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Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect

regime
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We investigate the magnetoresistance of epitaxially grown, heavily doped n-type GaAs layers with
thickness (40-50 nm) larger than the electronic mean free path (23 nm). The temperature depen-
dence of the dissipative resistance Rxx in the quantum Hall effect regime can be well described by
a hopping law (Rxx ∝ exp {−(T0/T )p}) with p ≈ 0.6. We discuss this result in terms of variable
range hopping in a Coulomb gap together with a dependence of the electron localization length on
the energy in the gap. The value of the exponent p > 0.5 shows that electron-electron interactions
have to be taken into account in order to explain the occurrence of the quantum Hall effect in these
samples, which have a three-dimensional single electron density of states.

For a two-dimensional electron system it is well known
that the discrete electron spectrum in a high magnetic
field leads to quantized Hall resistance (Quantum Hall
Effect). However, Landau quantization is not a strict pre-
requisite for the QHE. According to gauge arguments1,2

it is sufficient that the dissipative conductance Gxx van-
ishes at the Fermi level, and that delocalized states exist
below. The occurrence of the quantum Hall effect in not
strictly two-dimensional systems has been considered by
Khmelnitzkii3 in conjunction with the scaling theoretical
treatment of the QHE4.

In our previous works5,6, we observed the quantum
Hall effect in a strongly disordered system, which con-
sisted of a heavily Si-doped (n-type) GaAs layer between
undoped GaAs. In this system a wide, smooth quantum
well is formed by the impurity space charge potential
that builds up at the layer interfaces. The electron gas is
therefore confined inside the heavily doped GaAs layer,
in the area of maximum disorder. The thickness d of the
layers ranging from 50 up to 140 nm was larger than the
electronic mean free path l of 15−30 nm. The density of
states (DOS) of noninteracting electrons in these samples
is therefore expected to be practically three-dimensional.
As the very strong disorder broadening in the samples
leads to a rather smooth density of states without the for-
mation of gaps between Landau levels even at the highest
magnetic fields (≈ 20 T), we have proposed a reduction of
the diagonal conductance Gxx due to electron-electron-
interaction effects in diffusive transport as a possible ex-
planation for the observed quantization of Rxy in the
investigated, strongly disordered systems. Evidence for
this explanation comes from the temperature dependence
in the quantum Hall minima of Gxx in samples with a
thickness between 50 and 140 nm6, which is logarithmic
with temperature T , and thus resembles the tempera-
ture dependence that is caused by quantum corrections
due to electron-electron interactions in disordered con-

ductors both in weak7 and in high magnetic fields8,9.
However, the logarithmic decrease of Gxx that was found
in Ref.6 exceeds in amplitude the range, where the the-
ory of quantum correction7–9 is applicable. Furthermore,
in the thinnest sample (with a layer thickness d = 50
nm), which showed a fully developed quantization of the
Hall effect, the conductance deviated from the logarith-
mic temperature dependence at the lowest temperatures
for values of B where Gxx → 0 and where the Hall con-
ductance Gxy correspondingly shows a plateau at a value
of 2e2/h.

In the current work we have investigated an additional
number of strongly disordered GaAs layers with smaller
values of d (namely 40 and 50 nm), showing a fully de-
veloped QHE below 100 mK. The obtained hopping law
for the temperature dependent dissipative resistance Rxx

is discussed in terms of the opening of a Coulomb gap.
The Hall conductance quantization in the aforemen-

tioned, quasi-three-dimensional systems with a ”bare”
(high temperature) conductance G0

xx ≫ e2/h can be
understood qualitatively in the following way. Usually,
in systems with coherent diffusive transport the dissipa-
tive conductance Gxx decreases with temperature T due
to quantum corrections. The weak localization (single-
particle) corrections are suppressed in a magnetic field B
and reduce to10

Gxx(Lϕ) = G0
xx −

2

π2

e4

h2G0
xx

ln(Lϕ/L0) =

G0
xx −

m

π2

e4

h2G0
xx

ln(T1/T ). (1)

Here Lϕ =
√

D0
xxτϕ is the distance an electron moves

diffusively during the phase breaking time τϕ ∝ T−m,
D0

xx is the ”bare” high-temperature diffusion coefficient,

L0 = d
√

D0
xx/D0

zz =
√

dG0
xx/σzz (2)
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is the electron displacement in the plane of the layer (per-
pendicular to the magnetic field) for the time of its diffu-
sion across the layer (along the magnetic field), Dzz and
σzz are the diffusion coefficient and the conductivity in
the direction parallel to the magnetic field, T1 is defined
from the equation d ≈

