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Quasi-one-dimensional transport in the extreme quantum limit of heavily dopedn-InSb
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The longitudinal (rzz) and transverse (rxx) resistivities of heavily dopedn-InSb have been studied system-
atically in the extreme quantum limit of applied magnetic field. The results are discussed in terms of the
quasi-one-dimensional nature of the transport in the extreme quantum limit for the case of electron scattering
by ionized impurities. The relation between transverse and longitudinal resistivity predicted for this case is
verified experimentally both in magnetic-field and temperature-dependent data.
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I. INTRODUCTION

The theoretical basis for electronic transport in the
treme quantum limit~EQL! of an applied magnetic field with
only the lowest Landau level occupied was first given in
late 1950s. The description of magnetotransport in the low
Landau-quantized state of the electrons1–3 leads essentially
to the same result for transverse and longitudinal conduc
ity as obtained for diffusional transport in the classical hig
field case. However, in a quantum-mechanical descriptio
the extreme quantum limit, the classical magnetotrans
expressions will have to contain the magnetic-field dep
dence of the density of states and of the scattering rates

Experimentally, the extreme quantum limit can
reached in metallically doped semiconductors. The dop
element provides a free charge carrier to the otherwise~at
low temperatures! insulating semiconductor, and acts, at t
same time, as an ionized scattering center for charge car
in these metallic systems. The above-cited theories
widely believed to give a correct description of magnet
field-dependent transport in the extreme quantum limit~see
various monographs and reviews4–8!. However, it was real-
ized that in the most interesting case of ionized impurit
the electron interacts repeatedly with the same ionized im
rities in quasi-one-dimensional motion along the magne
field.9–11 This leads to a breakdown of the diffusion ov
short distances perpendicular to the magnetic field. Afte
lateral displacement of the electron given by the screen
length, diffusion describes the transport perpendicular to
magnetic field. For this modified diffusion a correlation c
be derived between longitudinal and transverse conducti
which must be valid for applied magnetic fields in the e
treme quantum limit up to the magnetic-field-induced me
insulator transition.11

In Fig. 1, we give a schematic picture of the motion of t
electrons to illustrate this modified transverse motion. Fig
1~a! shows the standard high-field diffusion of an electron
PRB 620163-1829/2000/62~24!/16645~8!/$15.00
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point-scattering impurities. For the case when the screen
of the ionized impurities occurs on a length scale larger th
the extent of the electronic wave function~i.e., the magnetic
length!, the scattering events are no longer independent,
the drift motion of the electrons is correlated for recurre
interactions with the same impurity potentials@see Fig. 1~b!#.
We will discuss this correlated quasi-one-dimensional~1D!
transport in more detail in Sec. II. The investigated topic
of relevance for investigations of quasi-1D conducting s
tems in zero magnetic field, because of the quasi-1D cha
ter of the transport in a 3D system in strong magnetic fie
concerning the scattering with ionized impurities.

We have performed experiments on InSb samples w
different electron concentrations in order to investigate t
modified diffusion in the transverse magnetoconductivity
lated to quasi-one-dimensional magnetotransport in the

FIG. 1. ~a! Electron diffusive motion in a high magnetic fiel
due to point scattering by impurities.~b! Electron motion in a high
magnetic field in the electric field of charged impurities. The ele
tron returns many times in the same impurity potential, and dr
with the same velocityvd . In the extreme quantum limit the screen
ing length ls of the impurity potential is always larger than th
magnetic lengthl B ~extent of the electronic wave function!. ~c! The
motion of a quasilocalized electron in the extreme quantum lim
For some time the electron drifts across the magnetic field in
electric field of impurities~indicated by the small arrow!, then hops
into another drift trajectory~indicated by the dashed arrow!.
16 645 ©2000 The American Physical Society
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treme quantum limit. The possibility to extend these expe
ments easily to magnetic fields up to 40 T and higher ma
it worthwhile to reconsider the problem of magnetoquant
transport in the extreme quantum limit, which in itself dat
back to the 1950s. Samples with higher charge-carrier d
sities can be investigated in the metallic state up to hig
fields, without showing a magnetic-field-induced met
insulator transition.

