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Tunable non-equilibrium Luttinger liquid based on counter-propagating edge channels
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We investigate energy transfer between counter-propagating quantum Hall edge channels (ECs)
in a two-dimensional electron system at filling factor ν = 1. The ECs are separated by a thin
impenetrable potential barrier and Coulomb coupled, thereby constituting a quasi one-dimensional
analogue of a spinless Luttinger liquid (LL). We drive one, say hot, EC far from thermal equilibrium
and measure the energy transfer rate P into the second, cold, EC using a quantum point contact
as a bolometer. The dependence of P on the drive bias indicates breakdown of the momentum
conservation, whereas P is almost independent on the length of the region where the ECs interact.
Interpreting our results in terms of plasmons (collective density excitations), we find that the energy
transfer between the ECs occurs via plasmon backscattering at the boundaries of the LL. The
backscattering probability is determined by the LL interaction parameter and can be tuned by
changing the width of the electrostatic potential barrier between the ECs.

One-dimensional electronic systems (1DESs) are col-
lective in nature. As first shown by Tomonaga1, an inter-
acting 1DES near its ground state can be modeled with
the help of a bosonization technique. Later on Luttinger2

introduced an exactly soluble3 model for two species of
fermions (left and right movers) with an infinite linear
dispersion, referred to as a Luttinger liquid (LL). The
excitations of a spinless LL can be described as non-
interacting plasmons, bosonic collective fluctuations of
the electron density4. The plasmon’s lack of interaction
gives rise to the counterintuitive prediction that an ex-
cited ideal LL should never thermalize.

The strength of the LL model fully manifests it-
self out of equilibrium, where it still offers a single-
particle description of the kinetics of a strongly corre-
lated 1DES. In the presence of disorder, energy relax-
ation is then described as elastic plasmon scattering off
inhomogeneities5,6. This has not yet been confirmed ex-
perimentally. Instead, for two tunnel-coupled quantum
wires far from equilibrium deviations from the LL model
were observed7. The main problem seems to be disorder,
which gives rise to thermalization on the length scale of
the mean free path6. Signatures of disordered LLs, such
as a powerlaw dependence of the conductance on temper-
ature or bias, have been observed in various 1DESs8–10.
However, the design of experiments far from equilibrium
remains complicated because of small mean free paths of
no more than a few micrometers in such devices11.

Here we apply a strong magnetic field perpendicular
to the 2DES of a GaAs/AlGaAs heterostructure and re-
alize a tunable LL based on ECs at integer filling factor
ν = 1. Related to their chiral nature, ECs offer the
fundamental advantage of suppressed back-scattering of
electrons12. Yet, contrary to the chiral-LLs in fractional

quantum Hall regime13, a single EC at ν = 1 behaves
as a perfect one-dimensional Fermi liquid14,15. To still
create a spinless LL we bring two counter-propagating
ECs into interaction, providing left and right movers ac-
cording to the original proposal by Luttinger. Here we
follow Ref.16, where a direct analogy between such a sys-
tem and the LL model has been demonstrated. Unlike
in experiments on tunneling in cleaved edge overgrown17

and corner-overgrown18 structures, we block the charge
current between the ECs and study the energy transfer
between the left and right movers in this hand-made LL.
Besides much weaker disorder this system has a second
important advantage, namely the possibility of individual
control over left versus right movers.

Our counter-propagating ECs are separated by a bar-
rier impenetrable for electrons, marked by C in Fig. 1a. It
is created electrostatically by applying a negative voltage
VC to the metallic center gate (C in Fig. 1b). Varying VC

allows to tune the width of the barrier and the strength of
the Coulomb coupling between the ECs. Other gates (1
through 8 in Fig. 1b) have two purposes: first, they can
be used to control the length of the interaction region (L)
by guiding the ECs away from the center barrier. Their
second purpose is to define QPCs. We create a nonequi-
librium electronic distribution in one, say hot, EC by
partitioning the electrons at a drive QPC19,20 (DRIVE
circuit in Fig. 1a). Based on this technique, energy re-
laxation between co-propagating ECs was already inves-
tigated at ν = 2 with a quantum dot as detector20,21

and in the fractional quantum Hall regime by observa-
tion of complex edge reconstruction effects22. We use
a second QPC, defined in the counter-propagating EC
(DETECTOR circuit in Fig. 1a), to detect the excess
energy transferred from the hot EC. This setup allows us
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FIG. 1. Experimental layout. (a) – Gated areas of the 2DES
are shown in grey and the ECs are shown by solid lines with
arrows. In the drive circuit we create a nonequilibrium parti-
cle distribution in a hot EC by use of a partially transparent
drive QPC biased with a voltage VDRIV E. The hot EC prop-
agates along the central barrier (C), reaches the interaction
region of length L and heats a counter-propagating cold EC
in the detector circuit (winding arrows). The nonequilibrium
distribution in the cold EC is characterized with the help of
the detector QPC. (b) – Electron micrograph of the sample
identical to the one used in experiment. The central gate (C)
and a number of side gates used to define constrictions have
a grey color. The EC chirality is the same as in (a), see white
arrow.

to create a perfect LL model system out of equilibrium
and to study the energy flux between the left and right
movers (red winding arrows in Fig. 1a).

