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In three-dimensional electron systems with a high electron density it is not possible to reach

the Anderson transition neither by increasing disorder nor by a combination of static disorder

with a dynamic one (by high temperature), or by selecting a material with a large deformation

potential and a large constant of electron-phonon interaction. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4775354]

1. Introduction

According to a theory,1 an increase of disorder in three-

dimensional electron systems should lead to a quantum

metal-insulator transition, which is called the Anderson tran-

sition. It occurs at a critical value of the parameter W/J,

where W is an energy range of possible one-electron local-

ized states, J is the overlapping integral between two adja-

cent such states. According to a scaling theory,2 the

transition is continuous, so that when approaching the transi-

tion from the metallic side at T¼ 0 the conductivity r van-

ishes continuously.

The transition procedure is as follows. With increasing

disorder, the mean free path of electrons l is reduced, as well

as the conductivity r¼ ne2l/�hkF. Here, kF is the wave vector

of delocalized electrons at the Fermi level, and n � k3
F is

their concentration. Electronic functions of electrons are

plane waves, and the free path l cannot be smaller than the

wavelength, l � k�1
F . The resistance q reaches at l � k�1

F the

Mott limit

qM ¼ r�1
M ¼

�h

e2
k�1

F ; kFl � 1: (1)

According to modern concepts, upon approaching the

Anderson transition the resistance of electron systems over-

comes the Mott limit ð�h=e2Þk�1
F and keeps increasing. This is

due to the fact that the electron wave functions become mul-

tifractal with singularities at each point.4,5 At the transition

point the resistance becomes infinite, and the conductivity

goes to zero.

Both the original model of Anderson1 and the scaling

theory2 operate on one-electron wave functions, and do not

assume an electron-electron interaction. So, it is perhaps not

surprising that experimental observations of the Anderson tran-

sition have been realized in the first place in doped semicon-

ductors, where electron concentrations are relatively low (see

in Fig. 1 the summary of experimental results from Ref. 3).

2. Low-temperature resistance of many pure metal alloys

Advances in understanding of the localization processes

and a role of disorder in these processes overshadowed, gen-

erally speaking, the known fact that the Anderson transition

is never observed in metals and alloys with a high carrier

concentration. Materials with a carrier concentration n of

about one electron per atom, n � a�3 (a is the interatomic

distance) will be referred to as pure metal alloys or normal

metals. They consist only metal atoms, which give easy their

valence electrons in common use, but, as a rule, do not put

extra electrons to their unfilled shells. Pure metal alloys do

not contain as a component such elements as O, P, Ge, Si,

Bi, etc.

By measuring the resistance q of many different pure

metal alloys at low temperatures, in the presence of the

Anderson transition, there would be observed all possible re-

sistance values up to the highest, typical of insulators. It

turned out that for any achievable level of disorder, these

alloys are metallic with a resistivity of less than some char-

acteristic value q*� 300 lX � cm.

If an usual formula for resistance takes into account the

fact that in the standard metals the Fermi wave vector kF is

of the order of the inverse interatomic distance a�1

q¼ �hkF

ne2l
� �h

e2

a2

l
; (2)

then it appears that the resistivity q* corresponds to the Mott

limit kFl� 1,

q� � �h

e2
a; l � k�1

F � a; (3)

the Mott limit, in terms of energy, means that a frequency of

electron scattering by static defects �h/s reaches the Fermi

energy eF, and the dimensionless parameter

a ¼ �h=seF (4)

approaches unity from below.

The fact that in any pure metal alloys the barrier (3) is

not overcome, seems to mean that the high electron density

prevents from appearing and developing the multifractal

wave functions typical to the transition vicinity.

The continuity of the phase transition “metal-insulator”

is experimentally proved only for doped semiconductors,

and proved even in cases where a control parameter for the

transition is the electron density.6 With an increase of the

electron density, the situation is changing. Fig. 2 shows
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inhomogeneity in the electron system itself), which will not

be discussed here (see Ref. 12, Ch. 7).