In magnetotransport investigations in the extreme qu
tum limit, two other issues will be considered. One is co
cerned with the change in regime of screening upon incre
ing the magnetic field. In the extreme quantum limit t
electron wave vectorkz,F , parallel to the magnetic field, de
creases with increasing magnetic field and can beco
smaller than the inverse screening lengthls

21 which in-
creases with magnetic field due to the increasing densit
states at the Fermi level. This phenomenon reduces the
tering cross section of ionized impurities starting from
characteristic field (kz,F.ls

21) and should lead to a non
monotic field dependence of the longitudinal resistivity.12 To
our knowledge, this phenomenon has never been obse
because the magnetic-field-induced metal-insulator trans
probably prevents the observation of such effects which
inherently connected to the metallic state of a system. In
experiments, we discuss this effect in view of an obser
change in curvature in the field dependence of the longitu
nal resistivity.

The second issue for quasi-one-dimensional transpor
the EQL is related to localization phenomena for the sit
tion when the transverse motion of the electrons is m
smaller than the extent of the electronic wave function~the
magnetic length! @see Fig. 1~c!#. If there is no transverse
motion the electron is localized, because all electrons
localized even in weakly disordered 1D systems. A sl
transverse motion results in a finite lifetime of the localiz
states, and the nonzero conductivity along the magnetic fi
is predicted to be much smaller compared to the stand
Drude result.13 We will consider this effect in our discussio
of magnetotransport data in the extreme quantum limit. T
most convincing indications of one-dimensional localizati
effects were found in the temperature dependence of the
gitudinal transport along the magnetic field, which has
opposite temperature coefficient compared to the one
pected for electron-phonon scattering.12,14

In the following we will present these different aspec
related to quasi-one-dimensional motion in the extre
quantum limit. Experiments on metallically dopedn-InSb
will be presented and discussed in view of the abo
sketched transport phenomena. The experimental data s
the correlation between transverse and longitudinal cond
tivity as predicted for the recurrent interactions with ioniz
impurities. Such a correlation is seen both in the magne
field and temperature dependences of the transport data

II. QUASI-1D MOTION IN THE EQL

The expressions for the magnetoconductivity in the
treme quantum limit of an applied magnetic field, with on
the lowest Landau level occupied,1–3 are not essentially dif-
ferent from the results for classically strong magnetic fiel
i-
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The longitudinal conductivityszz is described by the Drude
formula

szz5
ne2tb

m
, ~1!

where tb is the backward scattering time. The transve
conductivity is given by the Einstein relation

sxx5nFe2Dxx , ~2!

which depends on the density of states at the Fermi leve

nF5
1

~2p l B!2

A2m

\

1

AEF

, ~3!

and on the diffusion coefficient,

Dxx5(
i

~Dxi !
2/2dt, ~4!

in the plane perpendicular to the applied magnetic fieldB.
Here l B5A\/eB is the magnetic length. The Fermi energ
EF is taken from the energy of the lowest Landau level,
thatE5\2kz

2/2m is the energy related to the electron motio
along the magnetic field. In the extreme quantum limit,EF
}B22 holds if one neglects the dependence of the effec
massm on the magnetic field. The summation in Eq.~4! is
performed over all collisions experienced by an electron d
ing a long time-intervaldt, whereDxi is the change in thex
coordinate of an electron as a result of thei th collision. In
Fig. 1~a! we schematically sketch the diffusion in stron
fields with point scattering at impurities. The results for t
conductivity tensor differ from the classically strong
magnetic-field case in the magnetic-field dependence of
density of statesnF and of the scattering times only. Thes
dependences of scattering times are different for differ
scattering mechanisms. For our doped semicondu
samples, the dominant scattering mechanism is scatterin
ionized impurities.

