconducting state and the approach of
��� to zero, i.e., the possibility of dissipation with a nonzero
equilibrium concentration of electron pairs. We examine two
such cases.

A. The Berezinski-Kosterlitz-Thouless transition

Two-dimensional superconducting systems are distin-
guished by the possible existence of a gas of fluctuations in
the form of spontaneously generated magnetic vortices be-
low the bulk superconducting transition temperature Tc0.
Each vortex is penetrated by a quantum of magnetic flux

�0 = 2��c/2e . �17�

The vortices are created in pairs with opposite directions
of the on-axis field �vortex-antivortex pairs� and after a finite
time, they are annihilated in collisions. In zero magnetic field
the concentrations of the vortices with opposite signs are
equal, i.e., N+=N−, and are determined by the dynamic equi-
librium between spontaneous creation and annihilation pro-
cesses. A transit around a motionless vortex changes the
phase of the wave function by 2�, so that free movement of
the vortices leads to fluctuations in the phase. If the ampli-
tude of the fluctuations in the phase is sufficiently high, the
coherence of the state is lost. Here the modulus of the order
nse or copyright; see http://ltp.aip.org/about/rights_and_permissions
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parameter 
 remains nonzero over a larger part of the vol-
ume. �It goes to zero only inside vortices, near the vortex
axis.�

As the temperature is lowered, at some T�Tc0 a BKT
transition takes place:9,10 creation of vortex pairs ceases, and
the vortex concentration falls off sharply, becoming expo-
nentially small. In addition, the dissipation also becomes ex-
ponentially small only for T�Tc. But within some range of
temperatures

Tc � T � Tc0 �18�

Cooper pairs coexist with vortices in two-dimensional super-
conductors. The Cooper pairs reduce the dissipation, but do
not suppress it completely.

Mathematically the existence of a dissipationless state
means that at large distances the correlator

G�r� = 	��r���0�
 → G0 � 0, for �r� → 	 �19�

remain finite �the angular brackets denote averaging over the
quantum state of the system�. In the temperature range �18�
the correlator �19� goes �exponentially� to zero with increas-
ing r. For temperatures T�Tc it falls according to a power
law, i.e., it still approaches G0=0 at large distances, but rela-
tively slowly. Thus, in the temperature range �18� a dissipa-
tive state develops in a two-dimensional superconductor and
for T�Tc, an almost coherent state. A strictly coherent state
with a finite correlator �19� at large distances develops in
two-dimensional systems only at T=0.

An example of determining the temperatures Tc0 and Tc

using the resistive transition is shown in Fig. 2. A detailed
experimental analysis11 based on theoretical calculations12

has been carried out for the superconducting transition in
amorphous In–O films.

According to the figure, the temperatures Tc0 and Tc dif-
fer by almost a factor of 1.5: that is, R�Tc0��0.5RN, and
R�Tc� is less than RN �the resistance of the film in the normal
state� by several orders of magnitude.

B. Superconductivity as Bose condensation

The BCS theory assumes that the coherence length �size
of a Cooper pair� ���� /
�10−4 cm is considerably
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FIG. 2. The temperature Tc0 at which an equilibrium concentration of Coo-
per pairs occurs and the temperature Tc at which a coherent state forms in a
100-Å-thick amorphous In–O film.
F
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greater than the average distance between pairs, s
��g0
�−1/3�10−6 cm �g0 is the density of states in the nor-
mal metal at the Fermi level�, i.e.,

� � s . �20�

Essentially a collective state of all the electrons in the
form of ensemble of Cooper pairs is considered.

However, superconductivity also develops in systems
with electron densities considerably lower than in ordinary
metals, such as, single crystal SrTiO3 with an electron den-
sity on the order of n�1019 cm−3.13 Furthermore, in type II
superconductors the parameters � can be less than 100 Å.
Thus, the inequality �20�, which is necessary for validity of
the BCS model, may be violated. Materials in which ��s
are among the exotic superconductors.

