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Metals and alloys where a carrier concentration n is
not lower than one electron per atom, i.e., n � a–3

(where a is the interatomic distance) are considered in
this work. The Anderson transition is never observed in
these materials; i.e., they remain metallic with the
resistivity lower than the critical value ρ* ~
300 μΩcm, which is approximately equal to the resis�
tivity at the mean free path of electrons l about the
interatomic distance, i.e.,

(1)

Here, kF ~ a–1 is the Fermi wavenumber and the fre�
quency �/τ of electron scattering by static defects is
about the Fermi energy TF (temperature is given in
energy units).

The problem of the absence of the Anderson tran�
sition in metallic materials with a high electron con�
centration has three experimental aspects:

(i) measurement of the resistance of these materials
at low temperatures and under the condition of
increased disorder,

(ii) measurement of the temperature dependence
of the resistance of high�resistivity alloys [1],

(iii) measurement of the temperature dependence
of the resistance of alloys with a comparatively low
residual resistivity ρ0, but with a very large electron–
phonon coupling constant, i.e., with the resistance
rapidly increasing with the temperature [2].

This work is devoted to the second of three listed
aspects.

Let the level of disorder be characterized by the
normalized frequency of scattering by static defects 
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According to the Ioffe–Regel criterion, α cannot be
larger than unity. The classical residual resistivity at
α = 1 is ρ0 ≈ ρ*. The value α = 0 corresponds to an
ideal defect�free lattice in which ρ0 = 0.

At α � 1, scattering by disorder is independent of
scattering by phonons and the temperature�dependent
part of the resistivity, which is called the Grüneisen
function (G(T)), is independent of disorder, so that the
total resistivity is ρcl = ρ0 + G(T) (subscript “cl” indi�
cates that interference corrections due to the wave
nature of the electron are ignored in the resistivity).
For convenient comparison with Eq. (1), it is reason�
able to represent G(T) in the form G(T) =
(�/e2)[αph(T)/kF], so that

(3)

At low temperatures T  0, the function αph(T)
behaves as αph(T) ∝ T5 and at T � TD/3 (TD is the
Debye temperature), this function is linear [3]:

(4)

where the numerical coefficient γ depends on the
properties of a particular material. In the temperature
range, where asymptotic expression (4) is valid, αph is
related to the electron–phonon scattering frequency

 through the following formula similar to Eq. (2):

(5)

According to estimates, where the deformation
potential is taken to be D � e2/a and kF = K, where K
is reciprocal lattice vector, γ = 1 [4]. In real metals, γ
can be both smaller and larger unity. The condition
γ � 1 means strong electron–phonon coupling.
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It has been shown that the observed correlation between the resistivity ρ of high�resistivity metallic alloys and
the sign of the temperature derivative of their resistivity can be explained by taking into account the weak
localization effect. This correlation is as follows: the derivative dρ/dT is negative for alloys with resistivity in
the range of 150–300 μΩ cm, which corresponds to the mean free path of electrons about the interatomic
distance; however, this derivative is positive for alloys with lower resistivities (Mooij rule).
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Since the thermal velocity of ions is much lower
than the velocity of electrons vF, static disorder from
lattice defects and phonon�induced dynamic disorder
provide the same action on electrons. For the classical
resistivity given by Eq. (3) to satisfy the Ioffe–Regel
criterion, it is necessary that

In high�resistivity alloys (α � 0.3–0.4), Eq. (3) is
violated because the static and dynamic parts of the
resistivity cease to be independent. The temperature
dependent part of the resistivity becomes much
smaller and even may have the opposite sign. Numer�
ous experimental observations were summarized by
Mooij [1], who formulated the following empirical
rule. The sign of the derivative of the resistivity dρ/dT
of high�resistivity alloys correlates with the resistivity
as follows: dρ/dT > 0 in metallic alloys with the resis�
tivity lower than 100–150 μΩ cm, but dρ/dT < 0 in
alloys with a higher resistivity; i.e.,

(6)

(see also [5, Chapter 1]). This is valid for compara�
tively high temperatures from 20–30 K to room tem�
perature or even higher.

The first attempt to theoretically explain the Mooij
rule was made in [6] using the scaling theory [7] of the
metal–insulator quantum transition. However, this
transition is not observed in these systems and the
assumption that these systems are near this transition
is not convincing. The remark in [8, Sect. 2.5.3] that
the Mooij rule can be attributed to weak localization,
which is responsible for the negative temperature coef�
ficient of resistivity, seems more interesting. The pos�
sibility of explaining empirical dependence (6) by tak�
ing into account weak localization in the simple model
is analyzed in this work developing the remark made
in [8].

