<u>ΥCΠΕΧИ ΦИЗИЧЕСКИХ НАУК</u>

ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ

Электронный транспорт в квантовом пределе по магнитному полю

С.С. Мурзин

Излагаются современные представления об электронном транспорте в квантовом пределе по магнитному полю, когда заполнена лишь нижняя подзона Ландау с одной ориентацией спина, в наиболее важном с экспериментальной точки зрения случае рассеяния на ионизированных примесях. Учет квазиодномерности движения электронов приводит к существенному изменению характера проводимости как вдоль, так и поперек магнитного поля по сравнению с тем, что предполагалось ранее. Экспериментальные результаты в значительной степени подтверждают эти представления.

PACS numbers: 71.55.+i, 71.70.Di, 72.10.Bg, 72.20.-i

Содержание

- 1. Введение (387).
- Фермиевский (вырожденный) электронный газ в квантовом пределе (389).

2.1. Экранировка. 2.2. Рассеяние. 2.3. Область существования квантового предела и поведение характерных длин.

- 3. Поперечная проводимость с учетом корреляций актов рассеяния (391).
- 4. Квазиодномерные локализационные эффекты (392).

4.1. Продольная проводимость. 4.2. Влияние электрон-фононного рассеяния. 4.3. Поперечная проводимость.

- 5. Электрон-электронное взаимодействие (393).
- Больцмановский (невырожденный) электронный газ при T ≪ ħω_c (395).

6.1. Экранировка, рассеяние и область существования больцмановского газа. 6.2. Квазиодномерные локализационные эффекты. 6.3. Продольная проводимость. 6.4. Поперечная проводимость.

- Экспериментальные результаты (397).
 7.1. Фермиевский газ. 7.2. Больцмановский газ.
- 8. Заключение (400).

Список литературы (402).

1. Введение

Первые теории проводимости в квантующем магнитном поле были созданы в 30-е годы [1, 2]. В 50-е годы было дано квантовомеханическое обоснование результатов работ [1, 2] и получены конкретные выражения для

С.С. Мурзин. Институт физики твердого тела РАН, 142432 Черноголовка, Московская обл., Российская Федерация Тел. (095) 720-49-59, доб. 29-42. Факс (096) 576-41-11 E-mail: murzin@issp.ac.ru

Статья поступила 8 декабря 1999 г.

проводимости при различных механизмах рассеяния [3-6]). Согласно результатам [1-6] характер проводимости в квантовом пределе (КП) по магнитному полю, когда заполнена лишь нижняя подзона Ландау с одной ориентацией спина, не отличается принципиально от случая классически сильных магнитных полей ($\omega_c \tau \ge 1$, где ω_c — циклотронная частота, τ — транспортное время релаксации). Проводимость вдоль магнитного поля σ_{zz} описывается формулой Друде:

$$\sigma_{zz,0} = \frac{ne^2\tau_0}{m} \,, \tag{1}$$

где n — концентрация электронов, τ_0 — время пробега электрона до рассеяния назад и m — эффективная масса, магнитное поле направлено вдоль оси z. Поперечная проводимость

$$\sigma_{xx} = v_{\rm F} e^2 D_{xx} \tag{2}$$

пропорциональна плотности состояний v_F на уровне Ферми и коэффициенту диффузии D_{xx} поперек магнитного поля, который выражается через характеристики микроскопических актов рассеяния [7]:

$$D_{xx} = \sum_{i} \frac{\left(\Delta x_i\right)^2}{2\delta t} \,. \tag{3}$$

Здесь суммирование производится по столкновениям, испытываемым электроном в течение большого времени δt , а Δx_i — изменение среднего значения *x*-координаты электрона при *i*-м столкновении. Выражение (3) получено в предположении, что все акты рассеяния независимы, т.е. при каждом столкновении электрон смещается поперек магнитного поля случайным образом независимо от предыдущих столкновений. Отличие квантового предела от случая классически сильных магнитных полей состоит лишь в том, что в КП плотность состояний на уровне Ферми и времена рассеяния зависят от магнитного поля. Долгое время эти результаты были общепринятыми и вошли в ряд обзоров и книг [8–12]. Однако оказалось, что выражения (1) и (3) принципиально неприменимы в КП для наиболее важного с экспериментальной точки зрения случая рассеяния на ионизированных примесях. Это связано с квазиодномерным характером движения электронов, т.е. с тем, что смещение электрона поперек магнитного поля r_{\perp} за время τ_0 меньше магнитной длины $l_m = \sqrt{\hbar c/(eB)}$ и радиуса экранирования r_D :

$$r_{\perp} < l_{\rm m} < r_{\rm D} \,. \tag{4}$$

Если $r_{\perp} < r_{\rm D}$, то нельзя считать, что все акты рассеяния электронов независимы, и поэтому выражение (3) для D_{xx} неприменимо [13–15]. В этом случае рассеяние поперек магнитного поля можно рассматривать как дрейф в скрещенных полях — электрическом поле примеси и внешнем магнитном поле [5]. Электрон, рассеявшись на какой-либо примеси, много раз возвращается в поле этой примеси в процессе своего хаотического квазиодномерного движения вдоль магнитного поля (рис. 1), прежде чем сместиться поперек магнитного поля на расстояние порядка $r_{\rm D}^{-1}$. При этом в поле рассматриваемой примеси электрон каждый раз смещается (дрейфует) примерно в одном и том же направлении² (см. рис. 1) на одно и то же расстояние $a \ll r_D$, и поэтому нельзя считать, что смещения электрона во всех актах рассеяния независимы. Пусть за время $\tau_{\rm D}$, в течение которого электрон смещается поперек магнитного поля на расстояние порядка r_D, он взаимодействует с P примесями по М раз с каждой. В этом случае для вычисления D_{xx} смещения под действием одной примеси следует сложить линейно и лишь затем просуммировать квадраты суммарных смещений под действием различ-

Рис. 1. Движение электрона в поле примесей (вертикальные линии). Примеси схематично изображены эллипсами. Короткие стрелки указывают направления дрейфа электрона.

ных случайно расположенных примесей:

$$D_{xx} \approx \frac{\sum_{i=1}^{P} \left(\sum_{j=1}^{M} \Delta x_{i,j}\right)^2}{2\tau_{\rm D}} \approx \frac{a^2}{2\tau_{\rm D}} PM^2, \qquad (5)$$

в то время как по соотношению (3) коэффициент диффузии был бы в M раз меньше:

$$D_{xx} \approx \frac{\sum_{i,j} (\Delta x_{i,j})^2}{2\tau_{\rm D}} \approx \frac{a^2}{2\tau_{\rm D}} PM.$$
(6)

Поперечное движение электрона на масштабах, меньших радиуса экранирования r_D , имеет недиффузионный характер и лишь на масштабах, больших r_D , становится диффузионным. Шаг такой диффузии — r_D .

Если r_{\perp} меньше магнитной длины $l_{\rm m}$ — характерного размера волновой функции электрона поперек магнитного поля, то ситуация оказывается близкой к одномерной, в которой, как известно [18, 19], все электроны локализованы в результате интерференционных эффектов. Поэтому продольная проводимость в КП оказывается гораздо меньше друдевской [15, 20-23]. В первом приближении, пренебрегая зависимостью потенциала от поперечных координат х и у, можно считать электрон локализованным и рассматривать, что происходит с этим локализованным состоянием с течением времени [15]. Под действием поперечных составляющих неоднородного электрического поля примесей оно начнет дрейфовать поперек магнитного поля (рис. 2). Кроме того, время его жизни на дрейфовой траектории будет, по-видимому, конечным. Хотя квазиодномерные (Q-1D)

Рис. 2. Движение квазилокализованного электрона в поле примесей. Некоторое время электрон дрейфует поперек магнитного поля, затем перескакивает на другую дрейфовую траекторию.

¹ В случае одномерной диффузии число возвратов растет со временем пропорционально \sqrt{t} , в то время как в трехмерном случае вероятность возврата мала.

² Впервые учет возвратов при вычислении поперечной проводимости неоднородных сред был выполнен Дрейзиным и Дыхне [16, 17].

локализационные эффекты не приводят к полному подавлению проводимости вдоль магнитного поля, они существенно уменьшают ее.

Помимо рассмотренных выше одноэлектронных эффектов на электронный спектр и транспорт в КП существенное влияние оказывает электрон-электронное взаимодействие. Согласно теории для электронного газа на положительном однородном фоне в КП взаимодействие может привести к образованию волн зарядовой плотности, вигнеровского кристалла или других коррелированных состояний (см. [24] и ссылки в этой работе). Такие эффекты, возможно, имеют место в полуметаллах [25]. Но в данном обзоре этот круг вопросов рассматриваться не будет. В легированных полупроводниках концентрация заряженных примесей N всегда больше или равна концентрации электронов п. Поскольку примеси распределены случайным образом, вряд ли можно ожидать, что электроны образуют какое-либо регулярное состояние в неупорядоченном потенциале примесей. Но и в этой неупорядоченной системе электрон-электронное взаимодействие оказывает существенное влияние на плотность состояний и проводимость из-за возрастания с ростом магнитного поля относительной величины квантовых поправок [26]. В квантовом пределе они могут стать порядка единицы. Это означает, что электронэлектронное взаимодействие может сильно влиять на свойства неупорядоченной электронной системы в КП и, возможно, кардинально изменять ее свойства [28, 29].

Пересмотрены и представления о характере поперечной проводимости σ_{xx} полупроводников в квантовом пределе для случая больцмановской статистики [30]. Он принципиально отличается от случая фермиевской статистики.

В настоящем обзоре мы рассмотрим продольную σ_{zz} и поперечную σ_{xx} проводимость как фермиевского, так и больцмановского электронного газа в полупроводниках и полуметаллах с простым изотропным спектром в квантовом пределе по магнитному полю в случае, когда доминирует рассеяние на ионизированных примесях, и сравним теоретические результаты с экспериментальными. Основной акцент сделан на полупроводники. Прежде чем обсуждать интересующие нас эффекты, рассмотрим основные известные свойства электронного газа в квантовом пределе.

2. Фермиевский (вырожденный) электронный газ в квантовом пределе

2.1. Экранировка

Модуль волнового вектора электрона вдоль магнитного поля на уровне Ферми в квантовом пределе равен

$$k_{\rm F} = 2\pi^2 n l_{\rm m}^2 \propto \frac{1}{B} \,, \tag{7}$$

фермиевская энергия *E*_F, отсчитанная от дна самой нижней подзоны, —

$$E_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m} = \frac{2\pi^4 \hbar^2 n^2 l_{\rm m}^4}{m} \propto \frac{1}{B^2} , \qquad (8)$$

плотность состояний —

$$v(E) = \frac{1}{(2\pi l_{\rm m})^2} \frac{\sqrt{2m}}{\hbar} \frac{1}{\sqrt{E}}.$$
(9)

Плотность состояний на уровне Ферми $v_{\rm F} \propto B^2$. Дебаевский радиус экранирования в КП равен

$$r_{\rm D} = \left(\frac{4\pi e^2 v_{\rm F}}{\varkappa_0}\right)^{-1/2} = l_{\rm m} \sqrt{\pi^3 n a_{\rm B} l_{\rm m}^2} \propto \frac{1}{B} \,, \tag{10}$$

где \varkappa_0 — диэлектрическая постоянная кристаллической решетки и $a_{\rm B} = \hbar^2 \varkappa_0 / (me^2)$ — боровский радиус.