The existence of exotic superconductors, for which the
inequality �20� does not hold, has led to another model of
superconductivity—Bose–Einstein condensation of a gas of
electron pairs treated as bosons with charge 2e14—and to
studies of crossover from the BCS model to the BEC model.3

The BEC model assumes another way of destroying the
superconducting state: fluctuations in the phase of the order
parameter drive the correlator �19� to zero when the modulus
of the order parameter is nonzero.15 A finite modulus of the
order parameter at the transition signifies a finite concentra-
tion of bound electron pairs, i.e., the boson concentration
does not go to zero at the transition. This sort of scenario is
made more likely by the fact that shielding is weaker and the
“rigidity” with respect to phase changes is comparatively
small �which increases the role of phase fluctuations� in su-
perconductors with a low electron density.16,17

While assuming that bosons �electron pairs� are present
on both sides of the superconducting transition, the BEC
model does not discuss the mechanism for their appearance
above Tc. It may be supposed, for example, that they show
up independently of one another owing to a Cooper interac-
tion and their relative amount is determined by the Boltz-
mann factor exp�−
 /T�. At higher temperatures T�
 their
number becomes exponentially small.

Once the existence of uncorrelated electron pairs in a
dissipative medium is recognized, the question of whether
these pairs are localized becomes completely natural and the
answer depends on the level of disorder. An equilibrium con-
centration of electron pairs implies the existence of a gap or,
at least, a minimum in the density of single-particle states of
the electron system at the Fermi level. Measuring the density
of states on both sides of the superconducting transition and
searching for a minimum at the Fermi level on the non-
superconducting side are possible topics for experimental re-
search.

IV. EXPERIMENTAL EVIDENCE OF THE EXISTENCE OF
LOCALIZED PAIRS

In the preceding sections we have determined two pos-
sible types of experiments for detecting localized pairs in
uniformly disordered materials. The existing experimental
data are reviewed in this section.
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A. Negative magnetoresistance

It is most natural to search for localized pairs in materi-
als which become highly resistive after a breakdown of su-
perconductivity, that is, in the neighborhood of a
superconductor-insulator transition. We shall speak of two
groups of materials of this sort: ultrathin films whose thick-
ness b serves as a controlling parameter �superconducting for
large b and insulating for small b� and materials with a vari-
able composition that can be controlled in some way. In the
second group the controlling parameter is usually the elec-
tron concentration and/or the level of disorder. In both
groups, a magnetic field B can be used as a control param-
eter.

Let us examine in more detail the possible consequences
for electron transport of field-induced destruction of local-
ized pairs. First, the binding energy has dispersion: it de-
pends on the specific values of the random potential in the
neighborhood of the localization point ri, as does the energy
��1� of this electron when the pairwise superconducting inter-
action is shut off:

��ri� = ��1��ri� − 
L�ri� . �21�

By definition ��ri���F. However, ��1��ri� can be either
smaller or greater than �F. In the first case, ��1��ri���F, after
destruction of the pairwise correlations by the field and 
L

goes to zero, an electron remains localized at the point ri. Its
contribution to the conductivity increases according to Eq.
�6�, but the conductivity is still jump conductivity. In the
second case, ��1��ri���F, the electron is delocalized, and its
contribution to the conductivity becomes metallic.

In order to be able to relate an observed negative mag-
netoresistance to localization of electron pairs at impurity
centers or defects, it is necessary to confirm the absence of a
granular structure. For all the materials to be discussed here,
this has been verified by special experiments.

Negative magnetoresistance of the type of interest to us
was first observed in amorphous In–O films18 which had
been carefully checked beforehand for the absence of a
granular structure. These films are convenient in that it is
comparatively easy to change the electron density in them
and to study the temperature and magnetic field dependences
of their resistance at different concentrations. Negative mag-
netoresistance in In–O was subsequently studied in
detail.19,20 Figure 3a is an example of field dependences of
the resistance, R�B�, found for In–O. The field Bc at which
all the curves for different temperatures intersect is referred
to as the critical field. In fields B�Bc the sample is in a
superconducting state and a phase transition takes place at
Bc. The resistance Rc at the critical field is of the same order
of magnitude as the normal resistance of the film.