This work is supported by a grant of the Russian Minis-

try of Education for scientific and education centers (act

8369).
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results of experiments7 on a disordered mixture of Ar and

Cu atoms, obtained by simultaneous deposition of the atoms

on a cold substrate. By changing the deposition time and the

relative intensity of flow of the Cu and Ar atoms, it was pos-

sible to control a thickness of the film Ar:Cu and a relative

concentration of Cu, and numerous calibration and meas-

uring procedures allowed to determine these quantities with

sufficient accuracy. In many films with a concentration of

Cu close to critical one, the resistivity was found to be either

about 3 � 10�2 X � cm, or at least by seven orders of magni-

tude higher, but never in between. That, and a similar result

in a mixture Ar:Na, shown in Fig. 1, suggests that at

concentrations nc � 1021 cm�3 the conductivity at the metal-

insulator transition turns to zero abruptly. However, this

should be checked on other systems with electron densities

in the range 1020cm�3 � n � 1022cm�3.

Numerous low-temperature resistivity measurements in

three-dimensional electron systems can be summarized as

follows:

— for electron densities n � 1019 � 1020 cm�3 the continu-

ous phase metal-insulator transition takes place in ac-

cordance with the scaling theory2 for non-interacting

electrons under changes in both the level of disorder and

electron concentration;

— with increasing the electron concentration in the region

of 1020–1021 cm�3 at a very high level of disorder (amor-

phous matrix) there is a jump-like transition to a metallic

state;7,8

— pure metal alloys with the electron concentration of

n � 1021 cm�3 remain in a metallic state at any level of

disorder.

3. Temperature dependence of resistance in high-resistance
alloys

Because a velocity of thermal motion of ions, s,

described by phonons, is much less than that of electrons vF,

the electrons do not distinguish the static disorder of lattice

from defects and the dynamic disorder induced by phonons.

Therefore, by increasing the temperature and adding

dynamic disorder to static one, a random potential, in which

electrons are placed can be affected. Hence, the idea is to

take a material with very high residual resistance, i.e., with

the parameter a � 1 close to unity, and to try, by raising the

temperature, to obtain the resistance greater than q*.

Within the framework of a classical theory of the metal

resistance, this idea appears to be as follows. The scattering

on disorder and phonons are considered as independent

(Matthiessen’s rule), so that the total resistance

qcl¼ q0þG(T). The index “cl” indicates that the resistance

does not take into account interference corrections caused

by the wave nature of an electron. The temperature-

dependent part of the resistance, called the Gruneisen func-

tion G(T), can be expressed in terms of electron-phonon

scattering sph, and can be written as

GðTÞ ¼ m

ne2sph

¼ �h

e2

aphðTÞ
kF

; aph ¼ �h=spheF; (5)

so that

qclðTÞ ¼ q0 þ GðTÞ ¼ �h

e2

1

kF
ðaþ aphðTÞÞ � q�ðaþ aphðTÞÞ:

(6)

At low temperatures T! 0 the function aph(T) / T5, and at

T � TD=3 (TD is the Debye temperature) it approaches the

asymptote9

aphðTÞ ! cT=eF; (7)

where the numerical coefficient c depends on properties of a

particular material.

Using a literal notation, in particular, putting the defor-

mation potential D ’ e2=a; and setting the kF equal to the

reciprocal-lattice vector K, it turns out that the factor c¼ 1.10

In real metals, it usually remains of the order of unity,
FIG. 2. The resistance at around 4 K of a mixture copper-argon, deposited

on a cold substrate, depending on the composition of the mixture.7

FIG. 1. Transitions metal-insulator in 15 different metals.3
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although it can sometimes be either less or greater than one.

Therefore, from Eq. (7) it is seen that at normal values of

c � 10 and temperatures, below the melting point, the value

of aph does not exceed 0.1–0.01. The condition c� 10 indi-

cates a strong electron-phonon coupling.

It seems as if Eqs. (6) and (7) admit the possibility that

with increasing the temperature the resistance q may become

higher than q*. However, in high-resistance alloys a � 0:3�
0:4 relation (6) is violated in the sense that the static and

dynamic part of the resistance are no longer independent.