The above given description has been generally acce
for a long time, with quotations in various reviews an
monographs.4–8 However, because of the quasi-on
dimensional electron motion, expressions~1! and ~4! do not
apply to the most interesting case of scattering by ioniz
impurities, from an experimental point of view. That is,
the extreme quantum limit, during the backward scatter
time tb , the displacementr' of electrons perpendicular to
the magnetic field is smaller than the screening lengthls and
the magnetic lengthl B . In the EQL,

r', l B,ls . ~5!

To show this, the displacementr' in a timetb can be esti-
mated by using the expressionr'5ADxxtb with Dxx andtb
obtained in Refs. 1 and 2 for the EQL:

r'; l B
2A4kz,F

2 1ls
22, l B . ~6!

r' is always smaller thanl B in the extreme quantum limit
becausel Bkz,F5A2EF /\vc,1 and l Bls

21,1 (kz,F is the
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Fermi wave number of the electrons at the Fermi energy,
vc5eB/m is the cyclotron frequency!. The last inequality
follows from

ls5~e2nF /ee0!21/25 l BAp3naBl B
2. l B ~7!

for a metallic system withnaBl B
2.1. Heree is the relative

dielectric constant of the lattice, andaB54p\2ee0 /me2 the
Bohr radius.

For the caser'!ls in the EQL, we cannot consider a
scattering events as independent, and expression~4! is not
valid. Especially for this case of a quasi-one-dimensio
random walk along the magnetic field, an electron scatte
once by an ionized impurity will return many times into a
electric field of the same impurity before it moves across
magnetic field through a distance;ls @see Fig. 1~b!#. For
each interaction with the electric field of the impurity und
examination, the electron will drift in crossed fields~the
electric field of the impurity and the external magnetic fie!
in, approximately, the same direction over a lengtha!ls . If
the electron interactsM times with P impurities during the
time intervaldt, the diffusion coefficient equals

Dxx'

(
i 51

P S (
j 51

M

Dxi , j D 2

2dt
'

a2

dt
PM2. ~8!

This diffusion coefficient isM times larger than the one ob
tained under the assumption of independent scatte
events, where

Dxx'

(
i , j

~Dxi , j !
2

2dt
'

a2

dt
PM. ~9!

The transverse motion of an electron has a nondiffusive
ture over a distance shorter thanls , and becomes diffusive
only over a length scale greater thanls . The characteristic
step of such a diffusion is of the order ofls , and the diffu-
sion coefficient isDxx;ls

2/ts , where ts is the time over
which the electron is displaced over a distance;ls . The
time ts depends on the probability of the electron motion
return to an electric field of the same impurity and, therefo
depends on the diffusionDzz along the magnetic field.

The scenario given above was worked out in Refs. 9
10. In Ref. 11, the following correlation was derived b
tween the transverse and longitudinal conductivity:

sxx5aS e3nF

4pee0BD 4/3

N2/3ls
2/3szz

21/3, ~10!

whereN is the density of ionized impurities, anda a numeri-
cal coefficient of order unity. The presence ofszz in the right
part of Eq.~10! follows from the dependence of the numb
M, i.e., the number of correlated drift interactions of an el
tron with one impurity in Eq.~8!, on the diffusion coefficient
along the magnetic fieldDzz5szz/e2nF . Using the Hall
conductivitysxy5ne/B@sxx , this relation can be rewritten
for the transverse (rxx5sxx /sxy

2 ) and longitudinal (rzz

51/szz) resistivities as
d

l
d

e

g

a-

,

d

-

rxx5
a

47/3p13/3

me10/3B8/3

n7/3\4ee0

rzz
1/3S N

n D 2/3

, ~11!

with the expressions for density of statesnF and screening
length in the extreme quantum limit. There is no such
universal correlation betweensxx and szz in the standard
description of Adams and Holstein. In the Adams-Holste
theory,2 for almost all scattering mechanisms one obta
rxx}B3rzz. Only for scattering with ionized impurities,rxx
}rzz for the casekz,Fls@1. These relations follow from a
comparison of the two independent transport equations
longitudinal and transverse motion in the Adams-Holst
theory. We note that Eq.~10! is valid whenever the electron
displacement across the magnetic field during the backfl
time along the magnetic field is smaller than the screen
length (r'!ls), even for classically strong magnetic field
in the absence of Landau quantization.