√

2D0
zzτϕ(T1). At low tempera-

tures the phase breaks due to electron-electron interac-
tions, leading to m = 1. The second order corrections
in a magnetic field (Eq.1) are much smaller (πhG0

xx/e2

times) than the first-order corrections in zero field. Nev-
ertheless, Gxx will eventually vanish, and in this case the
Hall conductance Gxy should be quantized1,2. Since Gxy

tends to different quantum values for different bare Hall
conductances G0

xy, transitional values of the bare conduc-

tance G0
xy should exist, for which Gxx tends to a finite

value and Gxy is not quantized.
This approach, initially developed for spinless nonin-

teracting electrons, can give a reasonable, qualitative ex-
planation for the occurrence of the quantum Hall effect
with even numbers of quantization i in the above men-
tioned, strongly disordered GaAs layers5,6. Quantita-
tive agreement with theory however does not exist be-
cause the quantum corrections (Eq.1) are small at real
experimental conditions. To explain our results, we have
proposed the inclusion of electron-electron interactions.
In this case, the single-particle DOS and the conduc-
tance should decrease with decreasing temperature due
to quantum corrections caused by interactions

Gxx(LT ) = G0
xx −

λe2

πh
ln(T2/T ) = G0

xx −
2λe2

πh
ln(LT /L0)

(3)

that occur both in weak7 and in high magnetic fields8,9.
Here LT ∼ (D0

xx~/kBT )1/2 , kB is the Boltzmann con-
stant, and T2 ∼ ~D0

zz/kBd2. λ 6 1 is the constant of
interaction, which is of the order of unity and even some-
what larger in high magnetic fields (µBgB/kBT ≫ 1)
than in zero field (µB is the Bohr magneton). For
G0

xx ≫ e2/h these corrections are much larger than the
single-particle localization contributions (Eq.1). The in-
teraction corrections (Eq.3) will lead to a vanishing of
the dissipative conductance Gxx as a consequence of the
opening of a Coulomb gap in the single particle DOS.
Since also in this scenario Gxx will vanish at zero tem-
perature, the Hall conductance should be quantized.

The samples used were prepared by molecular-beam
epitaxy: on a GaAs (100) substrate the following lay-
ers were successively grown: an undoped GaAs layer (0.1
µm), a periodic structure of 30 × GaAs/AlGaAs(10/10
nm), an undoped GaAs layer (0.5 µm), the heavily Si-
doped GaAs layer with a nominal thickness of d = 40
(sample 40) and 50 nm (sample 50) and donor(Si) con-
centrations of 1.5 × 1017 cm−3, and last a cap layer of
0.5 µm GaAs (undoped). Samples with Hall bar geome-
tries of a width of 0.2 mm and a length of 1.4 mm were
etched out of the wafers. A phase sensitive ac-technique
was used for the magnetotransport measurements down
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FIG. 1. Magnetic field dependence of the Hall (Rxy) and

transverse (Rxx) resistance (per square) for sample 40 in a
magnetic field perpendicular to the heavily doped GaAs layer
at different temperatures

to 80 mK. In the experiments the applied magnetic field
of up to 15 T was directed perpendicular to the layers.
Samples from the same wafer showed identical behavior.
The electron densities per square as derived from the
slope of the Hall resistance Rxy in weak magnetic fields
(0.5 − 3 T) at T = 4.2 K are Ns = 4.5 and 5.1 × 1011

cm−2. The ”bare” mobilities µ0 are equal to 2500 and
2300 cm2/Vs for sample 40 and 50 respectively, and the
electron mean free path is about 23 nm for both samples.
For the calculation of µ0 we took the value of the bare
resistance R0 in the point of intersection of the curves
Rxx(B) for different temperatures at B = 3.4 T, taking
into account that the classical resistance does not depend
on field.

In Fig.1 the magnetotransport data, namely the Hall
(Rxy) and transverse (Rxx, per square) resistance are
plotted for sample 40 at temperatures below 4.2 K. The
diagonal resistance Rxx decreases sharply at low mag-
netic fields due to the suppression of the weak localiza-
tion corrections, and continues to decrease slightly be-
tween 0.5 and 4 T. It shows a deep minimum ranging
from 6 to 11 T. The Hall resistance Rxy shows a linear
increase up to 5 T, and then reveals a wide plateau from
B = 6 T up to 11 T at the lowest temperatures with the
value Rxy = h/2e2 (i.e. i = 2), in the same field range
where Rxx shows a deep minimum.

The Hall conductance Gxy = Rxy/(R2
xx + R2

xy) in
the field range of B = 0.5 − 4 T does not depend on
temperature. The diagonal conductance (per square)
Gxx however shows a logarithmic temperature depen-
dence with an only slightly field dependent coefficient,
while the value of Gxx itself changes considerably. This
behavior is in agreement with equation (3), giving an in-
teraction constant λ ≈ 0.5. The magnetotransport data
for sample 50 are similar to the data for sample 40.