Диэлектрическая проницаемость вырожденного электронного газа в КП с учетом пространственной дисперсии в приближении хаотических фаз имеет следующий вид [31]:

$$\varkappa(\mathbf{q}) = \varkappa_0 \left(1 + \frac{k_s^2(\mathbf{q})}{q^2} \right),\tag{11}$$

где

$$k_{\rm s}^2(\mathbf{q}) = \frac{k_{\rm F} \exp\left(-q_{\perp}^2 l_{\rm m}^2/2\right)}{r_{\rm D}^2 q_z} \ln\left|\frac{2k_{\rm F} + q_z}{2k_{\rm F} - q_z}\right|.$$
 (12)

Для $q_{\perp} \ll l_{\rm m}^{-1}$ и $q_z \ll k_{\rm F}$, разлагая логарифм до двух значащих членов и заменив экспоненту на 1, получим фурье-образ экранированного потенциала примесного центра [22]:

$$V(\mathbf{q}) = \frac{4\pi e}{\varkappa_0 \left\{ r_{\rm D}^2 + q_{\perp}^2 + q_z^2 [1 + (2\sqrt{3}k_{\rm F}r_{\rm D})^{-2}] \right\}} \,. \tag{13}$$

Отсюда следует, что при $k_{\rm F}r_{\rm D} \gg 1$ экранировка классическая (дебаевская).

В случае обратного соотношения $k_{\rm F}r_{\rm D} \ll 1$ (квантовая экранировка) пространственное распределение потенциала довольно сложное. На расстояниях от рассеивающего центра, больших k_z^{-1} в направлении магнитного поля и больших $r_{\rm D}$ поперек поля, потенциал экранируется вдоль поля с радиусом $1/(2\sqrt{3}k_{\rm F})$ порядка длины волны электрона и поперек с радиусом $r_{\rm D}$ [22]. При z = 0 потенциал убывает поперек магнитного поля гораздо медленнее: на расстоянии $(r_{\rm D}/k_{\rm F})^{1/2}/2 \gg r_{\rm D}$ [32] за счет вклада в интеграл Фурье $q_z \sim (k_{\rm F}/r_{\rm D})^{1/2}$. Этот вклад осциллирует вдоль магнитного поля и не влияет на рассеяние электронов [22].

2.2. Рассеяние

Обратные времена рассеяния назад $1/\tau_0$ (с изменением направления k_z на противоположное и сдвигом центра орбиты электрона поперек магнитного поля) и вперед $1/\tau_1$ (только со сдвигом орбиты без изменения k_z) в борновском приближении равны

$$\frac{1}{\tau_0} = 8\pi \frac{E_{\rm B}}{\hbar} \frac{Nl_{\rm m}^2}{k_{\rm F}} \int_0^\infty \frac{\exp(-x)}{\left[x + \xi'(x)\right]^2} ,$$

$$\frac{1}{\tau_1} = 8\pi \frac{E_{\rm B}}{\hbar} \frac{Nl_{\rm m}^2}{k_{\rm F}} \int_0^\infty \frac{\exp(-x)}{\left[x + \xi''(x)\right]^2} ,$$
(14)

где
$$E_{\rm B} = me^4/2\varkappa_0^2\hbar^2$$
 — боровская энергия и
 $\xi'(x) = \left[4k_{\rm F}^2 + r_{\rm D}^{-2}\exp(-x)\frac{\ln(8E_{\rm F}/\Gamma)}{2}\right]\frac{l_{\rm m}^2}{2},$
 $\xi''(x) = \exp(-x)\frac{l_{\rm m}^2}{2r_{\rm D}^2}.$
(1)

5)

По сравнению с оригинальными результатами [3, 4] (см. также [8]) здесь более точно учтено экранирование (см. раздел 2.1). Логарифмическая особенность в диэлектрической функции (12) при $q_z = 2k_F$ устраняется за счет столкновительного уширения электронных состояний [33]. Величина уширения

$$\Gamma = \frac{\hbar}{\tau_0} + \frac{\hbar}{\tau_1} \,. \tag{16}$$

При высокой температуре Γ следует заменить на величину, приблизительно равную 1,5*T*, и тогда τ_0 зависит от температуры [33]. Если $l_m \ll k_F^{-1}$, *r*_D, то

$$\frac{1}{\tau_0} = 16\pi \ \frac{E_{\rm B}}{\hbar} \ \frac{N}{k_{\rm F} \left[4k_{\rm F}^2 + r_{\rm D}^{-2}\ln\left(8E_{\rm F}/\Gamma\right)/2\right]} ,$$
$$\frac{1}{\tau_1} = 16\pi \ \frac{E_{\rm B}}{\hbar} \ \frac{N}{k_{\rm F} r_{\rm D}^{-2}} . \tag{17}$$

В полуметаллах примеси находятся далеко друг от друга, и условие применимости борновского приближения, использованного при выводе выражений (14) и (17), — это условие применимости борновского приближения для рассеяния на одной примеси $k_F a_B \sim n a_B l_m^2 > 1$ [37].

В полупроводниках число примесей в области с размерами порядка характерных длин $1/q_{\perp}$ и $1/q_z$ много больше единицы. В этом случае критерий применимости борновского приближения становится более жестким: в области классического экранирования $(k_{\rm F}r_{\rm D} \ge 1)$

$$U_1 \sim \frac{e^2 (Nr_{\rm D}^3)^{1/2}}{\varkappa_0 r_{\rm D}} \ll \frac{\hbar v_{\rm F}}{r_{\rm D}},$$
 (18)

в области квантового экранирования ($k_{\rm F} r_{\rm D} \ll 1$)

$$U_2 \sim \frac{e^2 (Nr_{\rm D}^2 \hat{\lambda}_{\rm F})^{1/2}}{\varkappa_0 \hat{\lambda}_{\rm F}} \ll \frac{\hbar v_{\rm F}}{\hat{\lambda}_{\rm F}} \sim E_{\rm F} \,. \tag{19}$$

В этих неравенствах U_1 и U_2 — амплитуды флуктуационного примесного потенциала, r_D и $\hat{\lambda}_F = 1/k_F$ — его характерные размеры. В некомпенсированных полупроводниках (N = n) с металлической проводимостью в нулевом магнитном поле, для которых выполняется условие $n \ge n_c$, где [34]

$$n_{\rm c} \approx 0.027 a_{\rm B}^{-3} \,, \tag{20}$$

оба условия (18) и (19) всегда выполнены в магнитном поле, много меньшем поля перехода металл – диэлектрик *В*_{MI}.

Нарушение условия (18) в некомпенсированных полупроводниках (N > n) не приводит к тому, что выражения (14) и (17) для времени рассеяния назад τ_0 становятся неприменимы, если выполняется более слабое неравенство

$$U_{1} = \frac{e^{2} (Nr_{\rm D}^{3})^{1/2}}{\varkappa_{0} r_{\rm D}} \ll E_{\rm F} \,, \tag{21}$$

но выражения для времени рассеяния вперед и, значит, выражение (16) для Γ в этом случае неприменимы.

2.3. Область существования квантового предела и поведение характерных длин

Переход в квантовый предел происходит в магнитном поле $B_{\rm EQL}$, определяемом из условия $E_{\rm F} \approx \mu_{\rm B} |g| B = = \hbar \omega_{\rm c} |g^*|/2$, где $\mu_{\rm B}$ — магнетон Бора, $g^* = gm/m_{\rm e}$ —

эффективный *g*-фактор, *m*_e — масса свободного электрона. Оно равно

$$B_{\rm EQL} \approx 2^{2/3} \pi^{4/3} \ \frac{\hbar c}{e|g^*|} n^{2/3} \,.$$
 (22)

Если $g^* \sim 1$, то вблизи поля B_{EQL} произведение $k_{\text{F}}r_{\text{D}} \sim (n^{1/3}a_{\text{B}})^{1/2} \gg 1$, т.е. экранировка классическая. Так как с ростом магнитного поля k_{F} и r_{D} убывают, то в поле

$$B_{\rm QS} = 2\pi^{7/4} \ \frac{\hbar c}{e} n^{3/4} a_{\rm B}^{1/4} \,, \tag{23}$$

в котором $2k_{\rm F}r_{\rm D} = 1$, происходит переход к квантовому экранированию.

В полупроводниках в еще большем поле $B_{\rm MI}$ происходит переход металл – диэлектрик. Для некомпенсированного полупроводника поле $B_{\rm MI}$ находится из условия [32, 36]

$$na_{\rm B}^*(2l_{\rm m})^2 \approx \delta, \qquad a_{\rm B}^* = \frac{a_{\rm B}}{\ln(a_{\rm B}/l_{\rm m})^2},$$
 (24)

где $a_{\rm B}^{\rm s}$ — размер волновой функции электрона, связанного изолированной примесью, вдоль магнитного поля. Поперечный размер волновой функции равен $2l_{\rm m}$. Точное значение величины δ неизвестно. Экспериментальные значения поля $B_{\rm MI}$ для сильно легированного n-InSb описываются выражением (24) с $\delta \approx 0,04$ (рис. 3, на котором построены зависимости полей $B_{\rm EQL}$, $B_{\rm QS}$, $B_{\rm MI}$ от концентрации электронов *n* для некомпенсированного n-InSb ³). Выражение (24) справедливо только при больших отношениях $a_{\rm B}/l_{\rm m}$ (сплошная часть кривой $B_{\rm MI}(n)$ на рис. 3). Левая штриховая часть кривой проведена схема-

Рис. 3. Зависимость полей B_{EQL}, B_{QS}, B_{MI} от концентрации электронов *п* для некомпенсированного n-InSb. Линии — результаты расчетов, кружки — экспериментальные данные.

³ Расчетные кривые построены с учетом зависимости эффективной массы электронов m от магнитного поля B, обусловленной неквадратичностью спектра, с использованием двухзонной модели [8]. В области экспериментальных данных зависимость m от B слабо сказывается на положении линий. При больших n расхождение кривых, рассчитанных с учетом зависимости m от B и без него, вполне заметно, но не велико.

Обсудим теперь, как ведут себя характеристики электронной системы в сильно легированных ($na_{\rm B}^3 \gg 1$) некомпенсированных полупроводниках. Дебаевский радиус экранирования (10) больше магнитной длины *l*_m в области металлической проводимости, так как $na_{\rm B}l_{\rm m}^2 \gg 1$. Он убывает с ростом поля и становится порядка магнитной длины *l*_m в поле перехода металлдиэлектрик B_{MI} (рис. 4). Длина волны электрона на уровне Ферми $\hat{\pi}_F \propto B$ растет с ростом магнитного поля и становится порядка боровского радиуса $a_{\rm B}$ в поле $B_{\rm MI}$. Время τ_0 убывает с ростом поля в области классического экранирования ($k_{\rm F}r_{\rm D} \gg 1$) и затем возрастает в области квантового экранирования (k_Fr_D ≪ 1). Длина пробега электрона до рассеяния назад $l_0 = v_{\rm F} \tau_0$ сначала убывает с ростом поля и становится ~ *a*_B в области квантового экранирования. Таким образом, КП делится на два интервала (B_{EQL}, B_{QS}) и (B_{QS}, B_{MI}), в которых транспортные свойства электронной системы существенно различны (см. рис. 4).