Upon increasing the magnetic field in the EQL, the wa
vector kz,F decreases (}B21), and the screening increase
due to the increasing density of states at the Fermi level@see
Eq. ~7!#. A transition occurs from a classical screenin
kz,Fls.1 to a quantum-mechanical screeningkz,Fls,1. As
a result the backscattering along the magnetic field chan
slope with magnetic field, and a maximum is expected in
field dependence ofrzz.12 The observed change in curvatu
of rzz(B) in our measurements could be a precursor for s
a maximum which has never been observed.

For r' much smaller thanl B , localization effects should
influence the one-dimensional transport of the longitudi
conductivity11,13,15 becausel B determines the extent of th
wave function of electrons across the magnetic field in
extreme quantum limit. It is well known that all electrons
disordered 1D systems are localized regardless of t
energy.16,17 If there were no transverse motion at all, th
electron would be localized along the field direction beca
of the one-dimensional nature of the motion, as shown sc
matically in Fig. 1~c!. A slow transverse motion results in
finite lifetime of the localized states and a nonzero cond
tivity along the magnetic field, which will be considerab
smaller than the Drude formula@Eq. ~1!# predicts. For the
caseskz,Fls@1 andkz,Fl B!1, Ref. 13 derived the result

szz;
ne2tb

m
~kz,Fl B!2 ln~1/2kz,Fl B!. ~12!

A qualitative interpretation of this result was given in Re
11. In Ref. 15 the case of a smooth potential was conside
on the basis of the approach for the one-dimensional cas17

and the same result@Eq. ~12!# without logarithmic factor was
obtained.

Because of the unchanged correlation between longit
nal and transverse transport, expressions~10! and ~11! are
valid for one-dimensional transport both when 1D localiz
tion effects are important and when they are not. 1D loc
ization effects, leading to a decrease of the longitudinal c
ductivity, result in an increase of the transverse conductiv
With increasing temperature, the suppression of localiza
effects should lead to an increase in the longitudinal cond
tivity and, according to Eq.~10!, to a decrease of the trans
verse conductivity. This phenomenon was observed in
temperature dependence of magnetotransport experimen
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16 648 PRB 62S. S. MURZIN, A. G. M. JANSEN, AND E. G. HAANAPPEL
InAs and InSb,14 with rxy@rxx , rzz, and rxy practically
independent of temperature. We note that in the frame
work Adams-Holstein theory,2 the temperature dependen
of the resistivity can be caused by the electron-phonon s
tering only. It leads exactly to the opposite behavior. Here
increase of temperature decreases the longitudinal condu
ity, and increases the transverse conductivity.

Besides localization, electron-electron interaction a
plays an important role in the extreme quantum limit. Due
the strongly reduced diffusion perpendicular to the magn
field, the electron-electron-interaction quantum correctio
to the diagonal components of the conductivity tensor
crease with the magnetic field,18 and can be shown to be
come comparable to the conductivity itself.19,20The electron-
electron interaction effects make the dominant contribut
to the temperature dependence at low temperatures. An
cation of such a phenomenon was found in the obser
decrease of both the longitudinal and transverse conduct
at low temperatures (T,1 K) while the Hall conductivity is
independent of temperature,20 and in the violation of rela-
tions ~10! and ~11!. For the investigations above 1.5 K pr
sented here, we will not consider this phenomenon.

In this work we study the longitudinal (rzz) and trans-
verse (rxx) magnetoresistivities of heavily dopedn-InSb
with different electron densities in the extreme quantum lim
of the applied magnetic field, in order to explore the ex
tence of one-dimensional transport. One of the proofs
such quasi-one-dimensionality is given by an experime
verification of the relation betweenrzz andrxx in Eq. ~11!.

III. SAMPLES

In order to study the magnetotransport properties in
extreme quantum limit with only the lowest Landau lev
occupied, we have investigated the metallically doped se
conductor InSb. The extreme quantum limit starts at the fi
BEQL of the last Shubnikov–de Haas oscillation, and t
metallic regime finishes at the magnetic-field-induced me
insulator transition at the fieldBMI .