For definiteness, let the melting temperature of the
metallic alloy Tmelt and Debye temperature TD satisfy
the relations

(7)

Taking into account asymptotic expression (4), this
means that αph is proportional to T in the interval

(8)

which is of main interest on the (αph, α) plane. Interval
(8) is marked in the figure by two vertical straight seg�
ments. In order to expand this interval, the logarith�
mic scale in the αph axis is taken.

In the region above the lower line α = αph (γ = 1),
scattering by static defects occurs more frequently
than scattering by phonons. In particular, for high�
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Tmelt � TF/10, TD � Tmelt/3.
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resistivity alloys (α > 0.3) in the temperature range
T/TF < 0.1–0.2, the following inequality is valid:

(9)

For this reason, the diffraction of an electron wave on
a random potential field of impurities should occur in
this range up to high temperatures in the case of the
high static scattering frequency τ–1. At α � 1, when
the electron wavefunction is a long wave train and cal�
culations can be performed in the first approximation
of perturbation theory, diffraction results in the weak
localization effect [9–11]. This effect is the appear�
ance of the quantum correction δσ to the conductiv�
ity; this correction is expressed in terms of the diffu�
sion length Lϕ, which is due to scattering by phonons,
as follows:

(10)

Strictly speaking, in the region α ~ 1, it is impossible
to use only the first approximation and Eqs. (10) of
weak localization. However, it is instructive to analyze
how the relative contribution of this first approxima�
tion changes with an increase in α.

The addition of quantum correction (10) to the
classical expression σcl = 1/ρcl for the conductivity of
the three�dimensional medium yields

(11)
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tering. (Three upper lines) Lines along which the temper�
ature derivative of the conductivity is zero, i.e., ∂σ/∂T = 0.
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Here, the quantity αph, which increases monotoni�
cally with the temperature, appears in the denomina�
tor of the first term and the numerator of the second
term. The condition of zero derivative ∂σ/∂αph gives
the equation

(12)

of the line along which this derivative changes sign (the
upper line γ = 1 in figure).

The assumption that γ = 1 means that not only the
lower scale αph, but also the upper scale T/TF can be
used for the corresponding lines in the figure. At γ ≠ 1,
the upper scale should be used and both lines should be
shifted by logγ in the horizontal direction. The weak
localization regime occurs above the corresponding
lower line and, above the corresponding upper line,
the temperature derivative of the conductivity σ' is
positive; i.e., ∂ρ/∂T is negative.

The resulting set of lines indicates that the temper�
ature derivative of the conductivity for any γ value is
positive for α > 0.8; i.e., the contribution from weak
localization dominates, whereas this derivative is neg�
ative for α < 0.5, at least in temperature range (8). This
is the Mooij rule.

Expressions (10) for the diffusion length Lϕ and
quantum correction are written under the assumption
that the time τϕ of the loss of phase coherence in the
electron system is determined by the scattering of
electrons by phonons, i.e., τϕ = τph. Generally speak�
ing, loss of coherence could be due to electron–elec�
tron collisions. However, in diffusion regime (9), the
electron–electron collision frequency τee in the three�
dimensional system is determined by the expression
[11; 5, Sect. 2.4]

(13)

at strong disorder (α ≈ 1), this expression is modified
into the form

(14)

The quantum correction to the conductivity is also
due to the electron–electron interaction [11]. The
inclusion of the electron–electron interaction and the
corresponding Altshuler–Aronov correction can only
shift the α = 0.8 boundary downward. According to
inequality (14), the direct contribution from the elec�

tron–electron interaction frequency  to the classi�
cal resistivity given by Eq. (3) and to the classical con�
ductivity in temperature range (8) of interest can be
neglected. According to the estimates made in [3], the

Altshuler–Aronov quantum correction in three�
dimensional systems is larger than the weak localiza�
tion correction and is often observed in high�resistivity
alloys [12, 13]. This should increase the part of
Eq. (11) with positive derivative σ' > 0.

To summarize, the experimental temperature
dependences of the resistivity of high�resistivity alloys
have been described taking into account quantum cor�
rections obtained in the first approximation of pertur�
bation theory. This may mean that the contribution
from higher orders is small for some reasons in agree�
ment with the absence of the transition from weak
localization to strong localization (Anderson transi�
tion) in these alloys. Localization remains weak; how�

ever, due to a very short mean free path l ~ , weak
localization holds up to high temperatures and is
responsible for the Mooij rule.
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