Рис. 4. Зависимость длины пробега l_0 , боровского радиуса a_B , длины волны электрона вдоль магнитного поля $\hat{\lambda}_F = 1/k_F$, дебаевского радиуса r_D , магнитной длины l_m и поперечного смещения электрона r_\perp за время рассеяния назад от магнитного поля для некомпенсированного полупроводника с квадратичным спектром. Шкалы логарифмические.

Подчеркнем, что при приближении к переходу металл-диэлектрик длина пробега l_0 и длина волны электрона λ_F оказываются порядка a_B — радиуса локализации электрона вдоль магнитного поля на изолированной примеси, а радиус экранирования порядка l_m — радиуса локализации поперек поля (см. рис. 4).

Величину r_{\perp} можно оценить, используя выражение $r_{\perp} = \sqrt{D_{xx}\tau_0}$ с D_{xx} , полученным Адамсом и Холстейном [4]:

$$r_{\perp} \sim l_{\rm m}^2 \sqrt{4k_{\rm F}^2 + r_{\rm D}^{-2}}$$
 (25)

Она всегда меньше магнитной длины $l_{\rm m}$, поскольку $l_{\rm m}k_{\rm F}=\sqrt{2E_{\rm F}/(\hbar\omega_{\rm c})}<1$ и $l_{\rm m}< r_{\rm D}$. С возрастанием маг-

нитного поля в КП отношение $r_{\perp}/l_{\rm m}$ вначале убывает, достигает минимума при $k_{\rm F}r_{\rm D} \sim 1$ и затем возрастает, становясь порядка единицы около перехода металлдиэлектрик (см. рис. 4).

3. Поперечная проводимость с учетом корреляций актов рассеяния

Как уже отмечалось во введении, в КП нельзя рассматривать все акты рассеяния как независимые, и движение электрона поперек магнитного поля следует считать диффузионным лишь на масштабах, бо́льших r_D . Коэффициент диффузии в этом случае можно записать в виде $D_{xx} \sim r_D^2/\tau_D$, и задача сводится к нахождению времени смещения электрона поперек магнитного поля τ_D на расстояние порядка r_D . Для того, чтобы оценить τ_D , найдем смещение электрона $\Delta X(t)$ в зависимости от времени для $\Delta X(t)$ меньших r_D . Время τ_D найдем из уравнения $\Delta X(\tau_D) \approx r_D$.

Чтобы найти $\Delta X(t)$, воспользуемся тем, что вероятность обнаружить электрон повторно в поле рассматриваемой примеси через время *t* равна

$$W_{\rm D} \sim \frac{r_{\rm D}}{\sqrt{D_{zz}t}} \,, \tag{26}$$

где D_{zz} — коэффициент диффузии вдоль магнитного поля. Рассмотрим сначала область классического экранирования ($k_{\rm F}r_{\rm D} \ge 1$), считая, что $E_{\rm F} \ge U_1$. Так как $r_{\rm D} \ge l_{\rm m}$, задачу можно рассматривать в дрейфовом приближении. Средняя скорость поперечного дрейфа за время *t* под действием электрического поля $\mathcal{E}_{\rm d} \sim e/\varkappa_0 r_{\rm D}^2$ только одной примеси равна

$$v_{\rm d} \sim c \; \frac{\mathcal{E}_{\rm d}}{B} W_{\rm D} = \frac{ce}{\varkappa_0 r_{\rm D} B (D_{zz} t)^{1/2}} \;.$$
 (27)

Соответствующее смещение равно $\delta x_i(t) \sim v_d t$. Число примесей, с которыми электрон взаимодействует за время t,

$$P(t) \sim N r_{\rm D}^2 \sqrt{D_{zz} t} \,. \tag{28}$$

В силу случайного расположения примесей квадрат полного смещения электрона равен

$$\Delta X(t)^{2} \sim \delta x_{i}(t)^{2} P(t) \sim \left(\frac{ce}{\varkappa_{0}B}\right)^{2} N D_{zz}^{-1/2} t^{3/2} .$$
 (29)

Приравнивая правую часть выражения (29) к $r_{\rm D}^2$, находим время

$$\tau_{\rm D} \sim \left(\frac{\varkappa_0 r_{\rm D} B}{ce}\right)^{4/3} N^{-2/3} D_{zz}^{1/3} \tag{30}$$

и коэффициент диффузии

$$D_{xx} \sim \left(\frac{ce}{\varkappa_0 B}\right)^{4/3} N^{2/3} r_{\rm D}^{2/3} D_{zz}^{-1/3} \,.$$
 (31)

Поперечная проводимость вырожденного электронного газа равна [15]

$$\sigma_{xx} = \beta_1 \left(\frac{ce^3 v_{\rm F}}{\varkappa_0 B}\right)^{4/3} N^{2/3} r_{\rm D}^{2/3} \sigma_{zz}^{-1/3} , \qquad (32)$$

где β_1 — неизвестный численный коэффициент. Используя выражения для холловской проводимости $\sigma_{xy} = nec/B \ge \sigma_{xx}$, для плотности состояний (9) и радиуса экранирования (10), поперечное сопротивление $(\rho_{xx} = \sigma_{xx}/\sigma_{xy}^2)$ можно записать в виде

$$\rho_{xx} = \frac{\beta_1}{4^{4/3}\pi^{13/3}} \frac{me^{10/3}B^{8/3}}{n^{7/3}c^{8/3}\hbar^4\varkappa_0} \rho_{zz}^{1/3} \left(\frac{N}{n}\right)^{2/3}.$$
 (33)

При выводе выражений (32) и (33) мы не учитывали вклад в поперечную диффузию актов рассеяния вперед с прицельными параметрами, много меньшими r_D , и вклад актов рассеяния назад. Если корреляции не учитываются, то и те, и другие акты рассеяния вносят в диффузию практически такой же вклад, как и рассмотренные акты рассеяния вперед с прицельными параметрами ~ r_D . Однако в области классического экранирования корреляции максимально усиливают вклад в диффузию актов рассеяния вперед с прицельными параметрами ~ r_D . Вкладом в поперечное движение других актов рассеяния можно пренебречь.

В области квантового экранирования, несмотря на то, что $r_D \ll \hat{\lambda}_F$, поперечный сдвиг в результате рассеяния вперед (без изменения k_z) по-прежнему можно рассматривать как результат дрейфа в скрещенных полях. Это подтверждается тем, что амплитуда рассеяния вперед такая же, как и в случае классического экранирования (см. (14) и (17)). Радиус корреляций для актов рассеяния назад, вклад которых в поперечную диффузию не учитывался выше, равен $r_D \sqrt{2/\ln(8E_F/\Gamma)}$. Поэтому в области квантового экранирования выражения (32) и (33) выполняются с точностью до относительных поправок $\sim 1/\ln^p (8E_F/\Gamma)$, где p > 0.

Выражение (32) справедливо также и в области классически сильных магнитных полей, если радиус электронной орбиты r меньше r_D , тогда автоматически $r_{\perp} \ll r_D$. Корреляции актов рассеяния надо учитывать и при расчете квантовых осцилляций поперечного сопротивления, если $r \ll r_D$.

Выше мы рассматривали проводимость σ_{xx} образцов, толщина которых вдоль магнитного поля $d \gg \sqrt{D_{zz}\tau_{\rm D}}$. При $l_0 \ll d \ll \sqrt{D_{zz}\tau_{\rm D}}$ величина σ_{xx} зависит от d [14].

4. Квазиодномерные локализационные эффекты

4.1. Продольная проводимость

Влияние локализационных эффектов на проводимость впервые рассмотрено Абрикосовым и Рыжкиным [20] на основе скейлинговой гипотезы. Для случая рассеяния на ионизированных примесях при $r_{\rm D}^{-1} \ll k_z \ll l_{\rm m}^{-1}$ они получили

$$\sigma_{zz} \sim \sigma_{zz,0} (k_{\rm F} l_{\rm m})^2 \ln \frac{1}{k_{\rm F} l_{\rm m}} \propto B^{-6} \ln B \,. \tag{34}$$

Другой подход к задаче состоит в том, чтобы рассматривать движение квазилокализованного электрона [15]. Как уже отмечалось во введении, в первом приближении можно считать, что электрон локализован. Радиус локализации вдоль магнитного поля равен 4*l*₀ [19] и поперек поля — *l*_m. Учет поперечной компоненты электрического поля примесей приводит к дрейфу элект-

рона (см. рис. 2). В работах [15, 21, 22] было высказано предположение, что электрон делокализуется, когда сместится поперек магнитного поля настолько, что изменятся условия локализации [15, 22], или когда площадь контура в плоскости магнитного поля, образованного траекториями интерферирующих волн в модели Березинского [19], станет порядка l_m^2 [21]. При этом электрон смещается вдоль магнитного поля на расстояние порядка l_0 , и коэффициент продольной диффузии равен

$$D_{zz} \sim \frac{l_0^2}{\tau_{\rm dl}} , \qquad (35)$$

где τ_{dl} — время делокализации. Полученные в работах [15, 21, 22] результаты совпадают с точностью до логарифмического множителя с результатом Абрикосова и Рыжкина, но их тоже нельзя считать достаточно обоснованными.

Более обоснован подход Мешкова [23], который рассмотрел диффузию вдоль магнитного поля как результат перескока квазилокализованного электрона с одной дрейфовой траектории на другую (см. рис. 2). В его модели имеется плавный неоднородный потенциал с амплитудой U_0/e и характерным размером $b \ge l_m$, а длина пробега электрона вдоль магнитного поля $l_0 \ge b$ задана. Скорость дрейфа квазилокализованного электрона по эквипотенциали в этом случае равна

$$v_{\rm d} = c \frac{U_0}{ebB} \frac{b}{l_0} \sqrt{\frac{l_0}{b}}.$$
(36)

Множитель b/l_0 учитывает вероятность обнаружить электрон в области с размером b, множитель $\sqrt{l_0/b}$ результат суммирования по различным областям, в каждой из которых электрон дрейфует в различных случайных направлениях. Проекции эквипотенциалей с одной энергией на плоскость xy пересекаются между собой. Для области с размером вдоль магнитного поля $L > l_0$ среднее расстояние между пересечениями одной проекции с другими равно $\Delta E/\nabla E$, где $\Delta E = \hbar v_z/L$ расстояние между уровнями энергии в области размера L в одномерном случае, v_z — скорость электрона вдоль магнитного поля. Частота, с которой дрейфующий электрон пересекает другие эквипотенциали с той же энергией в проекции на плоскость xy, равна

$$f(L) = v_{\rm d} \frac{\nabla E}{\Delta E} = \frac{c \nabla E}{eB} \frac{\nabla E L}{\hbar v_z} = \frac{l_{\rm m}^2 \nabla E^2}{\hbar^2 v_z} L.$$
(37)

В точке пересечения проекций эквипотенциалей с равными энергиями, расстояние между которыми вдоль магнитного поля равно *z*, происходит отталкивание уровней энергии на величину туннельного интеграла

$$\Delta(z) = \frac{\hbar}{\tau_0} \exp\left(-\frac{z}{l_0}\right),\tag{38}$$

так же, как и в одномерном случае [38].