In Fig. 2 we plot~open circles! the fields of the last mini-
mum in the Shubnikov–de Haas structures ofrxx as a func-

FIG. 2. Experimental data~circles! and calculated dependencie
~lines! of the fieldsBEQL , BQS, andBMI for the extreme quantum
limit, the quantum screening and the metal-insulator transition
function of the electron densityn, respectively.
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tion of the electron densityn of different samples~not all
these samples have been investigated in detail in the pre
investigation!. These experimental data can be compa
very well with theBEQL values~lower solid line!, as deduced
from the conditionEF5g* \vc/2, yielding

BEQL522/3p4/3
\

e

n2/3

ug* u1/3
. ~13!

Here g* [gm/me520.71 is the effectiveg factor of InSb
with the effective massm50.014me near the conduction-
band bottom (me is the free-electron mass!.

For an uncompensated semiconductor the metal-insul
transition fieldBMI is determined by the reduced overlap
the electronic wave functions in a magnetic field via t
condition21,22

naia'
2 5d, ~14!

whereai52aB / ln(aB /lB) anda'52l B . However, the exact
value ofd is unknown. For our samples, we have defined
field BMI as the field, whered logrxx/d logB starts to change
at low temperatures~down to 50 mK; see Fig. 4 below!
accompanied by a strong temperature dependence o
components of the resistivity tensor. The experimental d
can be fitted by Eq.~14! with d'0.04 ~see Fig. 2!. Equation
~14! is valid only whenaB / l B at the fieldBMI is rather large
@the solid high-field part of the curve forBMI(n) in Fig. 2#.
The dashed part is a schematic prolongation ofBMI using the
expressionncaB

350.027 of the metal-insulator transition i
zero magnetic field at the critical electron densitync .23 In
these calculations the magnetic field dependence of the
fective electron mass due to the nonparabolicity of the c
duction band in InSb was taken into account using the tw
band model24

m~B!5mA112
\vc~12ug* u/2!1kz,F

2 \2/m

Eg
, ~15!

whereEg5236 meV is the band gap. These corrections
the effective mass are about 40% for a 20-T field, and w
verified in magneto-optical experiments.25

Near the fieldBEQL the screening is classical (kz,Fls
@1) if ug* u;1. With increasing fieldkz,Fls decreases, and
the screening requires a quantum-mechanical descriptio
an impurity potential atkz,Fls,1.12 The field BQS, which
divides classical and quantum screening regions, as defi
by the relation 2kz,Fls51, is plotted in Fig. 2 as a function
of n by the dotted line.

The dependencies of the characteristic fields as a func
of electron density in Fig. 2 show that the relative magnitu
BMI /BEQL of the characteristic fields does not really increa
for electron densities above 531016 cm23. Therefore, the
characteristic parameterr' / l B for the importance of 1D
transport in the metallic region aboveBEQL does not strongly
decrease with increasing electron concentration.

We have investigated the magnetotransport in the extre
quantum limit for different InSb samples~Nos. 1–5! with
electron densities n51.1, 1.4, 2.3, 4.1, and 5.0
31016 cm23 and with mobilitiesm of 12, 12, 10, 8.2, and
8.33104 cm2/V s, respectively ~values at 4.2 K!. The
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single-crystalline samples were in most cases cut by sp
erosion in a Hall-bar geometry with legs for the voltage m
surements. Before contacting the samples, they were et
with SR-4A etchant. The dimensions of the samples were
the order of 1 mm2 in cross section and 10 mm in lengt
The mobilities of the samples are close to the mobilities
the best samples of this kind of crystals with compara
electron densities. Since the residual density of accepto
only about 1014 cm23, the InSb are practically uncompen
sated, i.e., the impurity concentrationN equals the carrier
concentrationn. The zero-magnetic-field resistivity of the in
vestigated samples depends very weakly on temperature