If the field B is slightly higher than Bc, then the sample is
in the critical neighborhood of the phase transition. We shall
ignore this region for the moment �returning to it later at the
end of section IV�. By raising the magnetic field somewhat
further �in Fig. 3a, a field �B�Bmax� should be taken�, we
can determine the state of the sample by making the extrapo-

lation R−1�T����T� →
T→0

��0�. In the experiment shown in
Fig. 3a this extrapolation implies that the insulator region is
replaced by a metallic region at a field of 10 T.
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The properties of the resulting state, as an insulator, can
be characterized by the ratio Rmax /Rc at some sufficiently
low temperature. For the film of Fig. 3a, this ratio corre-
sponds to slightly more than an order of magnitude differ-
ence at 70 mK. A state has been found20 in which the resis-
tance increased by more than 5 orders of magnitude
compared to the critical Rc�5 k� at 70 mK. The tempera-
ture dependences of the resistance have an activation char-
acter over a wide range of field, i.e.,

R�T� = R0 exp�T0/T� . �22�

The activation energy T0 depended on the magnetic field B
and reached a maximum of about 1.7 K at Bmax. The activa-
tion energy gradually fell off when the field was increased in
the region B�Bc.

Thus, amorphous, quasiuniform �i.e., not granular� films
of In–O with an oxygen deficit were found to behave as
follows:

— they become an insulator after destruction of supercon-
ductivity by a magnetic field and remained so over a
wide range of fields;

— when the field was increased the temperature-induced
conductivity of these films gradually decreased;

— at a sufficiently high field an insulator-metal transition
takes place19 or the sample comes very close to a metallic
state;20 and,

— the resistance in a high field returns to the level of Rc.

All of these properties fit into a picture of localized
pairs, in which the electrons are localized only owing to a
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FIG. 3. Negative magnetoresistance in a transverse field in films made of
different materials that are superconducting without a field: �a� In–O film of
thickness 20 nm,9 �b� Ti–N film of thickness 5 nm,22 and �c� film of amor-
phous Be with a thickness just below critical, so that the resistance at the
zero point is nonzero.23
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superconducting interaction because their single-particle en-
ergy ��1� in Eq. �21� is positive. If the initial state in the same
material, amorphous In–O, is taken to be one which is not an
insulator in zero field, then a negative ��1� can also be ob-
served in it: at a field of 15 T the resistance still had an
activation character and varied according to a Mott law, Eq.
�2� with �=4.21

The fact that �R /�B�0 over a very wide range of mag-
netic fields is explained by two facts. First, 
L decreases
gradually with increasing field,


L�B� = 
L�0� − g̃�BB �23�

�g̃ is the effective g-factor and �B is the Bohr magneton�.
Second, 
L�0� itself has a dispersion, which was mentioned
above in connection with Eq. �21�.

A natural question arises: how universal is this effect,
i.e., is a superconducting-insulator transition in a uniform,
non-disordered system always accompanied by a resistance
peak and negative magnetoresistance in strong magnetic
fields? As shown in Fig. 3, similar magnetoresistance behav-
ior is observed in Ti–N films, as well as in ultrathin Be films.
The two-dimensional superconducting electron system at the
interface between two layered oxides LaAlO3 and SrTiO3,
each of which is an insulator, behaves similarly to Be films:
with a high carrier concentration, that two-dimensional sys-
tem is a superconductor and with a low concentration, an
insulator. Applying a transverse magnetic field to this
interface-insulator initially causes an increase and then a
drop in the magnetoresistance to values considerably lower
than the original resistance at B=0.24