Мешков, пользуясь методом теории Ландау – Зенера для столкновения молекул (см. [39], п. 90), показал, что вероятность перехода на другую дрейфовую траекторию при прохождении пересечения равна

$$W_{1,2} = 1 - \exp\left[-\frac{2\pi \Delta^2(z)}{\hbar^2 |\mathbf{v}_{d,1} \times \mathbf{v}_{d,2}|} l_m^2\right],$$
(39)

где $\mathbf{v}_{d,1}$ и $\mathbf{v}_{d,2}$ — дрейфовые скорости электронов на двух траекториях. Согласно этому выражению вероятность перехода определяется соотношением между $\Delta(z)$ и неопределенностью энергии $\delta E = \hbar/\tau_c$ за время прохождения пересечения $\tau_c = l_m/v_d$. Вероятность $W_{1,2} \sim$ $\sim [\Delta(z)l_m/(\hbar v_d)]^2$ мала при $v_d \ll l_m \Delta(z)/\hbar$ и $W_{1,2} = 1$ при $v_d \gg l_m \Delta(z)/\hbar$. Из соотношений (38) и $\Delta(z) \sim \hbar v_d/l_m$ находим длину скачка электрона

$$z_h = l_0 \ln \frac{l_{\rm m}}{\tau_0 v_{\rm d}} \,. \tag{40}$$

Частота переходов на другие эквипотенциали равна частоте пересечений с эквипотенциалями в области с размером $L = z_{\rm h}$

$$\tau_{\rm dl}^{-1} \sim f(z_{\rm h}) \sim \frac{l_{\rm m}^2 \nabla E^2}{\hbar^2 v_z} z_{\rm h} \sim \frac{\tau_0 v_{\rm d}^2}{l_{\rm m}^2} \ln \frac{l_{\rm m}}{\tau_0 v_{\rm d}} \sim \tau_0 \alpha^2 \ln \frac{1}{\alpha} \,. \tag{41}$$

Параметр

$$\alpha \equiv \frac{l_{\rm m}}{\tau_0 v_{\rm d}} \tag{42}$$

должен быть мал, для того чтобы приведенное рассмотрение было справедливо. Коэффициент диффузии вдоль магнитного поля равен

$$D_{zz} \sim \frac{l_0^2}{\tau_0} \alpha^2 \ln^3 \frac{1}{\alpha} , \qquad (43)$$

проводимость

$$\sigma_{zz} \sim \sigma_{zz,0} \alpha^2 \ln^3 \frac{1}{\alpha} \,. \tag{44}$$

В случае потенциала, создаваемого заряженными примесями, в области классического экранирования $(k_F r_D \ge 1)$ для $b \sim r_D$ величина $U_0 \sim e^2 (N r_D^3 / r_D)^{1/2}$, и параметр $\alpha \sim k_F l_m$. Выражение (44) отличается от (34) только степенью логарифмического множителя. В случае потенциала заряженных примесей в движение электрона вносят равноценный вклад потенциалы различных масштабов, меньших r_D , и поэтому реальное выражение для σ_{zz} может отличаться от (44) наличием дополнительных логарифмических факторов, уменьшающих локализационный множитель.

В условиях квантового экранирования ($k_{\rm F}r_{\rm D} \ll 1$) величина $\alpha \sim l_{\rm m}/r_{\rm D}$. Тогда с точностью до логарифмических факторов $\sigma_{zz} \propto B^2$ возрастает с ростом магнитного поля [22], так как возрастают $\sigma_{zz,0}$ и α .

4.2. Влияние электрон-фононного рассеяния

Электрон-фононное рассеяние может привести к дополнительным перескокам между эквипотенциалями, по которым дрейфует электрон (см. рис. 2). Это должно приводить к росту продольной проводимости при повышении температуры⁴. Если время электрон-фононного рассеяния $\tau_0 \ll \tau_{e-ph}(T) \ll \tau_{dl}$ и $T \gg \hbar/\tau_0$, то продольная проводимость описывается тем же выражением, что и в одномерном случае [41]:

$$\sigma_{zz}(T) \sim e^2 v_{\rm F} v_{\rm F}^2 \; \frac{\tau_0^2}{\tau_{\rm e-ph}(T)} \; .$$
 (45)

При более высоких температурах, при которых $\tau_{e-ph}(T) \ll \tau_0$, температурная зависимость σ_{zz} меняется на противоположную.

4.3. Поперечная проводимость

В случае классического экранирования поперечное смещение квазилокализованного электрона до прыжка в другое состояние $\sim \hat{\lambda} \ll r_D$. Как и в отсутствие локализационных эффектов, электрон много раз взаимодействует с каждой примесью и после того, как перескочит на другую дрейфовую траекторию. Изложенный выше вывод соотношений (32) и (33) остается применим и в этом случае [15]. Локализационные эффекты влияют только на вероятность обнаружить электрон в поле примеси, что учитывается через коэффициент диффузии D_{zz} .

В случае квантового экранирования ($k_{\rm F}r_{\rm D} \ll 1$) поперечное смещение квазилокализованного электрона $\sim r_{\rm D}/\ln{(r_{\rm D}/l_{\rm m})}$, и соотношения (32) и (33) выполняются с точностью до относительных поправок $\sim 1/\ln{(r_{\rm D}/l_{\rm m})}$.

Выражения (32) и (33) остаются справедливы и при конечных температурах по крайней мере до тех пор, пока вкладом рассеяния на фононах в поперечную диффузию можно пренебречь. В противоположность продольной проводимости поперечная проводимость согласно (32)

$$\sigma_{xx}(T) \propto \sigma_{zz}^{-1/3}(T) \tag{46}$$

должна убывать при повышении температуры в этом случае. Таким образом, с ростом температуры продольная проводимость возрастает, а поперечная уменьшается. В рамках старых теорий электрон-фононное рассеяние приводит к противоположным результатам.

5. Электрон-электронное взаимодействие

Электрон-электронное взаимодействие может влиять на проводимость несколькими способами. Во-первых, при $T \gtrsim \hbar/\tau_0$ оно ослабляет Q-1D локализационные эффекты, приводя к росту продольной проводимости при повышении температуры. Мурзин [40] показал, что за время τ_0 переменное электромагнитное флуктуационное поле, обусловленное движением электронов, изменяет случайным образом фазу электрона с энергией, близкой к фермиевской, на величину порядка единицы при температуре

$$T_{\varphi} \sim \left(\frac{\hbar \varkappa_0 v_{\rm F}}{e^2}\right)^{1/3} \frac{\hbar}{\tau_0} \sim \left(\frac{E_{\rm F}}{E_{\rm B}}\right)^{1/6} \frac{\hbar}{\tau_0} \,. \tag{47}$$

Это означает, что выше этой температуры электроны делокализованы и продольная проводимость σ_{zz} описывается формулой Друде (1). При этом по-прежнему справедливо соотношение (32) между поперечной и продольной проводимостью. Основной вклад в сбой фазы вносят флуктуации с ($\omega - v_F K_z$) ~ 1/ τ_0 , т.е. взаимодействие электрона с близкими по скоростям другими электронами.

Во-вторых, электрон-электронное взаимодействие могло бы повлиять на вероятность и длину прыжка в модели Мешкова. Для того, чтобы выяснить это, сравним величину

$$\Delta(z_{\rm h}) = \frac{\hbar}{\tau_0} \exp\left(-\frac{z_{\rm h}}{l_0}\right) = \frac{\hbar}{\tau_0} \alpha \tag{48}$$

⁴ Температура *T* во всех выражениях измеряется в энергетических единицах.

(см. (38), (40) и (42)) с кулоновской энергией $E_Q \sim ^2/(\varkappa z_h)$, учитывая, что в квазиодномерном случае диэлектрическая проницаемость на частотах $1/\tau_{\rm dl} \ll \omega \ll 1/\tau_0$ равна [20]

$$\varkappa = \frac{32\zeta(3)}{\pi} \, \frac{e^2}{\varkappa_0 \hbar v_{\rm F}} \left(\frac{l_0}{2\pi \, l_{\rm m}}\right)^2. \tag{49}$$

Оказывается, что в некомпенсированных полупроводниках $E_{\rm Q}$ всегда много меньше $\varDelta(z_{\rm h})$ и, значит, взаимодействие не влияет на прыжки.

В-третьих, при низких температурах $T < \hbar/\tau$ возникают квантовые поправки к одночастичной плотности состояний (ОЧПС) $v^{\rm sp}$ вблизи уровня Ферми и к диагональным компонентам тензора проводимости σ_{ii} [26, 27]. В трехмерном случае относительные величины поправок к ОЧПС на уровне Ферми $v_{\rm F}^{\rm sp}$ и к σ_{ii} равны

$$\frac{\delta v_{\rm F}^{\rm sp}}{v_{\rm F}} \sim \frac{\delta \sigma_{ii}}{\sigma_{ii}} \sim -\frac{\lambda (\tau^{-1/2} - T^{1/2})}{v_{\rm F} (D_{xx} D_{yy} D_{zz})^{1/2} \hbar}, \qquad (50)$$

где λ — константа взаимодействия порядка единицы. В нулевом магнитном поле величина этих поправок мала $\sim [\hbar/(E_{\rm F}\tau)]^2$. В классически сильном поле они возрастают в $(\omega_{\rm c}\tau)^2$ раз в результате уменьшения коэффициента диффузии поперек магнитного поля и становятся порядка

$$\frac{\delta v_{\rm F}^{\rm sp}}{v_{\rm F}} \sim \frac{\delta \sigma_{ii}}{\sigma_{ii}} \sim -\left(\frac{\hbar\omega_{\rm c}}{E_{\rm F}}\right)^2,\tag{51}$$

в то время как $\delta \sigma_{xy} = 0$.

Формальная подстановка значений величин, входящих в (50), для квантового предела в случае рассеяния на точечных дефектах (Q-1D локализационные эффекты малосущественны в этом случае) приводит К $\delta\sigma_{ii}/\sigma_{ii} \sim -1$. Следовательно, взаимодействие становится сильным эффектом, и выражение (50), полученное на основе теории возмущений, неприменимо. В случае рассеяния на ионизированных примесях можно попробовать оценить $\delta \sigma_{ii} / \sigma_{ii}$, используя (50) и взяв в качестве τ время т_D, за которое электрон смещается поперек магнитного поля на расстояние $r_{\rm D}$ (при этом движение электрона приобретает характер трехмерной диффузии), а также используя соотношение $D_{xx} \sim r_{\rm D}^2/\tau_{\rm D}$ и выражения (31), (43). Для случая классического экранирования $(k_{\rm F}r_{\rm D} \gg 1)$ с точностью до логарифмических множителей получим

$$\frac{\delta\sigma_{ii}}{\sigma_{ii}} \sim -\frac{1}{\left(k_{\rm F}r_{\rm D}\right)^{4/3}} \propto B^{4/3} \,. \tag{52}$$

В области квантового экранирования отношение $\delta \sigma_{ii} / \sigma_{ii} \sim -1.$

Обсудим теперь, как в рамках современных представлений могла бы вести себя проводимость при низких температурах $T < \hbar/\tau_D$ в результате электрон-электронного взаимодействия. В области классического экранирования квантовые поправки к проводимости малы и, так как диффузия электрона имеет трехмерный характер для $t > \tau_D$, пропорциональны \sqrt{T} , как в нулевом или классически сильном магнитном поле. В области квантового экранирования имеются две возможности.