The quality of the current contacts is very important f
longitudinal resistivity measurements because of the str
anisotropy of the conductivity parallel and perpendicular
the magnetic field. The indium current contacts have to co
the surface of the end faces of the sample entirely. In m
cases the quality of the contacts was not good enough
manifested in the experiments by a linear magnetoresista
in weak magnetic fields and by a singularity in the longi
dinal magnetoresistance when the Fermi level coincides w
the bottom of the spin-split Landau subband 02. This singu-
larity should not arise in the longitudinal magnetoresistan
because the component of the velocity parallel to the fi
tends to zero at the bottom of the 02 minority-spin subband,
and spin-flip scattering is absent between the two low
spin-split Landau levels 01 and 02. In cases when the con
tact quality was unsatisfactory, new contacts were fabrica
The transverse resistance measurements were carried o
the four-terminal method. The longitudinal resistance m
surements were carried out by both the four-terminal met
and the two-terminal method~the voltage between curren
contacts was measured!. For good contacts the results we
independent of the contact configuration. The measurem
of the longitudinal resistance of the two samples with

FIG. 3. Longitudinal magnetoresistancerzz in the extreme quan-
tum limit of the applied magnetic field atT'1.5 K for InSb
samples with different electron densities~solid circles!. The num-
bers near the curves indicate the electron densities in u
1016 cm23. The dashed lines show magnetoresistance calculat
for the samples with the smallest~upper line! and the largest~lower
line! electron density. The arrows indicate the fieldBEQL for the
extreme quantum limit, fieldBQS for quantum screening, and fiel
BMI for the metal-insulator transition for sample No. 2, with
electron density 1.431016 cm23.
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highest electron density were carried out in a pulsed mag
using the two-terminal method.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Longitudinal magnetoresistance

In Fig. 3 the longitudinal magnetoresistivityrzz is plotted
for all our samples atT'1.5 K. The experimental data ar
plotted in the extreme quantum limit starting from the fiel
near the last minimum of the Shubnikov–de Haas osci
tions in rxx(B), where the extreme quantum limit starts~in-
dicated by the arrow withBEQL for one of the samples in
Fig. 3!. At higher magnetic fields the strong upturn inrzz(B)
corresponds to the magnetic-field-induced metal-insula
transition~indicated by arrow withBMI).

From the magnetic-field dependence ofrzz(B) it follows
that the derivatived ln rzz/d ln B changes nonmonotonicall
with the field. Initially it decreases, then increases again.
our knowledge such a behavior has not been reported be
For an explanation of such a behavior ofrzz(B), we consider
the influence of screening on the backward scattering timetb
in the extreme quantum limit. In accordance with the ve
first estimates,1 and given that the real part of the dielectr
function of the electron system has a logarithmic Kohn s
gularity at wave number 2kz,F ,26 which is spread by the
broadening of the electronic states by the amountG5\/t f
1\/tb ,27 the forward and backward scattering times can
written as

1

tb
58p

EB

\

NlB
2

kz,F
F0~j!, and

1

t f
58p

EB

\

NlB
2

kz,F
F0~j8!.

~16!

The forward scattering involves scattering without a chan
in the momentum of the electron along the magnetic fie
EB5me4/32p2e2e0

2\2 is the Bohr energy, and

Fn~j!5E
0

` xne2x

~x1j!2
, ~17!

j50.5@4kz,F
2 1ls

22 ln~8EF /G!/2# l B
2 , j850.5ls

22l B
2 .

For the case of a good metal (naBl B
2@1) in high magnetic

fields, whenj!1,

1

tb
516p

EB

\

N

kz,F@4kz,F
2 1ls

22 ln~8EF /G!/2#
. ~18!

Since bothkz,F andls are propotional to 1/B in the extreme
quantum limit, expression~18! clearly shows that the
magnetic-field dependence oftb and, correspondingly, tha
of rzz, are different in the classical screening regi
(kz,Fls@1) compared to the quantum screening reg
(kz,Fls!1). The longitudinal magnetoresistivity calculate
with the help of Eq.~18! should increase, then decrease,
the quantum screening region before finally increasing ag
at the metal-insulator transition. Even if localization effec
are important, the expected qualitative behavior ofrzz would
be the same.12 Such a nonmonotonic behavior ofrzz would
be expected if the fieldBQS is much larger thanBEQL and
much smaller thanBMI . In our samples the fieldBEQL is a
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few times smaller thanBMI , and the fieldBQS is close to
BMI ~see Fig. 2!. Therefore, probably as a signature of th
effect, only a decrease ind ln rzz/d ln B is observed.