Nevertheless, the insulator-superconductor transition ap-
pears not to be close enough for localized pairs to appear in
the insulator. A classical example, which has been studied in
greatest detail, is ultrathin films of amorphous Bi, on which
the technique of observing superconductor-insulator transi-
tions was developed.25 In ordinary ultrathin films of amor-
phous Bi, deposited with great care to prevent granule for-
mation, a transition is always observed, while, if it does
occur, magnetoresistance is at a level of one percent.26–28 On
the other hand, amorphous Bi provides additional material
for thought. Bi films deposited by the standard method on a
perforated substrate will manifest both a transition and nega-
tive resistance.29 �See Fig. 4.� Oscillations at low fields can
also be seen in Fig. 4; these are associated with so-called
frustrations. We return to frustrations below, in section IV C.
Here they can be regarded simply as evidence of the pres-
ence of holes in the lattice film.

Thus, we assume that the magnetoresistance peak and
the negative magnetoresistance in high fields on the insulator
side in the neighborhood of the superconductor-insulator is a
convincing sign of pair localization �i.e., of pairwise corre-
lations of localized carriers�. Based on a single experiment29

it is difficult to say whether it was holes in the film, or
something else, that led to the localization of pairs on amor-
phous Bi films. However, factors do certainly exist which
can enhance or suppress pairwise correlations of localized
carriers in a particular material. We return to this question in
section V and have more to say about experiments on a per-
forated substrate at the end of section IV C.
loaded 02 Mar 2011 to 80.92.230.65. Redistribution subject to AIP lice
B. Binding energy of electron pairs—the superconducting
pseudogap

We now formulate a definition to which we shall adhere
in the following. By pseudogap we mean a minimum, in-
duced by a superconducting interaction, in the density g���
of single-particle states on the Fermi level in a system which
is not in a coherent dissipationless state. This definition in-
cludes the long and well known minimum of g��� in the
fluctuation regime of ordinary superconductors for T�Tc,

15

as well as the states of an ideal two-dimensional supercon-
ductor in zero magnetic field in the temperature range of Eq.
�18� where Cooper pairs coexist with vortices caused by dis-
sipation. A finite temperature interval analogous to Eq. �18�
also exists when disorder is present as well as in magnetic
fields.

A fundamentally new possibility for formation of a
pseudogap is through the influence of localized pairs on g���.
Until recently there were no experimental measurements of
g��� and the pseudogap in it in the neighborhood of
superconductor-insulator transitions. Recently, studies of this
sort have been made using low-temperature scanning tunnel
microscopy. Its remarkable capabilities and its problems are
clearly evident in the studies of TiN films in Ref. 30.

These measurements were made on TiN films with thick-
nesses of 5 nm. The resistance was measured along with the
current-voltage characteristic at each temperature. This made
it possible to compare the evolution of the density of states
g��� with the resistive transition curve. �See Fig. 5�.

This comparison shows the following: at the lowest tem-
peratures the density of states curve looks like an ordinary
plot for a superconductor, with a drop to zero in the region of
�F�
 and two coherent peaks on the sides. When dissipa-
tion appears �somewhere in the region of the BKT transition;
see Fig. 2 for a comparison� the coherent peaks go to zero
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�Top right� Temperature variation in the resistance of the amorphous Bi film
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ted below.29
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and the minimum near �F becomes shallower. In this region
the Cooper pairs move in a gas of vortices and antivortices
which induce fluctuations in the phase of the order param-
eter. Some of the electrons from the neighborhood of the
Fermi level are bound in pairs and this reduces the density of
single-particle states, but there is no coherence.

Then the minimum of g��� spreads out, although it is
retained up to comparatively high temperatures. The problem
is that here it is difficult to distinguish whether this minimum
is evidence of pair localization, is caused by the supercon-
ducting interaction in the Cooper channel, i.e., by ordinary
superconducting fluctuations, or is an Aronov-Altshuler cor-
rection to g��� owing to the interelectron interaction in the
diffusion channel, with no relation whatever to superconduc-
tivity. This correction becomes greater with increasing disor-
der and transforms into a Coulomb gap at the normal metal-
insulator transition. It must be assumed that for a reliable
identification of the effect from localized pairs tunnel spec-
troscopy will have to be combined with a high magnetic
field.