1. Проводимость, хотя и существенно меняется при понижении температуры, остается металлической при $T = 0 \ c \sigma_{xx}, \ \sigma_{xx}, \ \sigma_{zz}, \ \sigma_{xy} \neq 0.$

2. При T = 0 вблизи уровня Ферми ОЧПС v^{sp} мала, и электронные состояния локализованы, в то время как ниже уровня Ферми остаются делокализованные состояния (рис. 5) [28]. В этом случае при $T \rightarrow 0$

$$\sigma_{xx}, \quad \sigma_{yy}, \quad \sigma_{zz} \to 0, \quad \sigma_{xy} \to \gamma_{xy} \frac{nec}{B}$$

$$(53)$$

$$\rho_{xx}, \quad \rho_{yy} \to 0, \quad \rho_{zz} \to \infty, \quad \rho_{xy} \to \gamma_{xy}^{-1} \quad \frac{B}{nec} ,$$
(54)

где γ_{xy} не зависит от температуры. Будем называть такое состояние холловским проводником. Квантования σ_{xy} и ρ_{xy} в этом случае нет ⁵. Возможность такого поведения тензоров проводимости и сопротивления обсуждалась также Гальпериным [45] для относительно чистой системы в случае возникновения запинингованных волн спиновой плотности.

Рис. 5. Предполагаемое поведение одночастичной плотности состояний *v*^{sp} в квантовом пределе в зависимости от энергии. Заштрихованы области, где электроны локализованы.

При $T < \hbar/\tau_D$ электрон-электронное взаимодействие должно приводить к уменьшению σ_{xx} и σ_{zz} при понижении температуры, в то время как при более высоких температурах σ_{xx} зависит от температуры противоположным образом.

Отметим несколько особенностей поведения чистых полуметаллов в КП, связанных с тем, что концентрация электронов *n* в них гораздо больше концентрации примесей *N*. Взаимодействие одного электрона с другими приводит к увеличению скорости его поперечного движения. Это не дает прямого вклада в проводимость [8], но может нарушить условия квазиодномерности движения (4) и, следовательно, во-первых, может подавить Q-1D локализационные эффекты при температуре T_{loc} , меньшей T_{φ} . Во-вторых, это может привести к тому, что при

⁵ Мы обсуждаем поведение только толстых образцов, в которых при реально достижимых температурах невозможно выполнение условия $d < (\hbar D_{zz}/T)^{1/2}$, где d— толщина образца. В пленках с трехмерным спектром ($d > l_0$) при низких температурах $T \ll \hbar D_{zz}/d^2$ наблюдается квантование σ_{xy} и ρ_{xy} [42–44], обусловленное электрон-электронным взаимодействием.

температуре $T_{cor} > T_{loc}$ не будет многократности взаимодействия электрона с примесями. Чем меньше концентрация примесей, тем меньше T_{loc} и T_{cor} . При $T > T_{cor}$ проводимость описывается старыми теориями [3, 4].

6. Больцмановский (невырожденный) электронный газ при $T \ll \hbar \omega_{c}$

6.1. Экранировка, рассеяние и область существования больцмановского газа

Больцмановский электронный газ заполняет только нижнюю подзону Ландау, когда $T \ll \hbar\omega_c$, т.е. в ультраквантовом пределе (УКП). Величины характерного волнового вектора вдоль магнитного поля $k_T \equiv \hat{\lambda}_T = -\sqrt{2mT}/\hbar$ и дебаевский радиус экранирования

$$r_{\rm D} = \left(\frac{4\pi e^2 n}{\varkappa_0 T}\right)^{-1/2} \tag{55}$$

не зависят от магнитного поля, если не зависят от поля mи \varkappa_0 . Фурье-образ экранированного потенциала примесного центра [31, 46] равен

$$V(\mathbf{q}) = \frac{4\pi e}{\varkappa_0 [q_\perp^2 + q_z^2 + \exp(-q_\perp^2 l_m^2/2) r_{\mathrm{D}}^{-2} I(q_z^2/k_T^2)]}, \quad (56)$$

где

$$I(x) = \int_0^1 \exp\left[(t^2 - t)x\right] dt = \begin{cases} 1 - \frac{x}{6}, & x \le 1, \\ \frac{2}{x}, & x \ge 1. \end{cases}$$
(57)

В случае $k_T r_D \equiv \sqrt{2}T/(\hbar\omega_0) \gg 1$ потенциал экранируется классически (ехр $(-q_{\perp}^2 l_m^2/2) \approx 1$) с радиусом r_D . Здесь

$$\omega_0 = \sqrt{\frac{4\pi n e^2}{\varkappa_0 m}} \tag{58}$$

— плазменная частота.

Время рассеяния назад $\tau_0(E)$ описывается выражением (14) с заменой $k_{\rm F}$ на $k_z=\sqrt{2mE/\hbar}$ и с

$$\xi'(x) = \left[4k_z^2 + r_{\rm D}^{-2}\exp(-x)I\left(\frac{4k_z^2}{k_T^2}\right)\right]\frac{l_{\rm m}^2}{2}.$$
 (59)

Условие применимости нашего рассмотрения

$$T \gg E_{\mathrm{B,f}}, \quad T \gg U_3$$
или $U_4,$ (60)

где

$$U_3 \sim \frac{e^2 (Nr_{\rm D}^3)^{1/2}}{\varkappa_0 r_{\rm D}} \sim U_0^{3/4} T^{1/4} , \qquad (61)$$

$$U_4 \sim \frac{e^2 (N r_{\rm D}^2 \hat{\lambda}_T)^{1/2}}{\varkappa_0 \hat{\lambda}_T} \sim E_{\rm B}^{1/4} T^{3/4} \left(\frac{N}{n}\right)^{1/2}$$
(62)

— амплитуды примесного потенциала в случае классического ($T \ge \hbar \omega_0$) и квантового ($T \ll \hbar \omega_0$) экранирования соответственно, $E_{\rm B,f}$ — боровская энергия в магнитном поле. В пределе сильных магнитных полей ($l_{\rm m} \ll a_{\rm B}$) [35]

$$E_{\rm B,f} = E_{\rm B} \ln^2 \left(\frac{a_{\rm B}}{l_{\rm m}}\right)^2. \tag{63}$$

В широкой области полей $B_0 < B < 100B_0$ зависимость $E_{\rm B,\,f}$ от B хорошо аппроксимируется законом

$$E_{\rm B,f} \propto \left(\hbar\omega_0\right)^{1/3},\tag{64}$$

где B_0 определяется из равенства $l_{\rm m} = a_{\rm B}$.

С учетом (61) и (62) условия (60) сводятся к

$$T \gg \max(E_{B,f}, U_{cl}), \qquad T \gg \max(E_{B,f}, U_{q}), \qquad (65)$$

где

$$U_{\rm cl} = e^2 \frac{N^{2/3}}{\varkappa_0 n^{1/3}}, \qquad U_{\rm q} = E_{\rm B} \left(\frac{N}{n}\right)^2.$$
 (66)

Величины U_{cl} и U_q совпадают с энергиями активации, полученными Шкловским и Эфросом [32]. Это означает, что при неравенствах, обратных неравенствам (65), поведение проводимости диэлектрическое.

На рисунке 6 приведены диаграммы состояний электронной системы в УКП. Если пренебречь зависимостью m и \varkappa_0 от магнитного поля, то на этих диаграммах от поля зависят только боровская $E_{\rm B,f}$ и фермиевская $E_{\rm F}$ энергии, но зато они не зависят от концентрации примесей N. Если $\hbar\omega_0 \ll E_{\rm B}$, что эквивалентно $na_{\rm B}^3 \ll 1$, то область квантовой экранировки отсутствует. Фермиевский в нулевом магнитном поле электронный газ может стать больцмановским в сильном поле, так как фермиевская энергия в квантовом пределе (8) убывает с ростом поля.

Рис. 6. Диаграммы состояний электронной системы в координатах T - N/n для случаев $\hbar\omega_0 \ll E_{\rm B}$ (а), $\hbar\omega_0 \gg E_{\rm F} \gg E_{\rm B,f}$ (б) и $\hbar\omega_0 \gg E_{\rm B,f} \gg E_{\rm F}$ (в). Границы раздела этих состояний (больцмановский газ (БГ), фермиевский газ (ФГ) и диэлектрик) показаны сплошными линиями. Ниже штриховой линии находится область, в которой квазиодномерные эффекты могут влиять на проводимость. Выше пунктирной линии — область, в которой справедливо выражение (81) для поперечной проводимости σ_{xx} .

6.2. Квазиодномерные локализационные эффекты

В ультраквантовом пределе условие квазиодномерности движения электрона (4) всегда выполнено. Однако в некомпенсированных полупроводниках Q-1D локализационные эффекты подавляются в результате электронэлектронного взаимодействия даже в случае фермиевской статистики электронов. В компенсированных же полупроводниках ($n \ll N$) Q-1D локализационные эффекты возможны при определенных условиях. Найдем эти условия.

В отличие от фермиевского газа сбой фазы электрона за счет взаимодействия с другими близкими по скоростям электронами не является определяющим. В случае больцмановской статистики электронов время сбоя фазы равно времени электрон-электронного рассеяния τ_e , которое по порядку величины равно

$$\tau_{\rm e} \sim \tau_1(T) \ \frac{N}{n} \,, \tag{67}$$

где τ_1 описывается выражением (17) с заменой $k_{\rm F}$ на k_z . Условием полного подавления локализационных эффектов является $\tau_{\rm e} < \tau_0(E)$.

В случае классического экранирования отношение этих времен

$$\frac{\tau_{\rm e}}{\tau_0(E)} \sim \frac{(\hbar\omega_0)^2}{T^{1/2}E^{3/2}} \,\frac{N}{n}\,. \tag{68}$$

Отсюда следует, что для электронов с энергией $E \sim T$ локализационные эффекты должны быть подавлены при температурах, больших температуры

$$T_{\varphi,\mathrm{cl}} \sim \hbar \left(\frac{Ne^2}{\varkappa_0 m}\right)^{1/2} \sim \hbar \omega_0 \left(\frac{N}{n}\right)^{1/2}.$$
 (69)

При $T \ll T_{\varphi, cl}$ и $N \gg n$ они могут заметно влиять на проводимость.

В случае квантового экранирования отношение

$$\frac{\tau_{\rm e}}{\tau_0(E)} \sim \frac{N}{n} \tag{70}$$

зависит только от отношения концентраций электронов и примесей. В некомпенсированных полупроводниках Q1-D локализационные эффекты, по-видимому, мало существенны. Если $n \ll N$, то они должны влиять на электронный транспорт.