Our samples are based on a 200 nm deep 2DES of
a GaAs/AlGaAs heterostructure with electron density
9.3×1010 cm−2 and mobility 4×106 cm2/Vs. The metal-
lic gates are obtained by thermal evaporation of 3 nm Ti
and 30 nm Au. The experiments are performed in a
3He/4He dilution refrigerator in a magnetic field of 3.8 T
at 60 and 90 mK. Current measurements are performed
using home-made I−V converters with input offset volt-
age ≤ 10µV. In bolometric experiments, the detector
QPC conductance is measured with a 5µV rms ac mod-
ulation (11-33 Hz). For thermoelectric measurements we
use a fixed ac modulation (11-33 Hz) and measure the
derivative dIDET /dVDRIV E as a function of the dc bias
VDRIV E , which is numerically integrated to give IDET .
The modulation is 5µV rms at |VDRIV E | ≤ 300µV, and
30µV rms otherwise. Throughout the paper the drive
QPCs conductance is ≈ 0.3e2/h, corresponding to a per-
fectly linear I-V . Hence, the excitation is the same
for both polarities of VDRIV E , explaining almost perfect
symmetry of the data in figs. 2 and 3 below.
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FIG. 2. QPC as a bolometer. (a) – Bolometric response
δGDET versus VDRIV E (dots). The detector QPC is defined
by the gate 2 and the drive QPC with the gate 5, L = 5.2µm.
The energy transfer rate P is shown on right axis scale. Ver-
tical scale bar corresponds to δTeff = 10 mK. The dashed
line is a fit to the model of boundary plasmon scattering with
parameters ε0 = 80µeV, K ≈ 1.12. The data were taken at
VC = −0.6 V and T = 60 mK. (b) – P (left axis) and δTeff

(right axis) as a function of VDRIVE for various values of L
(see legend). The detector QPC is defined with gate 2 (closed
symbols) or gate 3 (open symbols). The drive QPC is placed
about 40 µm upstream of the interaction region (not shown
in Fig. 1b). For this data, the electrostatic contribution was
subtracted26. δGDET and P are considerably smaller than in
fig. 2a, because of the hot EC cooling down on the way to the
interaction region23. The data were taken at VC = −0.385 V
and T = 90 mK.

The linear response conductance of a QPC, G =
Tr × e2/h, is proportional to its transparency Tr, the
probability for an electron to be transmitted through the
QPC. The energy dependence of Tr can be used to con-
vert a thermal gradient into an electric current23–25. Here
we demonstrate a simpler and quantitative approach and
use a QPC as a bolometer. In leading order δGDET is
proportional to the excess energy fluxes δFL and δFR im-
pinging on it, respectively, from the left and right, and
the second energy derivative of Tr:

δGDET = e2
∂2TrDET

∂E2

δFR + δFL

2
. (1)
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In the measurements discussed below we use either gate
2 or gate 3 (Fig. 1b) to define our detector QPC at
TrDET ≃ 0.1.
In Fig. 2a we present a typical bolometer measurement

of δGDET versus VDRIV E . δGDET is parabolic at small
|VDRIV E | and close to linear for |VDRIV E | & 100µV.
δGDET (VDRIV E) is nearly symmetric in respect to the
origin, indicating that the excess energy in the hot EC is
independent of the sign of VDRIV E . Similar results are
obtained when the drive QPC is placed 40 µm upstream
of the interaction region, see Fig. 2b. We verified that
our bolometer indeed probes the energy transfer rate (P )
between the ECs within the interaction region. Corre-
sponding experiments and the derivation of formula (1)
are presented in the Supplemental Material.
We calibrate the bolometer by measuring the T -

dependence ∂GDET /∂T in equilibrium and extracting
∂2TrDET /∂E

2. These two quantities are related via
eq. (1) and a standard expression for the energy flux
in equilibrium, FR = FL = π2(kBT )