C. The dimensions of localized pairs

Frustration oscillations on a perforated film in the insu-
lator state are yet another experimental manifestation of lo-
calized pairs.32 Ultrathin Bi films were deposited on a corun-
dum substrate with holes of radius rhole=23 nm forming a
lattice with a period of 95 nm. �See Fig. 4.� A layer of amor-
phous Ge with an additional 1 nm of Sb sputtered onto it was
used to couple the film to the substrate. As a control, there
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FIG. 5. Density of states near the Fermi level as a function of temperature
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curves on the Gn�T ,V� surface are plots of Gn�T� at four temperatures, Tc
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30 As a comparison, the resistive curve for the

superconducting transition is plotted below on a suitable scale �Tc is the
BKT transition temperature, Tc0 is the superconducting transition tempera-
ture, and 
T is the temperature interval �18�; cf. Fig. 2�.
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was surrounding substrate without holes on which deposition
was carried out in parallel and which was also tested after
each increase in the thickness of the Bi film.

The oscillations are conveniently explained in terms of
the concept of frustration--of the average number of quanta
of the magnetic flux �0 per unit cell of the lattice of holes:

f = BS/�0, �0 = �2���/2e , �24�

where S is the area of a unit cell. Equation �24� makes it
possible to measure the magnetic field in units of f . For
integral frustration f =1,2 , . . ., the entire field is concentrated
in the holes, so that there is none in the film and the inho-
mogeneity of the field is maintained by screening currents.
According to classical electrodynamics this means that un-
damped currents flow around the holes, while the periodicity
of the oscillations and the quantization condition �24� imply
that the currents are formed by carriers with charge 2e, i.e.,
electron pairs.

For the results shown in Fig. 6, a state has been chosen
just slightly deeper into the insulator region than the state for
the magnetoresistance curves shown in Fig. 4. Figure 6a
shows that the resistance in this state increases exponentially
as the temperature is reduced with an activation energy of
about 5 K. At the same time, frustration oscillations occur on
the film in this state. They are characterized by Fig. 6b; there
the curve with the hollow points shows how the amplitude of
the oscillations increases as the temperature is lowered,
while the curve with the solid dots indicates that the varia-
tion is not monotonic in the region of the first oscillations.
Thus, Fig. 6b implies that over scale lengths comparable to
the lattice of holes, �S, superconducting currents exist while,
according to Fig. 6a, there are no superconducting currents
or any conductivity at all on the scale of the sample.

Suppose that the lattice of holes has no effect on the
quasiuniformity of the film near the superconductor-insulator
transition and that immediately adjacent to the transition on
the insulator side there are localized pairs with a localization
length �2 satisfying the condition �5�. This makes is possible
to interpret the experiment32 as a measurement of a lower
bound for the pair localization length �2 in a given film with
the particular values of the controlling parameters given in
Fig. 6:
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rhole � �2. �25�

In accordance with this interpretation, on the higher re-
sistance films, which lie deeper in the insulator region, there
are still no frustration oscillations; they can only be observed
near the transition. There is still no theoretical understanding
of this “local Meissner effect” in a macroscopic insulator. In
particular, it is no clear what restrictions the superconducting
penetration depth may place on the possibility of observing
this effect.