На рисунке ба область Q1-D локализационных эффектов отсутствует (линия $T = T_{\varphi, cl}$ лежит в диэлектрической области). На рисунке 66, в линия $T = T_{\varphi, cl}$ проведена штрихами.

6.3. Продольная проводимость

В ультраквантовом пределе выравнивание распределения электронов по энергиям происходит за времена большие, чем $\tau_0(T)$ [47], поэтому в условиях, когда Q-1D локализационные эффекты несущественны, продольная проводимость равна

$$\sigma_{zz} = -\int_0^\infty \frac{n(E)e^2\tau_0(E)}{m} \frac{\partial f(E)}{\partial E} dE =$$
$$= \int_0^\infty \frac{2e^2\tau_0(E)n}{\sqrt{\pi}m} \frac{E}{T^{3/2}} \exp\left(-\frac{E}{T}\right) dE, \qquad (71)$$

где

$$n(E) = \int_{0}^{E} v(E) \, \mathrm{d}E = \frac{1}{(2\pi l_{\rm m})^2} \, \frac{\sqrt{8m}}{\hbar} \sqrt{E} \,. \tag{72}$$

Здесь n — полная концентрация электронов в зоне проводимости, $f(E) = A(T) \exp(-E/T)$ — функция распределения электронов, A(T) находится из условия

$$\int_0^\infty v(E)f(E)\,\mathrm{d}E = n\,.\tag{73}$$

Продольное сопротивление $\rho_{zz} = 1/\sigma_{zz}$ слабо растет с полем и насыщается в пределе сильных магнитных

полей. В области классического экранирования $(T \gg \hbar \omega_0)$ величина насыщения равна

$$\rho_{zz}^{\infty} = \frac{\pi^{3/2}}{2^{5/2}} \, \frac{e^2 m^{1/2}}{\varkappa_0^2} \, \frac{N}{n} T^{-3/2} \,. \tag{74}$$

Это значение меньше, чем сопротивление без магнитного поля ρ_0 , вследствие того, что нет малоуглового рассеяния, которое вносит заметный вклад в ρ_0 [3]. В области квантового экранирования величина насыщения

$$\rho_{zz}^{\infty} = 3.09 \, \frac{m^{3/2}}{\hbar^2 \varkappa_0} \, \frac{N}{n^2} T^{1/2} \,. \tag{75}$$

В действительности, при фиксированной температуре насыщение сопротивления не происходит. Во-первых, в результате непараболичности электронного спектра эффективная масса электрона *m* в сильных полях зависит от величины поля [48]. Во-вторых, с ростом поля возрастает энергия связи электрона с примесью $E_{B,f}$, и при $E_{B,f} \sim T$ выражение (71) становится неприменимым. В больее сильном поле ρ_{zz} , приобретая активационный характер, быстро возрастает.

В областях, где существенны Q-1D локализационные эффекты, проводимость не изучена.

6.4. Поперечная проводимость

Характер поперечной проводимости σ_{xx} больцмановского электронного газа в полупроводниках принципиально отличен от характера поперечной проводимости фермиевского газа. При усреднении по энергии

$$\sigma_{xx} = -\int_0^\infty e^2 v(E) D_{xx}(E) \frac{\partial f}{\partial E} dE =$$

= $\frac{ne^2}{\sqrt{\pi}T^{3/2}} \int_0^\infty \frac{\exp\left(-E/T\right)}{\sqrt{E}} D_{xx}(E) dE$, (76)

с коэффициентом диффузии (31)

$$D_{xx}(E) \propto D_{zz}(E)^{-1/3}$$
 (77)

интеграл (76) расходится при $E \to 0$. Можно попытаться оценить проводимость σ_{xx} , обрезав интегрирование в зависимости от условий при $E = \max(E_{B,f}, U_{cl})$ или $E = \max(E_{B,f}, U_q)$. Однако такой способ действий приводит к неверному результату, по крайней мере в случае, когда длина волны $\hat{\lambda}_U$ электрона с энергией U_3 (см. (61)) много меньше радиуса экранирования r_D . Это условие выполняется при температурах

$$T \gg \frac{(\hbar\omega_0)^{6/5}}{E_{\rm B}^{1/5}} \left(\frac{n}{N}\right)^{2/5}.$$
(78)

Оказывается, что основной вклад в проводимость в этом случае вносят электроны с малыми энергиями

$$E_{\rm c} < E < U_3 \,, \tag{79}$$

где E_c — порог подвижности, зависящий от температуры (рис. 7а). Их движению вдоль магнитного поля препятствуют непроницаемые холмы примесного потенциала, но они способны обходить эти холмы за счет дрейфа поперек магнитного поля (рис. 7б). Хотя число таких электронов мало, они гораздо подвижнее поперек поля, чем электроны с большей энергией, так как будучи зажатыми между двумя холмами примесного потен-

Рис. 7. (а) Схема искривления дна зоны проводимости. По горизонтали направлена ось *z*, параллельная магнитному полю. Заштрихованные области лежат ниже порога протекания E_c . Электрон с энергией E_2 свободно движется вдоль магнитного поля. Электрон с энергией E_1 , зажатый вдоль *z* между двумя максимумами потенциала, дрейфует поперек *z*; (б) схема движения электронов с энергией E_1 (слева) и энергией E_2 (справа) в плоскости *xz*. Замкнутые кривые эквипотенциали, ограничивающие области, недоступные для электрона с энергией E_1 .

циала, они дрейфуют примерно в одном направлении до тех пор, пока не сместятся на расстояние порядка *r*_D. Коэффициент диффузии таких электронов

$$D_{xx} \sim r_{\rm D} v_{\rm d} \sim \frac{c U_3}{e B} \,.$$
 (80)

Здесь $v_d \sim cU_3/(eB)$ — скорость дрейфа электронов. Направление дрейфа электрона с энергией $E_2 > U_3$, свободно движущегося вдоль магнитного поля, часто меняется случайным образом (рис. 76). Поэтому он смещается поперек магнитного поля на расстояние порядка r_D за гораздо большее время, чем электрон с энергией $E_1 < U_3$.

Для того чтобы оценить вклад низкоэнергетических электронов в проводимость, подставим в выражение (76) $E \sim U_3$, коэффициент диффузии (80) и интегрирование заменим умножением на U_3 . Тогда найдем поперечную проводимость [30]

$$\sigma_{xx} \sim \frac{nec}{B} \left(\frac{U_3}{T}\right)^{3/2} \sim \sigma_{xy} \left(\frac{U_{\rm cl}}{T}\right)^{9/8} \sim \frac{e^{13/4} c n^{5/8} N^{3/4}}{\varkappa_0^{9/8} B T^{9/8}}$$
(81)

и, учитывая, что $\sigma_{xx} \gg \sigma_{xy} = nec/B$, поперечное сопротивление

$$\rho_{xx} = \beta_2 \frac{e^{5/4} N^{3/4} B}{\varkappa_0^{9/8} c n^{11/8} T^{9/8}}, \qquad (82)$$

где β_2 — неизвестный численный коэффициент.

Область применимости выражений (81) и (82) занимает всю область существования больцмановского газа на рис. 6а и лежит выше пунктирной линии на рис. 6б, в. В области ниже этой линии поперечная проводимость не найдена.

Для полупроводников с $|g| \ll m_e/m$ возможна ситуация, когда $\mu_{\rm B}|g|B \lesssim T \ll \hbar\omega_{\rm c}$. В этом случае заполнены подзоны с двумя ориентациями спина. Если рассеяние с переворотом спина слабое, т.е. можно пренебречь переходами электронов между подзонами, и электрон-электронное взаимодействие несущественно, то каждую из подзон можно рассматривать независимо. Суммирование по двум подзонам при вычислении каких-либо величин приводит к дополнительному множителю $1 + \exp(-\mu_{\rm B}|g|B/T)$ по сравнению со случаем одной подзоны. Однако такой же множитель появляется и в нормировочном соотношении (73), что приводит к обратному множителю в коэффициенте A(T). В результате эти множители сокращаются, и ответы остаются такими же, как и в случае одной заполненной подзоны.

7. Экспериментальные результаты

7.1. Фермиевский газ

Существенный интервал металлической проводимости сильно легированных некомпенсированных (и тем более компенсированных) полупроводников в КП возможен только при концентрации электронов n, на несколько порядков большей, чем критическая концентрация n_c, при которой происходит переход металл-диэлектрик в нулевом магнитном поле. Но даже в этом случае не удается достичь большой разницы между полем $B_{\rm EQL}$ и полем В_{МІ} (см. рис. 3) и того, чтобы неравенства (4), определяющие квазиодномерность движения электрона, были сильными. Поэтому обсуждавшиеся выше эффекты не очень велики, но тем не менее, они проявляются достаточно отчетливо. Для экспериментального изучения транспорта в КП в наибольшей степени подходят сильно легированные монокристаллы узкозонных полупроводников InSb и InAs n-типа, имеющие простой изотропный спектр и хорошее качество. В них достигается наибольшее отношение полей $B_{\rm MI}$ и $B_{\rm EQL}$.

Первые измерения магнитосопротивления InSb и InAs при низких температурах были выполнены несколько десятилетий назад. Наблюдавшиеся [49, 50] зависимости поперечного сопротивления от магнитного поля оказались близки к предсказанным Адамсом и Холстейном [4]: $\rho_{xx} \propto B^p$ с $p \approx 3$. Сопротивление ρ_{xx} слабо зависит от температуры в диапазоне гелиевых температур (1,5–4,2 К). Поэтому сложилось впечатление, что проблема транспорта в КП в основном решена. Появление новых теоретических работ стимулировало более детальное экспериментальное изучение проводимости в КП, результаты которого мы обсудим ниже.

Примеры зависимостей поперечного ρ_{xx} , холловского ρ_{xy} и продольного ρ_{zz} сопротивлений от магнитного поля приведены на рис. 8–11. После окончания осцилляций Шубникова – де Гааза, начиная с поля B_{EQL} , поперечное сопротивление ρ_{xx} монотонно возрастает с ростом магнитного поля (см. рис. 8). На зависимости ρ_{zz} от *В* максимум, соответствующий выходу на уровень Ферми дна подзоны Ландау 0⁻ (см. рис. 9), не наблюдается, так как скорость электронов вдоль магнитного

Рис. 8. Зависимость ρ_{xx} и ρ_{xy} образца n-InSb с концентрацией электронов $n = 1,1 \times 10^{16}$ см⁻³ от величины магнитного поля при различных температурах, указанных числами около экспериментальных кривых. Хотя ρ_{xy} заметно зависит от температуры, изменение σ_{xy} не превышает 0,7 % [51].

Рис. 9. Зависимость ρ_{zz} образца n-InSb с концентрацией электронов $n = 1, 1 \times 10^{16}$ см⁻³ от величины магнитного поля при различных температурах. Числа около кривых — температура в К. На вставке: зависимость продольной проводимости $\sigma_{zz} = 1/\rho_{zz}$ от температуры в различных магнитных полях, указанных числами около кривых.