2/6h21. So ob-
tained P is given on the right/left axes in figs 2a
and 2b, respectively. P is in the fW range, mean-
ing that just a tiny fraction (∼ 10−4) of the excess
energy of the hot EC is absorbed in the cold EC. It
is tempting to determine an effective excess tempera-
ture δTeff in the cold EC. For small changes one finds
δTeff = 2δGDET /(∂GDET /∂T ) ≪ T . Here the factor of
2 accounts for the fact that in our experiment δFL = P
and δFR = 0. δTeff is quantified in Figs. 2a (bar) and 2b
(right axis).
Non-zero δTeff in the cold EC generates a thermo-

electric current (IDET ) across the detector QPC. In
Fig. 3, IDET is plotted against VDRIV E for two choices of
L. This data closely resembles the bolometric response
shown in Fig. 2, which is a general feature of our mea-
surements. The connection between the two experiments
becomes evident in the inset of Fig. 3. The thermoelectric
voltage, defined as VDET ≡ IDET /GDET , is proportional
to δTeff measured using the bolometer. The Seebeck
coefficient of the detector QPC S = δVDET /δTeff ≈
13µV/K is comparable to previous measurements24,25.
It is independent of the sign of VDRIV E and the choice
of the drive QPC, as expected. The meaningful value
of S indicates that the cold EC is close to local thermal
equilibrium and justifies our bolometric approach.
Observation of P ∝ VDRIV E points at a breakdown of

the momentum conservation for the energy exchange be-
tween counter-propagating ECs28. For a deeper analysis
we use the kinetic equation approach5 and express P in
an inhomogeneous LL as

P =
1

h

∫

εfHOT (ε)Rεdε , (2)

where Rε is the energy dependent backscattering proba-
bility of plasmons and fHOT (ε) is their occupation num-
ber in the hot EC. In the limit of |eVDRIV E | ≫ kBT, ε
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FIG. 3. Thermoelectric measurements. IDET across the de-
tector QPC 2 excited with the help of the drive QPC 8,
L = 3µm. The sign of IDET corresponds to injection of
nonequilibrium electrons across the detector QPC, similar to
the case of small magnetic fields27. The effect is reduced when
gate 1 is closed and the interaction region is isolated from the
detector QPC, L = 0 (Fig. 1b). Inset: Proportionality of
VDET and δTeff in the detector EC measured with the drive
QPCs 5 (closed dots) and 6 (open squares) and detector QPC
2, L = 5.2µm. All the data corresponds to VC = −0.6 V and
T = 60 mK.

we can assume fHOT (ε) ∝ |eVDRIV E |/ε. Hence P ∝
|VDRIV E | indicates that backscattering is suppressed at
high ε. Such a behavior is expected in a random disorder
model with a finite correlation length lcorr

29. The disor-
der potential absorbs momenta up to ~l−1

corr and enables
transfer of energy quanta up to ε0 ∼ ~ul−1

corr, where u is
the plasmon velocity30. With the magneto-plasmon ve-
locity at ν = 1 estimated to be u ∼ 107cm/s31 and with
ε0 ∼ 80µeV determined from the onset of the linear slope
of P (VDRIV E) in Fig. 2a, we find lcorr ∼ 1 µm for our
device.

We gain more insights about plasmon scattering by
studying P in dependence on the ECs interaction length
L. Using a fixed drive QPC (40 µm upstream of the
interaction region) we vary L in the range 0-6.3 µm by
bending the hot EC with gates 6, 7 or 8 (see Fig. 1b).
As shown in Fig. 2b P stays constant as L is increased
between 2.2 and 6.3µm. Obviously, this is inconsistent
with random disorder scattering, for which Rε ∝ L29.
Moreover, the heretical conclusion that part of the inter-
action region might be broken and would therefore not
contribute to scattering is disproved in Fig. 3. Instead,
the independence of P on L indicates boundary scatter-
ing of plasmons at the entrance and exit of the interaction
region as dominant energy transfer mechanism. As seen
from fig. 2b, P depends on L only for small L . lcorr,
which can be qualitatively explained by an overlap of the
two boundaries and a sufficiently long-ranged interaction
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FIG. 4. Tuning the interaction. P against VC (Fig. 1b) for
fixed VDRIVE = −0.4 mV and T = 90 mK. Gates 2/8 define
the detector/drive QPCs, L = 3µm. From the left to the
right, the ECs separation d reduces and K is detuned from
its noninteracting value 1 (see a scale on the right). d obtained
from a solution of the electrostatic problem is shown on the
upper abscissae (see Supplemental Material for the details).
The dashed line is a fit with parameters vF = 1.2 × 107cm/s
and lbound = 770nm, see text.

between the ECs (finite signal at L = 0, see also fig. 3).

The boundary scattering is related to the change of
the plasmon velocity in the interaction region, where it
is renormalized as u = vF /K. Here vF is the Fermi
velocity in the isolated EC and K ≥ 1 is a dimensionless
LL interaction constant5. Note that this process is a
plasmon counterpart of a charge fractionalization at the
LL boundary32. At small energies the scattering obeys
the Fresnel law Rε = [(1 −K)/(1 +K)]2. If K varies
smoothly across the length-scale lbound, the reflection is
suppressed for ε & ε0 = ~ul−1

bound, where lbound ∼ 1µm
replaces lcorr considered above.