We now return to the positive magnetoresistance in In–O
�Fig. 3a� on the left slope of the magnetoresistance peak for
fields

Bc � B � Bmax. �26�

It can be explained qualitatively in terms of a gradual
reduction in the length �2 on moving from the transition
deeper into the insulator region. It is assumed that the con-
ductivity for fields �26� is determined by diffusion and jumps
by localized pairs. Thus, the reduction in �2 with increasing
field in this interval is accompanied by a reduced probability
of jumps and an increase in the resistance. Here, however,
there is an opposite effect of the field on �2: an increase in
the field leads to a reduction in the binding energy and an
increase in a2B, and therefore to an increase in �2. The ex-
istence of two opposing effects probably leads to an expan-
sion of the interval �26�, with its right side Bmax determined
by the condition �2�a2B while the first factor ceases to
operate.

V. ADDITIONAL FACTORS AIDING PAIR LOCALIZATION

In the simplest case, the electrons forming a pair can be
localized in a large well of the random potential. This con-
figuration differs from a small grain only in the absence of a
high barrier along its perimeter. A significant limitation on
pairing in a well of this sort is the volume occupied by a
localized electron. Equation �16� sets a lower bound b2 on
the size of an isolated grain, b�b2, for which the supercon-
ducting interaction influences the electron spectrum inside it.
For an electron localized at a defect, the localization length
� of the wave function plays the role of the size b. Thus, the
volume occupied by a localized electron is the first important
factor in the simulation of superconducting correlations be-
tween localized electrons.

The electrons of a pair are not necessarily localized on a
single defect; phonon attraction is long-range. However, the
average distance s��g0
�−1/3 between the electrons that we
estimated in Section III B in discussing Eq. �20� may be too
big. For pairing it is important that the distance between
localization centers should be as small as possible. Thus, the
second important factor in the stimulation of pairing is the
existence of close-lying centers. Each of the localized elec-
trons must then occupy a fairly large volume.

We now examine these two factors.

A. Closeness of the metal-insulator transition, real or virtual

In general, as the controlling parameter x is varied �say,
the electron concentration is raised� a disordered insulator
can become a superconductor or a normal metal. The com-
plete phase diagram encompasses not two, but three states of
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the electron system: insulator �I�, normal metal �M�, and su-
perconductor �S�. Two versions of the phase diagram in the
�x ,T� plane for a three-dimensional electron system are illus-
trated schematically in Figs. 7a and 7b. In diagram a, as x is
varied at zero temperature there are two successive transi-
tions, I→M→S. It is known that the metal-insulator transi-
tion shows up in the �x ,T� plane as an isolated point on the
abscissa, so that the concept of an insulator is strictly defined
only for T=0.34 Thus, the vertical dashed line in Fig. 7a is
somewhat arbitrary. It shows that in the strip I, extrapolating
the conductivity to T=0 yields zero, and in the strip M, a
finite value.

If, on the other hand, a single step transition I→S takes
place in the system, then the virtual point x=A still is in the
superconducting region; if it were possible to turn off the
superconducting interaction, the system would not remain an
insulator with increasing x but would become a normal metal
at another value of the controlling parameter. This version is
shown in Fig. 7b.

In reality, the points A and B are close to one another in
both cases, so that serious experimental efforts are some-
times required to determine which version applies to a given
system. Since the region where localized pairs can appear is
in the neighborhood of the point B, when point A is close it
has a significant influence on the pairing process. This was
first pointed out in Ref. 35 and the model was justified and
expanded in a later paper.36 The mechanism for this influence
is the following.

Far from the metal-insulator transition the localization
length � which shows up in the asymptote �1� is defined by
the Bohr radius, ��aB. On approaching the transition, the
tails of the wave functions �1� begin to overlap and the lo-
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phase diagram in the �x ,T� plane in zero magnetic field. �c, d� The two
corresponding versions of the phase diagram in the �x ,B� plane at T=0. The
shaded region I2 is where fractal wave functions stimulate a superconducting
interaction between localized electrons. Sf denotes the assumed regions of
fractal superconductivity.
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calization length � increases. The way � increases on ap-
proaching the transition is determined by the structure of the
wave functions. It is known that near the transition, on scales
shorter than �, the wave functions have a fractal character
with a fractal dimensionality Df�3. Numerical
calculations37 show that near a standard 3D Anderson transi-
tion, Df =1.30�0.05. The fractal character of the wave func-
tion also intrinsically increases its characteristic size �, con-
serving the volume within which the square of the modulus
of the wave function is nonzero. Special calculations36

showed that Cooper pairing is also realized with these kinds
of fractal wave functions.

