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Topological Oscillations of the Magnetoconductance in Disordered GaAs Layers
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Oscillatory variations of the diagonal (Gxx) and Hall (Gxy) magnetoconductances are discussed in
view of topological scaling effects giving rise to the quantum Hall effect. They occur in a field range
without oscillations of the density of states due to Landau quantization, and are, therefore, totally
different from the Shubnikov–de Haas oscillations. Such oscillations are experimentally observed in
disordered GaAs layers in the extreme quantum limit of applied magnetic field with a good description
by the unified scaling theory of the integer and fractional quantum Hall effect.
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Fermi distribution [6]. At the moment, two theories give
explicit expressions for the renormalization-group equa-

electrons along the magnetic field, �’ is the phase break-
ing time).
The integer quantum Hall effect (QHE) is usually
observed at high magnetic fields, !c�� 1 (!c � eB=m
is the cyclotron frequency, � is the transport relaxation
time), and its appearance develops from the Shubnikov–
de Haas oscillations based on the Landau quantization of
the two-dimensional (2D) electron system. However, the
scaling treatment of the integer QHE [1] predicts the
existence of the QHE without the Landau quantization
of the electron spectrum. It could exist even at low
magnetic field !c�� 1 [2] in the absence of magneto-
quantum oscillations of the density of states. The QHE at
low magnetic fields !c�� 1 has not been observed thus
far, probably because extremely low temperatures are
required [3]. In addition, the QHE could exist in a layer
whose thickness d is much larger than the electron trans-
port mean-free path l, i.e., d� l, in the extreme quantum
limit (EQL) of applied magnetic field, where only the
lowest Landau level is occupied. Such a layer has a three-
dimensional (3D) ‘‘bare’’ (nonrenormalized) electron
spectrum without oscillations of the density of states in
the EQL. In this situation, the QHE has been observed in
heavily Si-doped n-type GaAs layers [4,5].

Here, we address the problem of the arising of the QHE
in the absence of magnetoquantum oscillations of the
density of states. In this case, the variation with tempera-
ture of the diagonal conductance per square (Gxx) and
Hall conductance (Gxy) is due to diffusive interference
effects (below Gxx and Gxy are taken in units e2=h),
which in a scaling approach can be described by the
renormalization-group equations. For comparison, ac-
cording to the conventional theory, the temperature
dependence of the Shubnikov–de Haas oscillations pre-
ceding the QHE is due to thermal broadening of the
0031-9007=04=92(1)=016802(4)$20.00 
tions. The first theory has been derived for both integer
and fractional QHE and for any value of Gxx [7]. It is
based on the assumption that a certain symmetry group
unifies the structure of the integer and fractional quantum
Hall states [7–9]. This so-called unified scaling (US)
theory describes well the shape of the scaling flow dia-
gram depicting the coupled evolution of Gxx and Gxy for
decreasing temperatures in heavily Si-doped n-type
GaAs layers with different thicknesses for a wide range
of Gxx values [10]. The second theory has been developed
in the ‘‘dilute instanton gas’’ approximation (DIGA), first
for noninteracting [11] and then for interacting electrons
[12]. Both theories are developed for a totally spin-
polarized electron system. For 2�Gxx � 1, they predict
an oscillating topological term in the scaling � function
with the same periodicity. However, they differ in pre-
dictions on the oscillation amplitude. The oscillating
topological term in the � function should lead to oscil-
lations in the magnetic-field dependence of Gxx and Gxy
which are not related to oscillations in the density of
states such as, e.g., for the case of the Shubnikov–
de Haas oscillations.