In our previous investigations of identical samples5,6,12
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FIG. 2. The logarithm of the resistance Rxx as a function

of T−0.6 for sample 40 in the minimum (B = 8.8 T) and
at larger fields indicated by lines, and for sample 50 in the
minimum (B = 8.7 T)

with however a larger layer thickness, we found correc-
tions to the conductivity due to electron-electron interac-
tions. In a region of low magnetic field (B < 4 T) where
G0

xx ≫ e2/h the magnetoresistance data can be quanti-
tatively described in terms of quantum corrections due to
electron-electron-interaction effects12. In high magnetic
fields, even in samples with thicknesses d ranging up to
140 nm, quantization of the Hall conductance is observed.
The mentioned samples show values of the bare conduc-
tance G0

xx up to 2.6e2/h5. Even at these high fields the
different QHE minima in the transverse conductance Gxx

of different samples show a universal logarithmic tem-
perature dependence in a large range of a rescaled tem-
perature T/Tsc, where Tsc ∝ exp(−3G0

xxh/e2)6. Note
however, that the decrease of Gxx is not small and that
a logarithmic temperature dependence is observed be-
yond the region of applicability of the theory of quantum
corrections7. In the thinnest sample (d = 50 nm) investi-
gated in Ref.6, showing a well pronounced QH plateau, a
deviation from the logarithmic behavior becomes visible
at the lowest temperatures (T < 1 K). It is this range of
temperature and layer thickness, that the present work is
focused on. We therefore study the temperature depen-
dence of the resistance Rxx of samples with a thickness
d ≤ 50 nm, and therefore a rather low bare conductance
G0

xx of about e2/h. These samples show a pronounced
plateau in Rxy and a strong T-dependence near the min-
imum of Rxx at low temperatures, as shown in Fig. 1.

In Fig. 2 we plot the logarithm of the resistance Rxx as
a function of T−0.6 in the minima of Rxx corresponding
to the plateaus at Rxy = h/2e2 for samples 40 and 5013,
and additionally for sample 40 at somewhat larger B, but
still not far from the minimum. The exponent p = 0.6 is

chosen as a result of a fit of the experimental data to a
hopping law

Rxx = R0 exp {−(T0/T )
p
} (4)

in a range of temperature where Rxx(T ) < 0.1Rxx(4.2
K) ≈ 0.02h/e2. The fitting parameters R0 and T0 are
listed in the table.

Attempts to fit the data by an expression with a tem-
perature dependent prefactor

Rxx = αT r exp {−(T0/T )p} (5)

and a fixed p different from 0.6 resulted in a less op-
timal fit. Moreover, the resulting fitting parameters
are unphysical. For instance, for the case of p = 0.5
the fit gives r = 0.65, α = 17.1 and T0 = 25.5 K.
For this situation, the prefactor αT r in equation (5)
at T = 1K corresponds to a conductance Gxx =
Rxx/R2

xy = Rxx/(0.5h/e2)2 ≈ 70e2/h while Gxx =

0.95e2/h only at T = 10 K. The large prefactor in the
conductance is compensated by a small exponential fac-

tor exp {−(T 0/T )
p
} = exp {−25.5

1/2
} ≈ 6.4 × 10−3,

while Gxx(10K)/Gxx(1 K) has a value of about 3 only.
The small difference between Gxx(1 K) and Gxx(10K)
would be the result of a compensation of the two, which
is not realistic. Thus we conclude, that the tempera-
ture dependence in the i = 2 minimum in Rxx is rather
described by a hopping law according to Eq.(4) with a
hopping exponent p near 0.6.

Without the existence of a Coulomb gap the Mott the-
ory of variable range hopping14 predicts the temperature
dependence of Rxx to follow equation (4) with p = 1/3.
According to the theory from Efros and Sklovskii15,16, p
is equal to 1/2 in the presence of a Coulomb gap around
the Fermi energy EF (both in zero magnetic field and in
the QHE regime). This theory was developed for situa-
tions where the localization length ξ does not depend on
the energy ǫ = |E − EF | in the gap. In the case of Ander-
son localization the localization length ξ should depend
on the energy ǫ near the Coulomb gap.