поля на дне подзоны 0⁻ мала и рассеяние с переворотом спина из самой нижней подзоны 0⁺ в подзону 0⁻ отсутствует. Несмотря на то, что теория, как без учета Q-1D локализационных эффектов [3], так и с их учетом [22] предсказывает сначала рост ρ_{zz} в области классического экранирования, затем падение в области квантового экранирования и затем снова рост при приближении к переходу металл – диэлектрик, никто не наблюдал падающего участка. Наблюдается лишь небольшое уменьшение и затем рост производной d ln ρ_{zz} / d ln *B* (см. рис. 10). Отсутствие падающего участка, повидимому, связано с тем, что поле $B_{\rm QS}$ близко к полю $B_{\rm MI}$, и поэтому условие квантового экранирования $k_{\rm F}r_{\rm D} \ll 1$ не реализуется.

Соотношение (33) хорошо выполняется в зависимости от магнитного поля и концентрации электронов при $T \approx 1,5$ K, при которой локализационные эффекты уже насыщаются, а электрон-электронное взаимодействие

Рис. 10. Зависимость ρ_{zz} от *B* в квантовом пределе по магнитному полю при $T \approx 1,5$ К для образцов InSb с различными концентрациями электронов. Числа около кривых указывают *n* в единицах 10^{16} см⁻³. Штриховые кривые — результаты теории без учета локализационных эффектов для образцов с минимальной (верхняя кривая) и максимальной (нижняя кривая) концентрациями. Стрелками указаны поля B_{EQL} , B_{QS} и B_{MI} для образца с $n = 1,4 \times 10^{16}$ см⁻³ [53].

Рис. 11. Поперечное сопротивление ρ_{xx} (\circ) и $C_n B^{8/3} \rho_{zz}^{1/3} m(B)/m$ (\times) при $T \approx 1,5$ К в зависимости от магнитного поля для различных образцов. Числа у кривых — концентрации электронов *n* в единицах 10^{16} см⁻³. Для образца с n = 1,4 сопротивление ρ_{xx} представлено также при T = 80 мК для того, чтобы было видно поле перехода металл–диэлектрик $B_{\rm MI}$. Штриховые кривые — результаты теории Адамса и Холстейна для образцов с минимальной (верхняя кривая) и максимальной (нижняя кривая) концентрациями. Стрелками указаны поля $B_{\rm EOL}$ и $B_{\rm MI}$ для образца с n = 1,4 [53].

еще несущественно (см. далее в этом разделе). Для проверки этого были совместно построены зависимости ρ_{xx} и $C_n B^{8/3} \rho_{zz}^{1/3} m(B)/m$ от магнитного поля для набора образцов некомпенсированного InSb с различными концентрациями электронов в диапазоне $(1-5) \times 10^{16}$ см⁻³ (см. рис. 11). Множитель m(B)/m учитывает зависимость эффективной массы электронов от магнитного поля.

Коэффициенты С_n выбирались так, чтобы добиться наилучшего совмещения пар кривых, относящихся к одному образцу. Зависимость C_n от n хорошо согласуется с теоретически предсказанной $C_n \propto n^{-7/3}$ (рис. 12). Извлеченный из экспериментальных данных численный коэффициент в выражении (33) равен $\beta_1 = 2,1$. Величина сопротивления ρ_{xx} оказывается в 2–3 раза больше, чем предсказывает теория Адамса и Холстейна [4] (см. рис. 11). Это соответствует тому, что корреляции актов рассеяния приводят к увеличению коэффициента диффузии поперек магнитного поля D_{xx} , а значит, и сопротивления $\rho_{xx} \approx \sigma_{xx} / \sigma_{xy}^2 \propto D_{xx}$. Аппроксимация экспериментальных данных степенной зависимостью $\rho_{xx} \propto B^p$ дает *p* = 3,6, в то время как начальный участок кривой, вычисленной по формулам Адамса и Холстейна, аппроксимируется зависимостью $\rho_{\chi\chi} \propto B^3$.

Рис. 12. Зависимость коэффициентов C_n , полученных из анализа данных на рис. 11, от концентрации электронов. Штриховая прямая соответствует зависимости $C_n \propto n^{-7/3}$.

Изучение температурных зависимостей различных компонент тензора сопротивления и проводимости InSb и InAs в квантовом пределе в широком диапазоне температур от 0,05 до 15 К [22, 28, 29, 51, 52] показало, что диагональные компоненты довольно сильно зависят от температуры (см. рис. 8, 9), в то время как холловская проводимость изменяется с температурой очень слабо. Эти температурные зависимости диагональных компонент нельзя объяснить в рамках теории Адамса и Холстейна [4].

Продольное сопротивление ρ_{zz} уменьшается при повышении температуры во всем диапазоне температур и магнитных полей [22, 28, 29, 51] (рис. 9 и 13). Это можно объяснить подавлением Q-1D локализационных эффектов, причем частота электрон-фононного рассеяния недостаточно велика, чтобы играть какую-либо роль. Согласно экспериментальным данным время неупругого рассеяния при $T \approx 10$ К должно быть всего лишь в несколько раз меньше, чем упругое время $\tau_0 \sim 10^{-12} - 10^{-13}$ с, тогда как время электрон-фононного рассеяния при T = 10 К порядка $10^{-9} - 10^{-10}$ с. По-видимому, уменьшение ρ_{zz} обусловлено подавлением Q-1D локализационных эффектов в результате сбоя фазы электронов электромагнитными флуктуациями [40].

Рис. 13. Зависимость $\rho_{zz}(T)/\rho_{zz}$ (1К) от температуры (логарифмическая шкала) для различных образцов в указанных магнитных полях. Концентрация электронов в образце InAs n = 2,7; в образцах InSb: № 1 — 1,4; № 2 — 5; № 3 — 5 в единицах 10¹⁶ см⁻³. Одна из зависимостей построена на шкале $T^{1/2}$ (верхняя шкала) [29].

Поперечные проводимость σ_{xx} и сопротивление $\rho_{xx} \approx \sigma_{xx}/\sigma_{xy}^2$ немонотонно зависят от температуры в КП (рис. 14, 15). При понижении температуры σ_{xx} сначала возрастает, причем имеются интервалы магнитных полей и температур, где выполняется соотношение (46) (см. рис. 14). Извлеченный из температурных зависимостей проводимости InSb коэффициент $\beta_1 \approx 2$ в

Рис. 14. Зависимость поперечной проводимости σ_{xx} (темные символы и крестики) и $A_n \sigma_{zz}^{-1/3}$ (светлые символы) от температуры для различных образцов InAs и InSb в различных магнитных полях в интервале 6–12 Тл. Коэффициенты A_n выбраны так, чтобы добиться наилучшего совмещения кривых, относящихся к одному образцу в одном и том же поле, в интервале температур 3–6 K [51].

Рис. 15. Зависимость $\rho_{xx}(1 \text{ K})/\rho_{xx}(T)$ от температуры (логарифмическая шкала) для тех же образцов и в тех же магнитных полях, что и на рис. 13. Одна из зависимостей построена на шкале $T^{1/2}$ (верхняя шкала). На вставке: зависимость отношения $\rho_{xx}(1 \text{ K})/\rho_{xx}(0,08 \text{ K})$ от магнитного поля для образца n-InSb № 1 с концентрацией электронов $n = 1.4 \times 10^{16} \text{ см}^{-3}$.

выражениях (32) и (33), близок к величине $\beta_1 = 2, 1$, полученной из полевых зависимостей. В области низких температур, меньших 1 К, поперечная проводимость так же, как и продольная, убывает по закону, близкому к логарифмическому [29, 52] (см. рис. 13, 15).

Тот факт, что при низких температурах диагональные компоненты тензора проводимости убывают при понижении температуры, а холловская проводимость не меняется, и то, что это убывание усиливается с ростом магнитного поля в области классического экранирования (см. рис. 13, 15 и вставку на рис. 15), согласуется с предположением, что температурная зависимость проводимости в этом случае определяется электрон-электронным взаимодействием. При приближении к полю перехода металл-диэлектрик $B_{\rm MI}$ отношение $\rho_{xx}(1 \text{ K}) / \rho_{xx}(0,08 \text{ K})$ падает и становится меньше 1 (вставка на рис. 15). Однако в рамки теории квантовых поправок не укладывается то, что температурные зависимости логарифмические, а не вида $A + D\sqrt{T}$ (см. (50)), и то, что ρ_{zz} убывает при понижении температуры быстрее, чем ρ_{xx} .

7.2. Больцмановский газ

Поперечное сопротивление больцмановского газа в InSb в широком диапазоне концентраций электронов хорошо описывается выражением (82). Зависимости ρ_{xx} от магнитного поля близки к линейным (рис. 16), $\rho_{xx} \propto T^{-9/8}$ в диапазоне температур 20–80 К (рис. 17). При фиксированных температуре и поле $\rho_{xx}/N^{3/4} \propto n^{-11/8}$ (рис. 18), как следует из выражения (82). Найденный из эксперимента численный коэффициент β_2 в выражении (82) равен $\beta_2 = 0,3$.

Поведение продольного сопротивления больцмановского электронного газа в InSb при концентрации

Рис. 16. Зависимости поперечного сопротивления ρ_{xx} от магнитного поля для образца n-InSb с концентрацией электронов $n = 3.6 \times 10^{13}$ см⁻³ при температурах 30, 50 и 70 K [30].

Рис. 17. Температурные зависимости поперечного сопротивления ρ_{xx} для различных образцов в магнитном поле 11 Тл. Числа у кривых — концентрации электронов *n* в см⁻³. Штриховая прямая проведена с наклоном, соответствующим зависимости $\rho_{xx} \propto T^{-9/8}$ [30].

электронов $n = 10^{15}$ см⁻³ достаточно хорошо согласуется с теоретическими представлениями. При переходе в УКП оно падает за счет подавления малоуглового рассеяния и затем лишь слабо зависит от магнитного поля (рис. 19). Падение должно усиливаться с уменьшением концентрации электронов *n* в результате возрастания радиуса экранирования. В действительности оно уменьшается и при достаточно малых *n* магнитосопротивление становится положительным (рис. 19). При концентрациях около 10^{13} см⁻³ расхождение эксперимента и теории достигает 40 раз в поле B = 11 Тл (рис. 20). Такая большая разница не может быть объяснена Q-1D локализационными эффектами, описанными выше.

8. Заключение

Обзор содержит теоретические предсказания и экспериментальные подтверждения того, что квазиодномерные локализационные эффекты влияют на проводимость в

Рис. 18. Зависимость величины $\rho_{xx}/N^{3/4}$ в поле 11 Тл при температуре 50 К от концентрации электронов *n*, построенная по результатам измерений на различных образцах. Прямая проведена с наклоном, соответствующем зависимости $\rho_{xx}/N^{3/4} \propto n^{-11/8}$ [30].

Рис. 19. Продольное сопротивление ρ_{zz} образцов с различными концентрациями электронов, указанных у кривых, в зависимости от магнитного поля при T = 30 К. Кривая с шумами — результат измерений на высокой частоте 600 МГц, остальные — на низкой частоте 30 Гц [54].