In the presented work, we derive explicit expressions
for the topological oscillations of the Hall conductivity
Gxy for both theories, and compare them with experiment
for thick (d� l) disordered heavily Si-doped GaAs
layers with rather large Gxx and Gxy compared to unity.
The layers studied before in Refs. [4,5] have a 3D bare
electron spectrum. However, below 4 K the characteristic
diffusion lengths, L’ � �Dzz�’�

1=2 and LT � �Dzz �h=
kBT�

1=2, for coherent diffusive transport increase to val-
ues larger than d, and the system becomes 2D for coherent
diffusive phenomena (Dzz is the diffusion coefficient of
2004 The American Physical Society 016802-1
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The US theory describes the renormalization-group
flow of the conductances by the equation [7]

s� s0 � � ln�f=f0�; (1)

for a real parameter s monotonically depending on tem-
perature, where G � Gxy � iGxx, f0 � f�s0�, and

f � �
�
P

1
n��1 q

n2�4�
P

1
n��1��1�

nqn
2
�4

�2
P

1
n�0 q

�n�1=2�2�8
; (2)

with q � exp�i�G�. For jqj2 � exp��2�Gxx� � 1, the
function f � �1=�256q2� � 3=32�O�q2� and Eq. (1) is
reduced to

s� s0 � i2��G�G0� � 24�ei2�G � ei2�G
0
�: (3)

In the first-order approximation, by ignoring the last
oscillating term in Eq. (3), this equation has the solution

G1xx � G0xx � �s� s0�=2�; G1xy � G0xy: (4)

In the second-order approximation, the solution looks
like

Gxx � G1xx �
12

�
�e�2�G

1
xx � e�2�G

0
xx cos�2�G0xy�; (5)

Gxy � G0xy �
12

�
�e�2�G

1
xx � e�2�G

0
xx sin�2�G0xy�: (6)

This is a solution of Eq. (3) for fixed s. However, for our
experiment we are interested in the solution for fixed
temperature T. In the first-order approximation, it should
coincide with the result of the first-order perturbation
theory for the electron-electron interaction in coherent
diffusive transport leading to logarithmic temperature-
dependent corrections in the diagonal conductance,

GT
xx � G0xx � �=2� ln�T=T0�; (7)

without any temperature dependence in the Hall con-
ductance [13]. Therefore, s � �� ln�T� in this approxi-
mation. For a totally spin-polarized electron system
� � 1 [14].

In second order, s will oscillate as a function of G0xy at
fixed temperature T and will give an additional oscillat-
ing term in Eq. (5), but the relation between s and T is
unknown and the amplitude of theGxx oscillations cannot
be found. In this respect, we note that the last term in
Eq. (5) shows maxima at integer G0xy as opposed to the
expected minima for the integer QHE. The difference
between G1xx and GT

xx can be ignored in the exponents of
Eq. (6). Therefore the Hall conductivityGxy oscillates as a
function of the bare Hall conductanceG0xy and, hence, as a
function of the magnetic field B, with amplitude

AUSxy �
12

�
�e�2�G

T
xx � e�2�G

0
xx

�
12

�
e�2�G

0
xx��T0=T�

� � 1; (8)
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as found by substituting GT
xx [Eq. (7)] for G1xx in Eq. (6).

This dependence is totally different from the exponential
variation with temperature of the Shubnikov–de Haas
oscillations.

In the dilute instanton gas approximation for the case
of interacting electrons [12],

dGxx

d lnL
� �

�
�
�D1G

2
xxe

�2�Gxx cos�2�Gxy�; (9)

dGxy

d lnL
� �D1G

2
xxe

�2�Gxx sin�2�Gxy�: (10)

Here L � � �hDxx=kBT�1=2 and D1 � 64�=e � 74:0.
Solving the quotient of these equations by ignoring terms
of order exp��4�Gxx�, one obtains