An independent indication for boundary scattering is
the observed P ∝ V 2

DRIV E at weak driving |eVDRIV E | .
ε0, see Fig. 2. This is expected for boundary scattering at
ε < ε0, as Rε is constant in this case. In contrast, for dis-
order scattering29 Rε ∝ ε2 for ε < ε0, which would result
in P ∝ V 4

DRIV E , similar to a perturbative calculation28.

The dashed line in Fig. 2a is a model curve based
on Eq. (2) assuming boundary scattering of plasmons.
The only fit-parameters are ε0 = 80µeV, which sets
the crossover from parabolic to linear P (VDRIV E), and
K = 1.12. The interaction strength |1 − K| can be di-
rectly tuned by VC . As shown in Fig. 4 for the case
of |eVDRIV E | ≫ ε0, P sharply increases in the range
−0.8V< VC < −0.4V, corresponding to 0.1 < |1−K| .
0.25.

At our largest interaction u ≈ 0.75vF , which corre-
sponds to a dimensionless LL conductance of g ≈ 0.5.
This is close to values reported in genuine 1DESs7–9. We

finally note that the electrostatic width of the central bar-
rier is d ≃ 300 nm (see upper axis of Fig. 4), comparable
to the depth of the 2DES and the width of the gate C.
Our experiments are in the regime d < lbound, for which
the interaction is dominated by Coulomb coupling28. We
obtain a reasonable agreement (dashed line in Fig. 4)
evaluating the interaction as4 K = [1−(g2/2π~vF )

2]−1/2,
where g2 = 2e2K0(qd)/k is a matrix element of the
Coulomb interaction at a wave vector q = l−1

bound, K0

is the Bessel function and k ≈ 12.5 is the dielectric con-
stant34.

In summary, we studied the LL model out of thermal
equilibrium based on counter-propagating quantum Hall
ECs. The energy transfer between the ECs is consistent
with elastic backscattering of collective density excita-
tions at the boundaries of this hand-made LL. Counter-
propagating quantum Hall ECs are a perfect candidate
for refined tests of the LL theory, a first example being
presented here.
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BOLOMETRIC RESPONSE OF A QPC

Here we derive an expression for a linear response con-
ductance of a quantum point contact (QPC) in a weakly
non-equilibrium non-interacting spinless 1D electron sys-
tem (1DES). The (nonequilibrium) distribution functions
of the carriers in the right/left edge channels incident on
the QPC are denoted, respectively, as fR and fL. The
corresponding chemical potentials are determined from
the conservation of the particle number:

µR,L ≡

∫

∞

0

fR,L(E)dE = µ0 ± eV/2, (1)

where E is the energy, µ0 is the chemical potential at
equilibrium, e is the elementary charge and V is the bias
voltage across the QPC. The dispersion relation is lin-
earized near the Fermi surface, which gives rise to the
energy independent density of states. The net current
through the QPC is determined by the energy-dependent
QPC transparency Tr(E):

I =
e

h

∫

∞

0

Tr(E)(fR − fL)dE, (2)

which can be differentiated in respect to V to give the
conductance:

G ≡
∂I

∂V
=

e

h

∫

∞

0

Tr(E)

(

∂fR
∂V

−
∂fL
∂V

)

dE =

=
−e2

2h

∫

∞

0

Tr(E)

(

∂fR
∂E

+
∂fL
∂E

)

dE, (3)

where we used the linear response relation ∂fR,L/∂V =
±e/2∂fR,L/∂E|V=0, which follows from the fact that
the bias voltage doesn’t affect the distribution func-
tions apart from shifting µR and µL. Eq. (3) simplifies
close to equilibrium, where the distributions fR,L differ
from 0/1 only within a narrow energy window. In this
case the transparency Tr is almost constant and we ac-
count for its energy-dependence up to the second order
Tr = Tr0 + Tr′ǫ + Tr′′ε2/2. Here, ε ≡ E − µ0 and
Tr0, T r′, T r′′ are, respectively, the transparency and its
first and second derivatives at E = µ0. In these notations
eq. (3) reduces to:

G = G0 +G1 +G2 (4)

where we used three identities:

G0 = −
e2

h
Tr0

∫

∞

−µ0

∂f

∂ε
dε =

e2

h
Tr0

G1 = −
e2

h
Tr′

∫

∞

−µ0

ε
∂f

∂ε
dε = 0

G2 = −
e2

2h
Tr′′

∫

∞

−µ0

ε2
∂f

∂ε
dε =

=
e2

h
Tr′′

(
∫

εfdε− µ2
0/2

)