In the language of the phase diagrams a and b of Fig. 7,
we can say that to the left of the point A there is an range of
values of the controlling parameter within which the wave
functions of localized normal electrons are distended owing
to the fractal character, so that they are subject the effect of
the superconducting interaction. The left end of this range is
defined by the equation ��=��D.

The electron wave functions have a fractal character on
both sides of the Anderson transition. On the metal side there
is also a length that diverges at the transition; usually it is
usually referred to as the correlation length and denoted by �.
With distance from the transition it decreases and transforms
into the mean free path l �cf. Eqs. �3� and �5��, so that

l � � � 	 . �27�

Differences exist only at large distances r��, where besides
being exponentially damped �Eq. �1�� the wave functions be-
have as for ordinary delocalized electrons.

Therefore, closeness of the metal-insulator transition fa-
cilitates localized pair formation in the neighborhood of the
superconductor-insulator transition.

In Figs. 7c and 7d, the shading indicates the regions I2 in
the �x ,B� plane where the fractal character of the wave func-
tions eases the conditions for pairing of localized electrons.
These regions are limited above by magnetic field-induced
processes that destroy the pairs. In �c� this region is mainly
to the left of the point B and in �d�, mainly to the right.
According to experiments on negative magnetoresistance,
both variants of the phase diagram are realized in practice:
variant �c� in Be films and LaAlO3 /SrTiO3 heterostructures
and variant �d� in InO and TiN �this is confirmed by other
experimental data gathered in a review4�.

The extremely interesting superconducting regions Sf are
also noted in Figs. 7c and 7d. These have been referred to as
fractal superconductivity regions.35,36 Studies of fractal su-
perconductivity are obviously something for the future.

B. “Chemical predistribution” to pair localization

It is known that correlations in a random potential can
fundamentally change the localization properties of the me-
dium. This is especially clear in the one-dimensional case.
For example, if impurities are distributed in the form of pairs
with a fixed distance between them, then, despite a random
distribution of these pairs, the electron spectrum will include
energies for which an electron is delocalized �dimer
model33�. Clearly, correlations in a random potential can play
an important role in the formation of localized pairs.
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Let us consider amorphous In–O as an example. The
structural element of this material is a configuration of five
atoms �2In+3O�, within which all the valence electrons form
parts of covalent bonds, as in an In2O3 molecule, so they are
strongly bound. The chemical composition of the real amor-
phous material is In2O3−x. A fraction x of the structural units
has an oxygen vacancy and the two valence electrons imme-
diately adjacent to each vacancy are weakly bound to the
ionic core and easily delocalized, leaving pairwise correlated
wells in the random potential �see Fig. 8�.

We introduce the probability �=n�Q�r�+1�d3r of a lo-
calized electron in a volume d3r such that another electron is
localized at the coordinate origin r=0. Here Q�r� is the pair-
wise correlation function �if the positions of all the localized
electrons are statistically independent, then Q�r��0;� and n
is the concentration of electrons which are not in covalent
bonds and can be delocalized or localized. For an estimate
we can assume that n=2xV−1, where V is the average volume
per structural unit, roughly equal to the volume V0 of a unit
cell of crystalline In2O3, V�V0�103 Å3, so that n
�2x·1021 cm−3. The function ��r� is illustrated schemati-
cally in the upper right corner of Fig. 8. The position of the
first maximum is determined by the average size of the struc-
tural unit, r1�10 Å, and that of the second, by the concen-
tration of oxygen vacancies, r2�r1x−1/3. The existence of a
maximum at the comparatively low r1�n−1/3 causes the
“predistribution” mentioned in the title of this section.
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