Gxy � G0xy �
�D1
�

�F�GT
xx� � F�G0xx� sin�2�G

0
xy�; (11)

where F�x� � 1=4�3 �2�2x2 � 2�x� 1� exp��2�x�.
Both theories have been developed for a totally spin-

polarized electron system. However, in a real system
electrons can have two different spin projections. For
the case of noninteracting electrons, the electrons can
be described in terms of two independent, totally spin-
polarized systems in the absence of spin-flip scattering.
This approach remains valid for interacting electrons as
well, if the triplet part of the constant of interaction is
much smaller than the singlet one [13,14], because only
the interaction between electrons with the same spin leads
to a renormalization of the conductance in this case. For
the small spin splitting in strongly disordered GaAs, the
conductances of the electron systems with different spin
projection (G"

ij and G#
ij) are approximately equal to half

the measured conductance, i.e., G"
ij � G#

ij � Gij=2. It
allows us to compare quantitatively the experimental
results with the theories. For large spin splitting, this is
impossible, because G"

ij and G#
ij are different, and only

the sum G"
ij �G#

ij can be measured.
The investigated heavily Si-doped n-type GaAs layers

sandwiched between undoped GaAs were prepared by
molecular-beam epitaxy. The nominal thickness d equals
100 nm for the layers 2, 3, 6, and 140 nm for layer 7. The
Si-donor bulk concentration n equals 1.8, 2.5, 1.6, and
1:6� 1017 cm�3 for samples 2, 3, 6, and 7 as derived from
the period of the Shubnikov–de Haas oscillations at B<
5 T. The mobilities of the samples at T � 4:2 K are 2400,
2500, 2600, and 2600 cm2=Vs, and the electron densities
per square Ns as derived from the slope of the Hall
resistance Rxy in weak magnetic fields (0:5–3 T) at T �
4:2 K are 1.26, 2, 2.08, and 2:86� 1012 cm�2 for samples
2, 3, 6, and 7, respectively. For all samples, the electron
transport mean-free path l is around 30 nm at zero
magnetic field. The detailed structure of the samples is
described in Ref. [4].

In Fig. 1, the magnetotransport data of the diagonal
(Rxx, per square) and Hall (Rxy) resistance (both given in
016802-2



0 5 10 15 20
0

2

4

6

 

B
EQL

R
xy

 T = 4.2 K
        1
        0.28
        0.08

R
xx

0

0.4

0.2

0.6

R
xy

 , 
 R

xx
   

 (
h/

e2 )

G
xx

G
xy

G
xy

 , 
 G

xx
   

 (
e2 /h

)

   
B(T)  

FIG. 1. Magnetic field dependence of the diagonal (Rxx, per
square) and Hall (Rxy) resistance and of the diagonal (Gxx) and
Hall (Gxy) conductance for sample 2 in a magnetic field
perpendicular to the heavily doped GaAs layer (thickness
100 nm) at different temperatures. The arrow indicates the
field BEQL of the extreme quantum limit.
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FIG. 2. Residual variation for the diagonal �Gxx and for Hall
conductance �Gxy after subtraction of the 4.2-K values at
different temperatures, for samples 6 and 7. Numbers near
curves indicate temperatures in K.
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units of h=e2), and of the diagonal (Gxx) and Hall (Gxy)
conductance, are plotted for sample 2. At 4.2 K, the
magnetoresistance shows the typical behavior of bulk
material with weak Shubnikov–de Haas oscillations for
increasing field B and a strong monotonous upturn in the
extreme quantum limit (EQL) where only the lowest
Landau level is occupied. At lower temperatures, Rxy,
Rxx, Gxy, and Gxx start to oscillate. Minima of Gxx and
of j@Gxy=@Bj arise at magnetic fields where Gxy at 4 K
attains even-integer values, in accordance with both the-
ories mentioned above. These oscillatory structures de-
velop into the QHE at the lowest temperatures where Rxy
and Gxy reveal remarkable steps near the values Rxy �
1=2 and 1=4, and Gxx � 2, and 4. In the corresponding
fields pronounced minima are observed in Rxx and Gxx.
Note that, contrary to the QHE structures, the amplitude
of the weak Shubnikov–de Haas oscillations below the
EQL does not depend on temperature because the thermal
damping factor 2�2kBT=� �h!c sinh�2�2kBT= �h!c� �
0:994 is close to 1 for B � 5 T at T � 1 K. Similar but
less pronounced structures are observed for the other
samples investigated. Moreover, for samples 3 and 7,
additional minima of Gxx and of j@Gxy=@Bj are observed,
at fields where Gxy � 6 at T � 4 K.
016802-3
The size quantization could result in oscillatory struc-
tures in the magnetotransport data in the EQL in a pure
layer with ballistic motion across the layer when l=d� 1.
In our case, however, l=d � 0:2� 0:3 in zero magnetic
field, where the ratio even decreases in the EQL for the
mean-free path along the field. The 3D character of the
bare electron spectrum of the samples has been confirmed
in experiments in a tilted magnetic field [5]. Note that the
absence of oscillations at T � 4:2 K cannot be explained
by temperature broadening of the oscillatory structures,
because disorder broadening dominates largely with
�h=�� kBT(for our samples �h=�kB > 80 K).