= e2Tr′′(F − F0),

with f =
fL + fR

2
andF =

FL + FR

2

which follow from the properties of the Fermi distribution
function and eq. (1). Here FR and FL is a total energy
flux in the two edge channels (ECs) and F0 is its value
at a zero temperature (T = 0). Note that in equilibrium
F eq
R,L = π2(kBT )

2/6h so that the term G2 in eq. (4) ac-
counts also for the T -dependence of G. Summarizing, we
find for a deviation of the conductance caused by heating
of the ECs incident on the QPC:

δG = δG2 = e2Tr′′ ×
δFR + δFL

2
, (5)

where δFR,L are the excess energy fluxes carried by corre-
sponding ECs in respect to F eq

R,L at a given T . Similarly,
at V = 0 one obtains in the first order in ε an expression
for thermoelectric current from eq. (2):

Itherm = eT r′ × (δFR − δFL) . (6)

Equations (5) and (6) express the bolometric and the
thermoelectric responses of a QPC out of equilibrium
in terms of the energy dependence of its transparency.
As explained in the main paper, from these expressions
one can calibrate the bolometric response via a conduc-
tance temperature dependence and, likewise, evaluate
a Seebeck coefficient (thermopower). The latter is de-
fined as S = Vtherm/δTeff , where Vtherm ≡ IthermG−1

is the thermoelectric voltage and δTeff ≡ 3h(δFR −

http://arxiv.org/abs/1312.5819v2
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δFL)/(π
2k2BT ) ≪ T is the effective temperature gradi-

ent.
The nearly perfect proportionality Vthermo ∝ δTeff

observed in fig. 3 of the main paper is in agreement
with Eqs. (5)and (6) provided δFL ≡ 0, i.e. when
one of the ECs remains at equilibrium. Yet the eval-
uated energy tarnsfer rate P = δFR depends on the
detector QPC transparency. At moderate excitations
|VDRIV E | ≤ 0.5mV, see Fig. 1b, the P varies by at most a
factor of ∼ 2 in the range 0.06 < Tr0 < 0.6 (see the data
points in Fig. 1a). This uncertainty is still acceptable in
light of the vast variation of the bolometric sensitivity
by a factor of ∼ 20 for the same data. Summarizing the
above, the lowest order approximations provide a consis-
tent description of the experiment and permit a reliable
estimate of the excess energy flux in the detector EC.

Note, that in our derivation we assumed that the
width of the nonequilibrium distribution is small com-
pared to the characteristic scale Ω of the energy de-
pendence Tr(E) in the detector QPC. This is straight-
forward to verify. Close to pinch-off, the dependence
is close to the exponential1 Tr ∝ exp(−E/Ω), so that
Tr′ ≈ Tr0/Ω. In our experiment, S ≈ 13µV/K (see
the inset of fig. 3 of the main paper), which gives an
estimate Ω = π2k2BT/3eS ∼ 100µeV from eq. (6). On
one hand Ω ≫ T, δTeff , while on the other hand Ω is the
same order of magnitude as the bandwidth ε0 ≈ 80µeV of
the energy relaxation (see the main paper). That is, the
derivation would perfectly hold if the electrons in the cold
EC were at a local equilibrium with an effective excess
temperature δTeff ∼ 50 mK (scale bar in Fig. 1b). And
break down in the opposite case. Apparently, the experi-
mental results point to a (partial) carrier thermalization,
which is not surprising in view of strong dephasing in
Fabri-Perot2 and ν = 1 Mach-Zender interferometers3 at
small excitation energies.

PROOF OF THE INTER-EC ENERGY

TRANSFER

In this section we present test experiments that prove
inter-EC energy transfer as the origin of the bolomet-
ric signal in the detector-QPC. First of all we discrimi-
nate the bolometric signal from a spurious electrostatic
coupling effect. The experimental scheme is depicted in
fig. 3c2. We measure the change of the detector conduc-
tance δGDET as a function of the bias VDRIV E applied
in the drive circuit. For a partially transparent drive-
QPC (black squares in fig. 2a), the signal δGDET > 0 is
a factor of 2 asymmetric in respect to bias reversal and
corresponds to a temperature increase. For a fully open
drive-QPC (blue triangle in fig. 2a), however, the signal
is fully antisymmetric, which is a result of electrostatic
coupling between the detector-QPC constriction and hot-
EC in the drive circuit (gating). Within the linear ap-

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
0

1

2

(a)

 

 

G
D

ET
 (e

2 /h
)

V
g
(V)

B=0

-1.0 -0.8 -0.6 -0.4
0
1
2
3
4

 

 

G
 D

ET
(2

e2 /h
)

V
g
(V)