The part of the resistance, which depends on temperature,

becomes much smaller and may even be of opposite sign. A

number of experimental observations were summarized in

Ref. 11 by Mooij, who formulated a rule of thumb. The sign

of derivative of the resistivity dq/dT in high-resistance alloys

correlates with a value of the resistance: dq/dT> 0 in metal-

lic alloys with the resistance lower than 100–150 lX � cm,

but dq/dT< 0 in alloys with higher resistance:

dq=dT > 0 at q <
dq=dT < 0 at q >

�
100-150 lX � cm (8)

(see also Ref. 12, Ch. 1). This is in the case of relatively

high temperatures, from 20 to 30 K to room temperature and

even higher.

The first attempt to explain the Mooij rule theoretically

was made in Ref. 13 using the scaling theory2 of the quantum

metal–insulator transition. However, the problem is that in

these systems the transition is just not observed, so the

assumption that we are in its vicinity, is not very convincing.

Of more interest is the note in the book Ref. 14 (section 2.5.3)

that the Mooij rule may be due to weak localization, which

results in a negative temperature coefficient of resistance. In

the development of this notice in the present paper, the

possibility of explaining the empirical laws (8) is studied by

considering an effect of weak localization in a simple model.

We are interested in highly disordered alloys with values

of a in the range of 0:2 � a 	 1: As can be seen from Eq.

(7), for these alloys up to room and even higher tempera-

tures, the inequality is fulfilled

a� aphðTÞ: (9)

The dimensionless frequency of electron-electron collisions

aee¼ �h/seeeF¼ (T/eF)2, which also lead to the loss of phase

coherence, is far less than aph. This means that due to the

large a in these alloys up to room temperatures there remains

a coherent diffusion mode, in which there should take place

the diffraction of an electron wave on a random potential

field of impurities. For a
 1, when the electron wave func-

tion is a long wave train and for calculation, one can restrict

to the first approximation of perturbation theory, the result of

diffraction is weak localization.15–17 The effect is an appear-

ance of the quantum correction dr to the conductivity,

expressed through the diffusion length Lu, determined by

scattering on phonons:

dr ¼ e2

�h

1

Lu
¼ e2

�h
kFðaaphÞ1=2; Lu ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
sph=s

q
: (10)

Strictly speaking, in the region of interest a� 1, it is not

allowed to restrict to the first approximation and to use the

formulas of weak localization.16,17 However it is very in-

structive to see how a relative contribution of this first

approximation changes with increasing a.

It should be noted that this, not quite correct extension

of applicability of quantum corrections to finding the qualita-

tive features of transport properties is used quite often. For

example, by doing so, one can determine a form of the tem-

perature dependence of conductivity in the critical region

near the metal-insulator transition or a position of the cross-

over from the logarithmic temperature dependence of two-

dimensional electron systems to exponential one.

By adding to the classical expression for conductivity of

three-dimensional medium rcl¼ 1/qcl the expression for the

quantum correction (10), we obtain

r ¼ rcl þ dr ¼ e2

�h
kF

1

aþ aph

þ ðaaphÞ1=2

� �
: (11)

In expression (11) for the conductivity, the monotonically

increasing with temperature value of aph in the first of the

two terms is included in the denominator, and in the second

in the numerator. Equating to zero the derivative @r/@aph,

we obtain the equation

aþ aph ¼
ffiffiffi
2
p
ðaph=aÞ1=4

(12)

for a line along which this derivative changes the sign (see

Fig. 3). Above this line, the derivative @r/@aph and, as con-

sequence, the derivative @r/@T are positive, below they are

negative. Specifically, it appears that for a> 0.7 at all physi-

cally relevant temperatures (room and lower) an increase in

the temperature leads to a decrease in the resistance.

Thus, the experimental temperature dependencies of re-

sistance of high-resistance alloys can be described using

quantum corrections obtained in the first order perturbation

theory. The localization remains weak, but thanks to a very

small elastic mean free path l � k�1
F , persists up to high tem-

peratures, leading to the Mooij rule.

4. Materials with a large constant of electron-phonon
interaction

If in a pure metallic material the electron-phonon inter-

action is strong, the coefficient c in Eq. (7) can appear to be

FIG. 3. A sign of the derivative @r/@T depending on values of the parame-

ters a and aph.
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c � 20. Suppose, for example, c� 25, and the Fermi energy

eF� 104 K. Then, at about 400 K, the dimensionless fre-

quency of electron-phonon collisions, aph, according to Eqs.

