
ISSN 0021�3640, JETP Letters, 2013, Vol. 97, No. 3, pp. 149–154. © Pleiades Publishing, Inc., 2013.
Original Russian Text © S.I. Dorozhkin, A.A. Kapustin, S.S. Murzin, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 3, pp. 170–
175.

149

The spin–orbit interaction triggering the spin
relaxation mechanism significantly modifies quantum
corrections to the conductivity caused by localization
effects [1] and the electron–electron interaction
effects [2, 3] in disordered systems. In the weak local�
ization theory, where the physical mechanism is the
interference of electron waves at their scattering on
impurities, the sign of the correction to the conductiv�
ity depends on the relation between the phase relax�
ation time of the electron wave τφ and the spin relax�
ation time owing to the spin–orbit interaction τso (in
this work, we discuss only two�dimensional systems of
charge carriers). At τso � τφ, spin relaxation is insignif�
icant and the temperature dependence of the resistiv�
ity ρ(T) is determined by the localization of carriers
and has the insulating form. In the opposite limit τso �
τφ, quantum correction to the conductivity of nonin�
teracting electrons is positive (the so�called antilocal�
ization effect). Since the spin relaxation time is inde�
pendent of the temperature and the phase relaxation
time is determined by inelastic processes, in the
absence of other mechanisms of the temperature
dependence of the resistance in the system with the
spin–orbit interaction, an increase in τφ(T) with a
decrease in the temperature could lead (see, e.g.,
review [4]) to a nonmonotonic dependence ρ(T) with
the maximum at τφ(T) ~ τso. We certainly observed this
behavior of the resistance. The use of the times τφ(T)

and τso determined from anomalous magnetoresis�
tance curves made it possible to satisfactorily describe
the observed temperature dependence by the formulas
of the weak�localization theory. At first glance, the
obtained result contradicts the theory of quantum cor�
rections taking into account the electron–electron
interaction. This theory predicts the universal insulat�
ing behavior for systems with strong spin–orbit inter�
action (see Fig. 2 in [2] and Fig. 41 in review [3]). This
behavior was confirmed in many investigations of thin
metal films (see, e.g., [5]) and in hole channels of sili�
con field�effect transitions on the Si(111) surface [6].
The effect of the spin–orbit interaction on the elec�
tron–electron interaction is characterized by the
parameter Tτso/�. The indicated contradiction is
likely explained by the fact that the temperature Tm at
which the resistance is maximal corresponds to the
transient regime Tmτso/�  1, whereas the prediction
of the universal insulating behavior was made in [2]
under the condition τso � τφ � �/T.

The nonmonotonic temperature dependences of
the resistance with the maximum were observed in
two�dimensional systems with a high mobility of
charge carriers in the transition region in the electron
density from the insulating to the metallic state both in
systems with weak spin–orbit interaction [7] and in
systems where noticeable spin–orbit interaction could
be expected [8, 9]. The nonmonotonic temperature
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dependence of the resistance with the maximum in
systems with weak spin–orbit interaction can appear
[10, 11] owing to the renormalization (dependences
on the temperature and disorder) of the Fermi liquid
parameter describing the electron–electron interac�
tion. However, such a renormalization is usually
important in systems with a low carrier density, partic�
ularly in the case of the presence of valley degeneracy,
and is hardly significant in our samples. The non�
monotonic temperature dependence of the resistance
under the conditions most corresponding to our
experiment was observed on hole channels in multi�
layer Ge/SiGe heterostructures [12]. However, the
origin of the maximum in the temperature depen�
dence of the resistance was beyond the scope of works
[8, 9, 12]. Remarkable results were obtained in [13],
where the metallic temperature dependence of the
conductivity was observed in hole channels of
GaAs/InGaAs/GaAs heterostructures, whereas cross�
over was likely masked by the electron–phonon scat�
tering.

The results of this work were obtained for accumu�
lation hole channels of silicon field�effect transistors
fabricated on the Si(110) surface. The hole mobility
depended on their density and was about 103 cm2/(V s)
in the density range under study. Most of the experi�
ments were performed in a cryostat with the evacua�
tion of 4He vapor in the temperature range of 1.3–7 K.
Some measurements were carried out in a cryostat
with the evacuation of 3He vapor in the temperature
range of 0.5–7 K. Anomalous magnetoresistance,
Hall resistance, and Shubnikov–de Haas oscillations
were measured in magnetic fields created by a super�
conducting solenoid. We studied two samples made of
one silicon wafer. The results were the same for both
samples. The hole density in the samples was deter�
mined from the period of Shubnikov–de Haas oscilla�
tions, as well as from the magnetic�field dependence
of the Hall resistance.

Fig. 1. Temperature dependences of change in the resistiv�
ity (per square) Δρ in (open symbols) zero magnetic field
for three hole surface densities ps. The resistivities at T =
4.2 K were 2477, 3302, and 4902 Ω per square for ps = 1.9 ×

1012, 1.5 × 1012, and 1.1 × 1012 cm–2, respectively. The
closed symbols depict the temperature dependences of the
resistivity in the field H = 0.2 and 0.4 T for ps = 1.5 × 1012

and 1.1 × 1012 cm–2, respectively.