In the single-particle approach, at G0
xy(B) = ie2/h

with even i, the localization length ξsp of an electron
at the Fermi level equals

ξsp ∼ L0 exp
(

0.5π2G0
xx

2h2/e4
)

(6)

estimated from the equation Gxx(ξsp) = 0 with Gxx

taken from equation (1). According to the scaling theo-
retical treatment of the QHE, the localization length ξsp

generally depends both on G0
xx and G0

xy. It diverges at

G0
xy(B) = (i + 1/2)e2/h.
However, electron-electron interactions should result in

a decrease of the localization length in the Coulomb gap.
A lower limit of this decrease can be estimated from the
equation Gxx(ξ0) = 0 with Gxx taken from equation (3)

ξ0 ∼ L0 exp

(

πG0
xx h

2λe2

)

. (7)
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Outside the gap interaction is not important, and the
localization length is equal or larger than the one given
by expression (6) with G0

xx = G0
xx(E) for the energy

E. For typical values of G0
xx ≈ e2/h and λ ≈ 1, ξ0 is

much smaller than ξsp. As it will be shown below, such
an energy dependence of ξ should result in p > 1/2 in
Eq.(4).

The single-particle density of states should be unaf-
fected by an energy dependence of the localization length,
unless the distance between electrons is much larger than
the localization length, i.e. g(ǫ)ξ(ǫ)2|ǫ| ≪ 1. It should
still be linear: g(ǫ) = γ|ǫ| with γ = 2κ2/πe4 (κ is the
dielectric constant of the lattice). Let us suppose that in
some range of energy ξ = α|ǫ|s. Then by analogy with
the Mott-law derivation14,16 we obtain

Rxx ∝ Gxx ∝ exp {−(T 0/T )
(s+1)/(s+2)

}, (8)

where

T0 =
S

kB

(

Ce2

ακ

)1/(s+1)

,

S =
[

(s + 1)−(s+1)/(s+2) + (s + 1)1/(s+2)
](s+2)/(s+1)

.

(9)

The coefficient α depends on the magnetic field. For s =
0 equations (8) and (9) reduce to the results from Efros
and Shklovskii. For s ≫ 1 one finds activated behavior
and p = (s + 1)/(s + 2) = 0.6 is obtained for s = 1/2.
The main contribution to the conductivity is given by
hopping electrons with an energy of

ǫh =

[

CkBe2(s + 1)

ακ
T

]1/(s+2)

The corresponding localization length

ξh = α|ǫh|
s =

[

CkBe2(s + 1)

ακ
T

]s/(s+2)

, (10)

of the electrons giving the main contribution to the con-
ductivity for T = 0.1 K and s = 1/2 is listed in the table.
The numerical coefficient C is taken to be 1.55 as defined
from the equation for T0 from the Efros-Shklovskii theory
(T0 = 6.2e2/εξ)17.

Since ξh ∝ T 1/5 can not be smaller than ξ0 it should
become constant at the lowest temperatures and the
temperature dependence should reduce to the Efros-
Shklovskii law. In our experimental conditions ξh ap-
proaches ξ0 < 200 nm at the very small temperature of
T < 3 × 10−4 K at B = 8.8 T and T < 5 × 10−7 K at
B = 10.6 T for sample 40.

A dependence of the localization length on energy
could probably also account for hopping exponents p >
1/2, observed in zero-field experiments18–20. An energy-
dependence as described above is also indicated by nu-
merical simulations21,22. Therefore, also in zero magnetic

Sample B (T) T0 (K) R0 (h/e2) ξh (µm) ξT (µm)
40 8.8 6.0 2.41 0.63 0.24
40 9.8 4.3 1.55 0.95 0.4
40 10.6 2.04 0.66 2.3 1.2
50 8.7 4.5 1.6 0.9 0.37

TABLE I. Values of the magnetic fields B , the constant
T0 and the prefactor R0, the localization length ξh of the
electrons giving the main contribution to the conductivity, at
T = 0.1 K and the localization length ξT of the electrons with
energy ǫ/kB = 0.1 K.

field the power of T in equation (4) could be larger than
1/2 in some range of temperature.

In summary, in low magnetic fields (but still larger
than 0.5 T) where Gxx > 3e2/h, the temperature depen-
dence of the diagonal conductance Gxx of heavily doped
n-type GaAs layers with thicknesses (d = 40 ÷ 140 nm)
larger than the mean free path of the electrons (l = 23
nm) is well described by the theory of quantum correc-
tions due to electron-electron interactions. In high mag-
netic fields where Gxx < 3e2/h the temperature depen-
dence of the conductance in the minima of Gxx,min is
still close to logarithmic down to 0.25e2/h, although the
theory of quantum corrections is no more applicable. In
the region of Gxx < 0.25e2/h the dissipative conductance
shows an exponential decrease with a power p ≈ 0.6, in-
dicating the presence of a Coulomb gap. The data dis-
play the relevance of electron-electron interactions for the
quantum Hall effect in these systems which have a 3D
single-particle spectrum.

We have pointed out, that a dependence of the localiza-
tion length on energy could result in an exponent p > 1/2
both in zero and nonzero magnetic field.
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