 

 

P 
(f

W
)

V
DRIVE

(mV)

(b)

T
eff

=10 mK

FIG. 1. Varying the transparency of the detector QPC. (a) –
A typical gate voltage dependence of the detector-QPC con-
ductance at nu = 1 (body) and in zero magnetic field (inset)
with a series resistance subtracted. (b) – Measured energy
transfer rate P as a function of the excitation bias in the hot
EC. Different symbols correspond to different transparencies
in the range 0.06 < Tr0 < 0.6, see the data points in (a). The
data are taken for a detector QPC 2 and drive QPC 8, see
fig. 1b of the main paper. The scale of P corresponding to
the excess temperature of 10 mK is given by the vertical bar.

proximation δGDET ∝ φ, where φ is the electrostatic po-
tential of the hot-EC. It’s straightforward to show that
φ = IDRIV E × (h/e2 +Rcont), where IDRIV E is the cur-
rent measured in the drive-circuit and Rcont ∼ 1 kΩ is the
resistance of the ohmic contact which connects the hot-
EC and the I − V converter (see the sketch of fig. 3c2).
The dependencies IDRIV E vs VDRIV E measured in an
open and partially transparent drive-QPC are plotted
fig. 2b as blue triangles and black squares, respectively.
The slope ratio is ≈ 2.3 which allows to correct the bolo-
metric data of fig. 2a for the gating effect (both effects
are small, hence additive). As a result, the asymmet-
ric curve (black squares) is transformed into the almost
symmetric one (red squares). Such a procedure to sub-
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FIG. 2. Electrostatic contribution to the detector conduc-
tance. (a) – Measured variation of the detector conductance
as a function of the excitation bias in the drive circuit in
case of open (blue triangles) and partially transparent (black
squares) drive-QPC. The latter data after correction for the
electrostatic contribution are shown by red squares. The de-
tector is defined with gate 2, see fig. 1b of the main paper,
and the sketch of the experiment is depicted in fig. 3c2. (b)
– The I-V characteristics of the drive-QPC measured simul-
taneously with the data of (a).

tract the gating contribution was performed below where
necessary.

The following experiments verify that the bolomet-
ric signal comes from the interaction between the ECs
counter propagating along the narrow segment of the
central gate (interaction region). As seen from fig. 3a,
when we choose the drive-QPC such that the interaction
region is upstream of it (fig. 3c3), no detector response is
observed (black squares). This is a result of chirality of
the heat propagation in quantum Hall regime4. Alterna-
tively, one can suppress the bolometric signal by reducing
the interaction length to L = 0 via a proper gating, see
black squares in fig. 3b and a sketch (c4). We believe,
that a residual signal in this case is a result of long range
Coulomb interaction between the cold-EC and the hot-
EC, see also fig. 3 of the main paper. On the other hand,
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FIG. 3. Verification of the origin of the bolometric signal.
(a), (b) – Change of the detector conductance as a function
of the excitation bias after accounting for the electrostatic
contribution. The legends correspond to the experimental
schemes depicted in (c1), (c2), (c3) and (c4). The values of
the interaction length L are given in the legends.

the full bolometric signal is restored when the hot-EC
and the cold-EC are allowed to interact over a few mi-
crons interaction region, see red squares in figs. 3a and 3b
and, respectively, the sketches (c1) and (c2). This is a
clear demonstration that the concept of nonequilibrium
interaction between the counterpropagating ECs is fully
consistent with our experiment.

ENERGY RELAXATION ON PLASMON

LANGUAGE

Energy transfer between two counterpropagating ECs
in quantum Hall regime at ν = 1 is convenient to describe
within a concept of spinless Luttinger liquid (Ll). As dis-
cussed in the main paper, the elementary excitations in
such a system are bosonic density excitation — plasmons.
Following Ref.5, consider a finite Ll connected to semi-
infinite Fermi-liquids on both sides. This geometry is
analogous to a system of counter-propagating ECs with
a nonzero inter-EC interaction within the interaction re-
gion. Outside the interaction region the plasmon distri-
bution function is conserved. The incoming plasmon dis-
tributions Bin

R , Bin
L are obtained, respectively, from the
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right/left moving particle-hole distribution in the Fermi
liquid leads5:

Bin
R,L(ε) =

1

ε

∫

n(E) [2− n(E − ε)− n(E + ε)] dE,

where ε is the plasmon energy and n(E) is the incom-
ing distribution function of the right/left moving elec-
trons with the energy E. This expression is a sum of
the form-factors for creation and annihilation of electron-
hole pairs. Note, that the eq. (5) of Ref.5 is different
by a factor of 2, which we believe to be a misprint. In
our experiment, the nonequilibrium (double-step) elec-
tronic distribution is created by a QPC in one (say,
right moving) EC. As follows from the above equation
Bin