Fig. 2. (a) (Solid lines) Experimental magnetic field
dependences of the resistivity of the sample ρxx for ps =

1.5 × 1012 cm–2 at various temperatures. The line for T =
4.2 K is shifted down by 26.6 Ω in order to avoid its inter�
section with other lines. The dashed lines are the calcula�
tion of the magnetoresistance by Eq. (1) with the spin
relaxation times τso and phase relaxation times τφ shown in
panel (b) by circles and squares, respectively. The solid
straight line in panel (b) corresponds to the power�law
temperature dependence τφ = 27.9T–p ps with p = 1.29 and
the dashed straight line in panel (b) corresponds to the
value τso = 2.62 ps. These straight lines are the least squares
fits of the respective experimental points.
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Figure 1 shows the temperature dependence of the
resistivity of a sample in zero and classically weak
magnetic fields for three different hole densities ps. All
curves measured in zero field have a maximum, which
shifts toward lower temperatures with a decrease in ps.
In magnetic field, the temperature dependence of the
resistivity remains monotonic and insulating through�
out the entire temperature range. Theories of quantum
corrections should obviously be used to explain such
effects. To reveal the role of weak localization effects,
we measured the anomalous magnetoresistance
observed in classically weak magnetic fields. Figure 2

shows the typical results of such measurements for the
hole density ps = 1.5 × 1012 cm–2 at various tempera�
tures. As can be seen in Fig. 2, a weak (H � 0.1 T)
magnetic field suppresses the antilocalization correc�
tion. As a result, the temperature dependence
becomes insulating. The observed nonmonotonic
magnetic field dependence of the resistance is charac�
teristic of the weak�localization effects in the system
with a quite fast spin–orbit relaxation. To quantita�
tively describe the anomalous magnetoresistance
curves, we used the Hikami–Larkin–Nagaoka for�
mula [1]

(1)

Here, δσ is the quantum correction to the conductiv�
ity of a two�dimensional system; ψ is the digamma

function; and Hx = , where D is the hole diffu�

sion coefficient and x is one of the used subscripts. For
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Fig. 3. (Points) Experimental temperature dependences of
the conductivity recalculated from the data shown in Fig. 1
and the corresponding theoretical curves, which were
obtained with the times τso and τφ determined from the
measured anomalous magnetoresistance (the correspond�
ing values for ps = 1.5 × 1012 cm–2 are given in the caption

of Fig. 2, and τso = 4.5 ps and τφ = 20.3T–1.46 ps for ps =

1.1 × 1012 cm–2). The dotted lines calculated by Eq. (2) are
the temperature dependences of the conductivity in zero
magnetic field determined by the weak localization effects.
The solid lines were calculated as additive contributions
from weak localization (Eq. (2)) and from the electron–
electron interaction (Eqs. (3) and (4) with the interaction
parameters given in the main text). The dashed lines are
the calculated corrections to the conductivity in magnetic
fields of 0.2 and 0.4 T for ps = 1.5 × 1012 and 1.1 × 1012 cm–2,
respectively.

Fig. 4. Evolution of the anomalous magnetoresistance with
variation of the hole density. The approximations of the
experimental dependences by Eq. (1) are shown by dashed
lines (T = 4.2 K).
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small changes in the magnetoresistance, ρxx(H) –
ρ(H = 0) ≈ –ρ2(H = 0)[δσ(H) – δσ(0)].

We used Eq. (1) to describe the anomalous magne�
toresistance in our samples because of the results
reported in [14], where it was shown that this formula
remains valid for systems with the spin–orbit splitting
of the spectrum proportional to the third power of the
wave vector of two�dimensional carriers whose spin
relaxation occurs through the D’yakonov–Perel’
mechanism [15], which is most efficient in semicon�
ductors. Theoretical calculations performed for two�
dimensional hole systems within the effective mass
approximation predict the cubic wave�vector depen�
dence of the spin–orbit splitting associated with the
asymmetry of the potential well in which two�dimen�
sional holes are located (see, e.g., review [16] and ref�
erences therein). However, our choice is not the only
possible. The spin–orbit relaxation in hole systems
can also occur in the absence of the spin–orbit split�
ting of the two�dimensional spectrum owing to the
elastic scattering between the states of light and heavy
holes mixed because of the quantum confinement
effect. This was demonstrated in [17] and was used to
describe the experiment on the anomalous magne�
toresistance in hole channels of GaAs/AlGaAs het�
erostructures in [18]. A reason for our choice is the
observation of beats of Shubnikov–de Haas oscilla�
tions in our samples (for more details of this effect, see
[19]), which certainly indicates that spin degeneracy is
lifted in this system owing to the spin–orbit interac�
tion.