Рис. 20. Продольное сопротивление ρ_{zz}/ρ_0 образцов с различными концентрациями электронов *n*, нормированное на сопротивление в нулевом магнитном поле ρ_0 , в зависимости от *n* в поле 6,3 Тл при T = 30 К [54].

квантовом пределе по магнитному полю. Однако степень завершенности этого вопроса не следует переоценивать. Хотя различные теоретические подходы приводят к одинаковым результатам с точностью до логарифмических множителей и численных коэффициентов, ни одно из решений не является строгим. Экспериментальные результаты лишь подтверждают сам факт влияния этих эффектов и более или менее согласующийся с теоретическими предсказаниями масштаб эффектов.

Выражение для поперечной проводимости (32), учитывающее многократность взаимодействия электрона с примесями, представляется правильным в области классического экранирования. В области квантового экранирования поправки к правой части этого выражения невелики ~ $1/\ln^p (r_D/l_m)$. Выражение (32) согласуется с экспериментальными данными. Однако стоит отметить, что из-за небольшой разницы полей $B_{\rm MI}$ и $B_{\rm EQL}$ интервалы магнитных полей и температур, в которых выполняется соотношение (32), небольшие.

Что касается влияния на проводимость электронэлектронного взаимодействия, то подтвердились предположения о том, что диагональные компоненты тензора проводимости σ_{xx} и σ_{zz} значительно уменьшаются при понижении температуры, а холловская проводимость σ_{xy} не меняется. Неожиданным оказалось то, что несмотря на трехмерный характер диффузии электронов, температурные зависимости σ_{xx} и σ_{zz} близки к логарифмическим, а не к зависимостям типа $A + D\sqrt{T}$, причем σ_{zz} меняется с температурой быстрее, чем σ_{xx} . Эти факты требуют объяснения. Возможно, логарифмическое поведение температурных зависимостей проводимости обусловлено тем, что в квантовом пределе имеется только четыре независимых степени свободы в фазовом пространстве $(y, z, k_y = -x_0/l_m^2, k_z$ в калибровке Ландау [39]) вместо шести (x, y, z, k_x, k_y, k_z) .

Наиболее интересный и до конца нерешенный вопрос — является ли электронная система в квантовом пределе металлом или холловским проводником (ρ_{xx} , $\rho_{yy} \rightarrow 0$, $\rho_{zz} \rightarrow \infty$, $\rho_{xy} \rightarrow$ const при $T \rightarrow 0$). Такое состояние в какой-то мере аналогично состоянию квантового эффекта Холла в двумерных системах, но без квантования ρ_{xy} и σ_{xy} . В пользу холловского проводника свидетельствует логарифмический характер температурных зависимостей σ_{xx} и σ_{zz} , так как – lg $T \rightarrow \infty$ при $T \rightarrow 0$. К сожалению, не удается реализовать условия квантового экранирования, в которых продольное сопротивление ρ_{zz} убывало бы с ростом магнитного поля. Именно в этом случае можно надеяться на то, что температурные зависимости диагональных компонент тензора сопротивления сильнее логарифмических.

Остается непонятным поведение продольной проводимости ρ_{zz} больцмановского газа в InSb с малыми концентрациями электронов.

Суммируя изложенное выше, можно сказать, что за последнее время достигнут заметный прогресс в понимании электронного транспорта в квантовом пределе, но до полного решения проблемы еще далеко.

Автор выражает глубокую благодарность своим соавторам по рассмотренным в обзоре работам А.Г.М. Янсену (А.G.М. Jansen), Ф.А. Егорову, Н.И. Головко и Э. Хаанаппелю (Е. Haanappel); С.В. Мешкову, предоставившему для обзора результаты своей неопубликованной работы; В.Ф. Гантмахеру и Д.В. Шовкуну за постоянное внимание к работе, полезные обсуждения и советы; В.Т. Долгополову за полезные обсуждения.

Работа выполнена при поддержке РФФИ-РІСЅ (грант 98-02-22037), РФФИ (грант 98-02-16633) и РФФИ-INTAS (грант 97-02-71015 (IR 97-76)).

Список литературы

- 1. Titeica S Ann. Phys. (Leipzig) 28 128 (1935)
- 2. Давыдов Б И, Померанчук И Я ЖЭТФ 9 1924 (1939)
- 3. Argyres P N, Adams E N Phys. Rev. 104 900 (1956)
- Adams E N, Holstein T D Phys. Chem. Solids 10 254 (1959) [Русский перевод: Адамс Э Н, Холстейн Т Д, в сб. Вопросы квантовой теории необратимых процессов (М.: ИЛ, 1961) с. 255]
- Киbo R, Наsegawa H, Hashitdume N J. Phys. Soc. Jpn. 14 56 (1959) [Русский перевод: Кубо Р, Хасегава Х, Хашитдуме Н, в сб. Вопросы квантовой теории необратимых процессов (М.: ИЛ, 1961) с. 89]
- 6. Agryes P N, Roth L M Phys. Chem. Solids 12 89 (1959)
- 7. Лифшиц Е М, Питаевский Л П Физическая кинетика (М.: Наука, 1979)
- Гантмахер В Ф, Левинсон И Б Рассеяние носителей тока в металлах и полупроводниках (М.: Наука, 1984)
- Аскеров Б М Электронные явления переноса в полупроводниках (М.: Наука, 1985)
- Kubo R, Miyake S J, Hashitdume N, in *Solid State Phys.* Vol. 17 (Eds F Seitz, D Turnbull) (New York: Acad. Press, 1965) p. 269
- Roth L M, Agryes P N, in Semiconductors and Semimetals Vol. 1 (Eds R K Willardson, A C Beer) (New York: Acad. Press, 1966)
- 12. Hajdu J, Landwehr G, in *Topics Appl. Phys.* Vol. 57 (Ed. F Herlach) (Berlin: Springer, 1985) p. 17
- 13. Мурзин С С *Письма в ЖЭТФ* **39** 567 (1984)
- 14. Поляков Д Г ЖЭТФ 90 546 (1986)
- 15. Мурзин С С *Письма в ЖЭТФ* **45** 228 (1987)
- 16. Дрейзин Ю А, Дыхне А М ЖЭТФ 63 242 (1972)
- 17. Dreizin Yu A, Dykhne A M, in Sixth Europ. Conf. on Controlled Fusion and Plasma Phys. Vol. 1 (Moscow, 1973) p. 147
- 18. Mott N F, Twose W D Adv. Phys. 27 405 (1979)
- 19. Березинский В Л ЖЭТФ **65** 1251 (1973)
- Абрикосов A A, Рыжкин И A ΦΤΤ 19 59 (1978); Abrikosov A A, Ryzhkin I A Adv. Phys. 27 405 (1979)
- 21. Polyakov D G, in Proc. 20th Inter. Conf. on Phys. of Semicond. (Greece, 1990) p. 2321
- 22. Косарев В В, Редько Н А, Белицкий В И ЖЭТФ 100 492 (1991)
 - Electron transport in a magnetic field in the ultra-quantum limit

S.S. Murzin

Institute of Solid State Physics, Russian Academy of Sciences 142432 Chernogolovka, Moscow Region, Russian Federation Tel. (7-095) 720-49 59 ext. 29-42 Fax (7-096) 576-41 11 E-mail: murzin@issp.ac.ru

The status of knowledge of electron transport in a magnetic field in the limit when only the lowest one-spin-state Landau subband is filled is reviewed for the ionized-impurity scattering case, one of most interest experimentally. Taking into account the quasi-one-dimensionality of electron motion changes considerably — and rather unexpectedly — the nature of conduction process both along and perpendicular to the magnetic field. A reasonably good agreement is obtained with experimental data.

PACS numbers: 71.55. + i, 71.70.Di, 72.10.Bg, 72.20. - i

Bibliography — 54 references

- 23. Мешков С В, частное сообщение
- 24. MacDonald A H, Brynt G W Phys. Rev. Lett. 58 515 (1987)
- Miura N, Shimamoto Y, Nojiri H, in Proc. 23rd Inter. Conf. on Phys. of Semicond. (Berlin, 1996) p. 177
- 26. Альтшулер Б Л, Аронов А Г ЖЭТФ 77 968 (1979)
- Altshuler B L, Aronov A G, in *Modern Problems in Condensed* Matter Sciences Vol. 10 (Eds V M Agranovich, A A Maradudin) (Amsterdam: North-Holland, 1985)
- 28. Мурзин С С Письма в ЖЭТФ 44 45 (1986)
- 29. Murzin S S, Jansen A G M J. Phys.: Condens. Matter 4 2201 (1992)
- 30. Мурзин С С, Головко Н И *Письма в ЖЭТФ* **54** 166 (1991)
- 31. Horing N J Ann. Phys. 54 405 (1969)
- 32. Шкловский Б И, Эфрос А Л ЖЭТФ 64 2222 (1973)
- 33. Paulus U, Hajdu J Solid State Commun. 20 687 (1976)
- Мотт Н, Дэвис Э Электронные процессы в некристаллических веществах (М.: Мир, 1982)
- Шкловский Б И, Эфрос А Л Электронные свойства легированных полупроводников (М.: Наука, 1979)
- Yafet Y, Keyes R W, Adams E N *Phys. Chem. Solids* 1 137 (1956)
 Поляков Д Г ЖЭТФ 83 546 (1982)
- 57. Поляков \mathcal{A} **Г** \mathcal{A} \mathcal{A}
- 38. Горьков Л П, Дорохов О Н, Пригара Ф **В** *CN* **85** 582 (1983)
- Ландау Л Д, Лифшиц Е М Квантовая механика (М.: Наука, 1974)
- 40. Мурзин С С Письма в ЖЭТФ 55 665 (1992)
- 41. Гоголин А А, Мельников В И, Рашба Э И ЖЭТФ 69 328 (1975)
- 42. Murzin S S, Jansen A G M, von der Linden P *Phys. Rev. Lett.* **80** 2681 (1998)
- 43. Murzin S S, Claus I, Jansen A G M Письма в ЖЭТФ 68 305 (1998)
- 44. Murzin S S et al. *Phys. Rev.* **59** 7330 (1999)
- Halperin B I Jpn. J. Appl. Phys. Suppl. 26 1913 (1987); in Condensed Matter Theories (Eds P Vashista et al.) (New York: Plenum, 1987)
- 46. Fortini A Phys. Status Solidi B 125 259 (1984)
- 47. Коган Ш М, Шадрин В Д, Шульман А Я ЖЭТФ 68 1377 (1975)
- 48. Lax B et al. Phys. Rev. 122 31 (1961)
- 49. Beckmann O, Hanamura E, Neuringer L J Phys. Rev. Lett. 18 773 (1967)
- 50. Амирханов X И, Баширов Р И ФТП 1 667 (1967)
- 51. Егоров Ф А, Мурзин С С ЖЭТФ 94 315 (1988)
- 52. Aronzon B A, Chumakov N K Physica B 194-196 1165 (1994)
- 53. Murzin S S, Jansen A G M, Haanappel E G, to be published
- 54. Мурзин С С, Попов П В *Письма в ЖЭТФ* 58 280 (1993)