R (ε) = 1+2Tr(1−Tr)(eVDRIVE/ε−1), where VDRIV E

is the drive bias applied across the drive-QPC, Tr is its
transparency and ε ≤ eVDRIV E . The equilibrium Fermi
distribution in the other (left moving) EC corresponds
to Bin

L (ε) = 1 + 2fB(ε), where fB(ε) is the equilib-
rium Bose-Einstein distribution with a base temperature
T ≈ 60mK. At relevant plasmon energies ε0 ∼ 50µeV,
fB(ε) ≪ 1, i.e. we can safely use the zero-T approx-
imation Bin

L = 1. In the Ll the plasmon distributions
are modified owing to a plasmon backscattering at the
boundaries of the interaction region (see the main paper).
The distribution of the outcoming left moving plasmons
is increased by δBout

L = Rε(B
in
R − Bin

L ), where Rε is the
energy-dependent scattering probability. Hence, we get
for the inter-EC energy transfer rate:

P =
1

2h

∫

δBout
L (ε)εdε =

=
Tr(1− Tr)

h

∫ eV

0

Rε(eV − ε)dε. (7)

Eq. (7) allows to express the energy relaxation between
the counter propagating ECs in terms of the (small) plas-
mon backscattering probability Rε ≪ 1. In our fits we
assumed a modified Fresnel law Rε = (1−K)2/(1+K2)×
F (ε), where K is the interaction constant defined below
and the ad hoc factor F (ε) accounts for a suppressed
backscattering of high-energy plasmons owing to a finite
length-scale of the inhomogeneity at the boundaries of
the Ll. Little is known about F and we assume two dif-
ferent exponential dependencies F = exp(−ε2/ε20) and
F = exp(−ε/ε0) in the following. The calculated energy
transfer rate P (VDRIV E) is plotted in fig. 4. For both
choices of F (ε) a crossover from parabolic to linear de-
pendence at increasing VDRIV E is observed. Moreover,
for a proper choice of parameters K, ε0 the results are al-
most indistinguishable. This allows to roughly estimate
the uncertainties of our fit parameters as 10% in K and
30% in ε0.
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FIG. 4. Different shapes of the high-energy cutoff of the plas-
mon scattering probability. Using eq. (7) we compare the
energy transfer rates calculated for different energy depen-
dencies of the plasmon scattering probability Rε, see legend.
Nearly the same results are obtained for gaussian and sim-
ple exponential dependencies, respectively, with parameters
K ≈ 1.119, ε0 = 80µeV and K ≈ 1.132, ε0 = 60µeV. The
former curve corresponds to the best fit of the experiment in
fig. 2a of the main paper.

INTERACTION CONSTANT K

The value of the interaction constant K can be deter-
mined from the matrix element of the Coulomb interac-
tion, see Ref.7:

u = vF
[

(1 + y4)
2 − (y2)

2
]1/2

,

where u is the plasmon velocity, vF is the Fermi velocity
in the absence of interactions and yi = gi/(hvF ) are the
dimensionless matrix elements of the intra-EC (i = 4)
and inter-EC (i = 2) Coulomb interaction. In our exper-
iment g2 6= 0 only within the interaction region, whereas
a much stronger intra-EC interaction g4 ≫ g2 can be as-
sumed constant everywhere. Hence, we can rewrite this
equation in terms of a renormalized Fermi velocity:

u = v∗F
[

1− (y∗2)
2
]1/2

, (8)

where v∗F = vF + g4/h is the interaction-renormalized
Fermi velocity in the Fermi liquid leads and y∗2 =
g2/(hv

∗

F ) is the renormalized dimensionless inter-EC in-
teraction in the Ll. Importantly, v∗F ≫ vF is nothing but
a magnetoplasmon velocity of an isolated EC, whereas
u < v∗F is the magnetoplasmon velocity in the interac-
tion region. Hence, it’s their ratio K = v∗F /u that enters
the Fresnel law and defines the plasmon scattering at the
boundaries of the interaction region, see above. Note