In Fig. 2, we plot the residual variation �Gxx�T� �
Gxx�T� �G0xx as a function of G0xy for sample 6 at differ-
ent temperatures, �Gxy � Gxy�T� �G0xy at T � 0:46 K
for sample 6, and �Gxx at T � 0:1 K for the thickest
sample 7. Here G0ij is the conductance at T � 4:2 K taken
as the bare conductance (see below). Both�Gxx and�Gxy
oscillate with comparable amplitudes under the same
conditions of applied field and temperature. The minima
of�Gxx are at even-integer values ofG0xy (slightly shifted
in the case of a superimposed smooth variation of �Gxx)
and the minima of �Gxy are shifted on �0:5 unit in the
G0xy scale, in accordance with theory [1,2,7,11,12].

The smoothly varying part of Gxx, by ignoring the
oscillatory part, decreases for decreasing temperature
while that of Gxy does not change. The temperature
016802-3
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FIG. 3. Amplitude Aij of the topological oscillation of the
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dependence of the smooth part Gsmxx of the diagonal con-
ductance, taken as the midpoint value of the arrow
in Fig. 2, is well described by the first-order electron-
electron-interaction correction [Eq. (7)] with � � 1:9 for
samples 2, 3, and 6, and � � 2 for sample 7 in the
temperature range from 0.15 to 1 K followed by a satu-
ration around 4.2 K. These values are close to the theo-
retical upper limit � � 2 for a system with two spins
[13,14], corresponding to a negligibly small triplet part
of the electron-electron interaction. The choice of the
4.2 K value for the bare conductance G0xx agrees with
the saturation of Gsmxx around T � 4:2 K.

The amplitudes Aij of the oscillations of Gxx and Gxy
conductances are very similar as shown in Fig. 3, where
the sum Aij ��U is plotted as a function of the smooth
part of the diagonal conductance Gsmxx for all our samples
with �U � 24=� exp���G0xx�. The values of �U �
0:044, 0.009, 0.02, and 0.002 for samples 2, 3, 6, and 7,
respectively, are smaller than the corresponding values of
Aij. The experimental data are rather well described by
the result of the US theory for Axy [Eq. (8)] applied to the
total conductance of two independent electron systems of
opposite spin. Although showing a very similar depen-
dence, Axx cannot be deduced in frame of this theory. The
DIGA theory predicts much larger amplitudes than ex-
perimentally observed, as shown by the dotted lines in
Fig. 3 for ADIGAxy ��U according DIGA theory for
samples 3 and 7.
016802-4
In summary, due to topological scaling effects, oscil-
lations of the diagonal and Hall magnetoconductances
can exist when there are no oscillations of the density of
states due to Landau quantization. The oscillations ob-
served in the extreme quantum limit of the applied mag-
netic field in disordered GaAs layers, with thickness
larger than the electron transport mean-free path, fall
into this category. The oscillations of Gxy are quantita-
tively well described by the unified scaling theory for the
integer and fractional quantum Hall effect [7]. Their
amplitude is much smaller than the dilute instanton gas
approximation [12] predicts.
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