(5) and (7), will be of order unity. Therefore, even for a

small residual resistance, a 
 1, the total resistance can

reach q*.

However, an experiment does not support this assump-

tion. As can be seen in Fig. 4, where the curves q(T) for sev-

eral materials are shown, when approaching q* the

resistance stops following the Gr€uneisen function and

instead of a linear growth there is a tendency to saturation.

In single crystals with anisotropic resistance this tendency

manifests first for the current directions, corresponding to a

rapid increase in resistance with temperature (Figs. 4(b) and

4(c)), so that when temperature increases an isotropization

of the resistance takes place.

Phenomenologically, the experimentally observed

curves q(T) can be described18 with the concept of shunt re-

sistance qsh, assuming that

qðTÞ ¼ ½qclðTÞ�1 þ q�1
sh �
�1: (13)

Equation (13), corresponding to a scheme of two parallel

resistances, is typical for electronic systems with several

groups of carriers. In systems with a single group of carriers,

a contribution of different scattering processes is usually

described by the scheme of series resistances. However, in

such systems, one can come to formula (13) by introducing

some correlations of scattering events. For example, suppose

that between scattering events there must pass the minimum

time s0, then all restrictions are removed and everything pro-

ceeds as usual.21 If the moment of the first scattering event is

t¼ 0, then the probability of the next event is assumed to be

p ¼
�

0; t < s0;
1=s; t > s0:

Then, in the standard formula for the conductivity

r¼ ne2s/m, written through s and the effective mass m,

instead of s as the average time between collisions there will

be s þ s0. Hence, expression (13) is obtained with

qsh ’
�h

e2

a0ðTÞ
kF

; a0 ¼
�h

s0

eF: (14)

The assumption of the existence of time s0, as applied to

scattering by phonons, means the finiteness of the time of

emission or absorption of a phonon by an electron, which

would limit the frequency �h/sph from above by the value �h/s0.

To estimate qualitatively a possible value of s0 it should be

assumed that this is the time during which the electron and

phonon are shifted with respect to each other by the phonon

wavelength k. Assuming k� a, we obtain the estimate

s0 � a=�F � �h=eF; (15)

so that

a0 � 1 and qsh � q�: (16)

We emphasize that the assumption that the time of inter-

action between an electron and a phonon is purely qualita-

tive, and Eqs. (15) and (16) do not have a rigorous

theoretical basis.

5. Conclusion

Results of the performed analysis are convenient to

formulate using the right side of Eq. (6). In the first sec-

tion of the article it is talked about trying to find a pure

metal alloy, in which the static disorder would make the

resistance q> q*, i.e. a> 1. However, none of the systems

with high electron density could be transformed by disor-

der into a state with multifractal wave functions. In Sec. 3

there are discussed efforts to achieve the same effect by

increasing the sum a þ aph due to the mutual effect of dis-

order and temperature. The way appeared to be blocked by

an effect of weak localization (the Mooij rule). Finally, in

the described in Sec. 4 experiments with materials with a

large constant of electron-phonon interaction it was

revealed that with increasing temperature, there occur a

deviation from the Gruneisen functions and a saturation of

the function aph ! 1.

All this does not apply to quasicrystalline alloys, which

are also purely metallic, but behave quite peculiar. In a max-

imally disordered amorphous state their residual resistance is

less than q*; after settling the quasicrystalline symmetry the

resistance grows and becomes larger than q* (in quasicrys-

tals Al70Pd22.5Re7.5 with proper heat treatment the conduc-

tivity even turns to zero, i.e. there is the Anderson transition

observed22), and then after the crystallization and the onset

of the translational symmetry the resistance falls again and

sets at a level much lower than q*. However, such a behavior

can be explained by special factors (the appearance of

FIG. 4. The saturation of the resistance in materials with strong electron-phonon interaction: alloys Nb3Sb and Nb3Sn (Ref. 18) (a); a single crystal of Y with

an anisotropic resistance (Ref. 19) (b); a single crystal of WO2 with an anisotropic resistance and a somewhat smaller electron density (Ref. 20) (c).
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