5

that, as follows from eq. (8), the lowest order correction
to K is second order in interaction, which is different
from the case g4 = g2 considered, e.g., in Ref.6.
The matrix element g2 for a given inter-EC separa-

tion d can be evaluated in two ways: At zero momentum
q = 0, one has to introduce a screening radius r of the
Coulomb interaction for convergence:

g2 =

∫ +r

−r

e2

k(x2 + d2)
dx =

2e2

k
asinh(r/d), (9)

where k = 12.5 is the dielectric constant of GaAs. Al-
ternatively, one can neglect screening but evaluate the
matrix element at a finite momentum corresponding to a
relevant length-scale q = 1/lcorr:

g2 =

∫ +∞

−∞

e2 exp(−iqx)

k(x2 + d2)
dx =

2e2

k
K0(qd), (10)

where K0 is the modified Bessel function of the second
kind. In practice, the best fits to the experimental data
obtained with eqs. (9) and (10) are almost indistinguish-
able provided q ≈ (2r)−1. This is a result of logarithmic
behavior g2 ∝ log(2r/d) and g2 ∝ log(qd) at small d. The
fit in fig. 4 of the main paper was performed for the bare
Coulomb potential with the help of eqs. (7),(8) and (10).
The value of the magnetoplasmon velocity was chosen in
the range u ∼ 107cm/s as we expect for a soft edge at
ν = 1 (based, e.g., on a recent data for ν = 28). In turn,
the value of the correlation length lcorr is constrained
by the bandwidth ε0 ≈ 80µeV. The best fit corresponds
to ~u/lcorr ≈ 100µeV, which is reasonably close to the
experiment.

EDGE CHANNELS SEPARATION

The strength of the inter-EC Coulomb interaction is
determined by the distance 2a between the counterprop-
agating edges, tunable by the voltage Vg on the central
gate, see fig. 1b of the main paper. We evaluate this with
the help of a simplified analytic solution. First we use a
conformal mapping approach9 to find the potential ϕg a
stripe gate creates in the 2DES plain. Here we assume an
infinite metallic gate of width 2w (with a potential Vg) on
a so-called pinned surface, i.e. the electrostatic potential
of the remainder of the surface is fixed at ϕ = 0. We
chose this boundary condition for a much simpler solu-
tion it gives. The conformal mapping is straightforward
ξ = x+ iz (see fig. 5a) and we obtain9:

ϕg(x) =
Vg

π
Im[− ln(x+ w + id) + ln(x− w + id)] =

=
Vg

π

[

− arctan

(

d

x+ w

)

+ arctan

(

d

x− w

)]

, (11)
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FIG. 5. Numeric calculations of the separation between the
stripe-gate defined 2DES edges. (a) – conformal mapping
used to calculate the bare electrostatic potential created by
the stripe-gate in the 2DES plain. (b) – gate voltage depen-
dence of the separation 2a between the ECs for 2DES depth
of d = 200 nm, gate width of 2w = 200 nm and several values
of the spin gap ∆µe at ν = 1.

where d is the depth of the 2DES below the surface and
arctan ∈ (0 : π). The potential (11) is just the bare po-
tential in the absence of the 2DES. Next we add two semi-
infinite electron layers (|x| > a) with a fixed electrons
density nS , for the 2DES is in the incompressible state
at ν = 1. Note that in order to keep the boundary condi-
tions satisfied one also has to introduce image charges at
z = −d and account for their potential. The potential ϕe

created by the electron layer and image charges is easily
found. For example at the edge of the 2DES x = a, z = d:

ϕe(a)/ϕ0 = 1−
1

π
arctan

(a

d

)

−
a

2πd
ln

(

1 +
d2

a2

)

, (12)

where ϕ0 = 4πenSd/k ≈ −0.27 V is the 2DES potential
at infinity (|x| → ∞). The total electrostatic potential is
given by the sum of ϕe + ϕg. The difference in potential
energies of an electron at the gate-defined edge and at
infinity is given by:

dE(a) = e[ϕg(a) + ϕe(a)− ϕ0]. (13)

At ν = 1 the same energy difference equals half the
chemical potential jump (interaction enhanced spin-gap)
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across the spin-gap between the Landau levels dE(a) =
∆µe/2. For a given V g and ∆µe eqs. (11), (12) and
(13) are satisfied for certain a, which defines the distance
between the counter-propagating edges. Results of such
calculations are shown in fig. 5b for several values of ∆µe.
Note that the actual value of the enhanced spin-gap in
GaAs is not known accurately10,11. Nevertheless even a
huge variation in ∆µe gives rise only to minor uncertain-
ties in a, see fig. 5b. This is a result of strong gradient of
the electrostatic potential (in-plain electric field) created
by the gate near the 2DES edge. The simulation in the
fig. 4 of the main paper has been performed for ∆µe = 0.
No doubt that our approach to calculate the EC sep-

aration is rather simplified. First, the pinned surface
boundary conditions is not the case at low temperatures9.
Second, the screening of the external potential results in
formation of compressible strip at the edge of the 2DES.
Accounting for these effects requires much more involved
approaches and might improve the agreement between
the experiment and simulations in fig. 4 of the main pa-
per. Yet, it is a-priori clear that the distance between the
ECs in our structure is in a few 100 nm range. Hence,
the absolute value of the evaluated dimensionless inter-
action g2 in our quantum Hall based Ll is not expected
to change appreciably.
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