For a comparison with experimental data, we have ca
latedrzz as a function of the magnetic field using Eqs.~16!
and~17!. The nonparabolicity of the conduction band resu
in a dependence of the effective mass on the magnetic
@Eq. ~15!#, and was taken into account for this calculatio
Sincetb enters the right-hand side of Eq.~16! through thetb
dependence ofG or F0(j), Eqs.~16! and ~17! were solved
by an iterative method. In first approximation we tookls

22

instead ofls
22 ln(8EF /G) in Eq. ~17!. Subsequently, we sub

stituted the obtained values oftb and t f in G, and so on.
Already after three iterations a good convergence was
tained. For the two samples with the highest and low
charge-carrier concentrations, the calculated data forrzz(B)
are plotted as the dashed curves in Fig. 3. The calcul
values are approximately two times smaller than the exp
mental measurements. The given calculations should
taken with care. The calculations are fairly adequate for
initial sections of the curves, whereEFtb /\@1 as holds for
a metallic system. For example, for sample No. 5,EFtb /\
523 in a 9-T field. AsEF}B22 and tb decreases quickly
with the magnetic field, the parameterEFtb /\ becomes
about unity in a field 2BEQL . Moreover, in larger fields close
to the metal-insulator transition, Eqs.~16! and ~17! are no
longer valid.

The difference inrzz between theory and experime
could be ascribed to the above-mentioned 1D localiza
effects, which were not taken into account in the calcu
tions. Existing theories for localization effects in the long
tudinal transport13 cannot be used for the calculation ofrzz in
our case, because they have been developed for condi
kz,Fls@1 andkz,Fl B!1, which are not well realized. Th
parameterr' / l B , which determines the importance of loca
ization effects, is not very small. For sample No. 5, for e
ample, in a 15-T fieldr'53.831027 cm and l B56.6

FIG. 4. Transverse magnetoresistancerxx ~open circles! and res-
caled longitudinal magnetoresistanceCnB8/3rzz

1/3m(B)/m ~crosses!
at T'1.5 K for different samples with indicated electron conce
tration ~units 1016 cm23). For sample No. 2,rxx is also presented
at T580 mK to indicate the fieldBMI . The dashed lines show
calculations using the Adams-Holstein theory for the samples w
the smallest and largest electron densities. The arrows indicate
estimated fieldsBEQL , andBMI for sample No. 2.
-
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31027 cm. Therefore, the localization effects should not
very large. One can expect that they change resistivity on
few times. We note that the most convincing indications
one-dimensional localization effects were found in the te
perature dependence ofrzz, which is totally different from
the one expected for electron-phonon scattering,14,12 as will
be presented below.

B. Transverse magnetoresistance

In Fig. 4 we plot the transverse magnetoresistivityrxx as
a function of magnetic field atT'1.5 K. For sample No. 2,
we have again indicated the characteristic fieldsBEQL ~mini-
mum in rxx) andBMI . The existence of the metal-insulato
transition is demonstrated by the added data at 80 mK
sample No. 2, showing a stronger upturn at lower tempe
tures.

With the appropriate choice of coefficientsCn , Fig. 4
contains the rescaled dataCnB8/3rzz

1/3m(B)/m(0) of the lon-
gitudinal resistance. The coefficientsCn were chosen in or-
der to have a good overlap with therxx(B) data. A good
agreement is found with the expected dependence for
correlation between longitudinal and transverse transport
cording to Eq.~10!. The data for sample No. 3, with a
electron density 2.331016 cm23, do not show such a good
agreement. For this sample, the measured transverse r
tance was different for the two different magnetic-field p
larities ~about a factor 2 in the smallest fields, and about 5
at the highest!. In Fig. 4 we plot the average of the two fiel
polarities. Probably even the average does not give a cor
measurement ofrxx , which could explain the deviation ob
served in Fig. 4 for sample No. 3.

In Fig. 5 we plot the coefficientsCn as a function of the
electron concentrationn. The best linear fit for the depen
dence of logC on logn gives a power-law dependenceCn
}nq with q522.2460.07. This dependence is very close
the expected power27/3522.33 according to Eq.~10!. The
deduced numerical coefficienta in Eqs.~10! and~11! equals
a52.1.

In Fig. 4 we plot the calculatedrxx5sxx /sxy
2 using the

Adams-Holstein theory2

sxx52pe2nF

Eb

\

NlB
4

kz,F
@F1~j!1F1~j8!#. ~19!

-

h
he

FIG. 5. The coefficientsCn obtained from the data analysis i
Fig. 4 as a function of the electron density. The dashed line sh
the dependenceCn}n27/3.
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The calculated values ofrxx are 2–3 times smaller than th
experimental values. The correlations in the electron sca
ing across the magnetic field, as discussed in Fig. 1~b!, in-
crease the diffusion coefficientDxx , and therefore the resis
tivity rxx}Dxx . Since l B and r' are not very small with
respect tols ~for sample No. 5 in a 15-T field,l B56.6
31027 cm, r'53.831027 cm, and ls512.4
31027 cm), one can expect that the correlated scatter
increases the resistivity only a few times. In the lower fie
range, where the Fermi energy is large and therefore
standard theories2,11 can be better applied, the calculate
magnetic, field dependence using the Adams-Hols
theory2 is weaker than observed in the experimental data

C. Temperature dependence

The longitudinal conductivityszz of our samples in-
creases with increasing temperature, as shown in Fig. 6
sample No. 1 for different fields in the extreme quantu
limit. This is opposite to the expected influence of electro
phonon scattering. With increasing temperature, the tra
verse conductivitysxx increases up to 1 K and decrease
above 2 K ~see Fig. 7!. In this high-temperature regio
sxx(T)}szz(T)21/3 holds, in accordance with Eq.~10!. The
Hall conductivitysxy is practically independent of tempera
ture in the presented temperature range. The tempera
dependent data above 2 K with the observed correlation be
tween longitudinal and transverse transport give stro
evidence for the importance of quasi-one-dimensional effe
in the electron transport in strong magnetic fields. At low
temperatures, below 1 K, a strong decrease insxx is ob-

FIG. 6. Temperature dependences of the longitudinal conduc
ity szz for sample No. 1 for the indicated magnetic fields in t
extreme quantum limit.
.
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served, as illustrated in Fig. 7, with data down to 50 mK f
sample No. 2. The relation between longitudinal and tra
verse conductivity components@Eq. ~10!# breaks down in
this temperature range. Electron-electron-interaction effe
have been put forward for the explanation of th
phenomenon.20

In summary, the magnetic-field and temperature dep
dence of the resistivitiesrzz andrxx of the investigated me-
tallically doped InSb samples show a correlated behav
between longitudinal and transverse resistance in the extr
quantum limit. The correlation can be described by a mo
as derived for the quasi-1D motion of the electrons in
strong magnetic field. Although the possible existence of
calization effects in the quasi-1D transport does not allow
a detailed theoretical description of the experimental mag
totransport data, the universal relations betweenrzz andrxx
@Eqs.~10! and ~11!# are confirmed experimentally. By com
paring different samples, the expected concentration dep
dence in the correlated transport is found. The most strik
experimental result which would support the developed c
cept of a 1D localization phenomenon along the magn
field is the observed temperature dependence ofszz andsxx ,
which is just opposite to what is expected for electro
phonon scattering in the standard approach of Adams
Holstein.
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FIG. 7. Temperature dependences of the transverse conduc
sxx and ofAszz

21/3 for sample No. 1 at two different magnetic field
The fit coefficientsA are different for different curves. For samp
No. 2 we show thesxx data down to 50 mK, showing stron
electron-electron-interaction effects~see the text!.
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