Accurate independent determination of the spin
and phase relaxation times from the experimental
curves is possible only for a nonmonotonic magnetic
field dependence of the magnetoresistance. This cir�
cumstance limits the hole density values for which
such a procedure can be performed (see Fig. 4). The
τso and τφ values determine the position and height of
the maximum of the magnetoresistance in the mag�
netic field, respectively. We approximated the experi�
mental curves by the calculated lines trying to repro�
duce the position and height of the maximum and
obtained a satisfactory agreement for reasonable τso

and τφ values. In particular, in agreement with the
commonly accepted point of view, the spin–orbit
relaxation time is independent of the temperature,
whereas the phase relaxation time increases with a
decrease in the temperature as τφ ∝ T–p (see Fig. 2b).
Deviations of the calculated magnetoresistance from
the experimental data in strong magnetic fields
observed in Fig. 2a can be attributed to various rea�
sons. First, Eq. (1) is applicable only in the so�called

diffusion approximation when H < Htr = , where

τ is the carrier momentum relaxation time. Under the
experimental conditions, Htr decreases from 0.77 to
0.41 T with an increase in the hole density from ns =

c�
4eDτ
����������

0.98 × 1012 cm–2 to ns = 1.68 × 1012 cm–2, respectively.
Deviations from this formula are manifested even at
H < Htr (see, e.g., [20] and references therein). Sec�
ond, there is a classical temperature�dependent mech�
anism of the magnetoresistance for a system consisting
of two groups of carriers (in our case, these are holes
corresponding to two branches of the spectrum) that
was successfully used to explain the temperature
dependence of the magnetoresistance in two�dimen�
sional hole channels of GaAs/AlGaAs heterostruc�
tures [21]. For weak magnetic fields, this mechanism
makes a positive contribution to the magnetoresis�
tance proportional to the magnetic field squared.
Thus, the difference between the experimental and
theoretical curves in stronger fields can be attributed to
this mechanism.

Determining the time τso and interpolating the
experimental dependence τφ(T) by the power�law
temperature dependence, we can try to describe the
experimental temperature dependences of the resis�
tance. However, it is more convenient to consider the
conductivity σ, which is inversely proportional to the
resistivity. Figure 3 shows the experimental data and
theoretical results obtained with the weak localization
theory [14] for the conductivity (we note that the sign
in the corresponding formula in [14] should be
changed to the opposite):

(2)

This equation provides the minimum in correction to

the conductivity at τφ = τso(  + 1)/2 ≈ 1.62τso. The
dotted lines calculated by Eq. (2) with the parameters
τso and dependences τφ(T) obtained from the measure�
ments of the anomalous magnetoresistance for the
corresponding hole densities reproduce the qualitative
behavior and scale of change in the conductivity with
the temperature. It is noteworthy that the relations
Tτso/� ≈ 1 and 1.3 at ps = 1.5 × 1012 and 1.1 × 1012 cm–2,
respectively, are valid for temperatures Tm at which the
maxima of the resistance are observed in the experi�
ment. For this reason, it can be assumed that the spin–
orbit interaction under our conditions hardly affects
the electron–electron interaction. We numerically
calculated corrections from the electron–electron
interaction using formulas from [22], where the inter�
action was described in all regimes, including the pre�
viously considered diffusive (Tτ/� � 1) [3] and ballis�
tic (Tτ/� � 1). These calculations show that the
observed nonmonotonic temperature dependence
cannot be reproduced if it is assumed, according to
[2], that the triplet term in the diffusion regime is sup�
pressed by the spin–orbit interaction. However, the
triplet term can improve agreement with the experi�
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ment, as will be shown below. The significance of the
triplet term at a small parameter Tτso/� � 0.05 was
mentioned in recent experimental work [23] specially
devoted to this problem. For these reasons, we used
equations from [22] including both the singlet,

(3)

and triplet,

(4)

terms. Here, EF is the Fermi energy of the two�dimen�
sional system. The functions f and t in Eqs. (3) and (4),
respectively, are cumbersome and specified by
Eqs. (3.36) and (3.44) in [22], respectively. The Fermi

liquid parameters  and  are determined by the
dimensionless interaction parameter that is the Cou�

lomb�to�kinetic�energy ratio rs = e2/(��VF), where
VF is the Fermi velocity of two�dimensional charge
carriers and � is the dielectric constant of the medium
surrounding the two�dimensional system (rs was cal�
culated with the dielectric constant of silicon � =
11.5). In the hole density range used in the experi�
ment, rs is between 2.7 and 3.8. The Fermi liquid

parameters  and  are given by the expressions
[22]

(5)

(6)

Using the parameters  = –0.41 and  = –0.36 cal�
culated by these formulas with the hole density ps =
1.1 × 1012 cm–2, we obtain good agreement with the
experiment (the lower solid line in Fig. 3) without the
fitting parameters (the only fit is the vertical displace�
ment of the curves up to coincidence of absolute values
of the conductivity at the minimum). To describe the
dependence at ps = 1.5 × 1012 cm–2 (rs = 3.0), we had

to use the parameters  = –0.35 and  = –0.29
corresponding to rs = 2.0. We did not try to describe
the nonmonotonic temperature dependence at ps =
1.9 × 1012 cm–2, because it is impossible to obtain reli�
able values τso and τφ at this density in view of the
absence of a pronounced maximum of the anomalous
magnetoresistance (see Fig. 4). An increase in the hole
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density is accompanied by an increase in the positive
contribution to the magnetoresistance primarily
owing to a decrease in the spin relaxation time.

It is worth noting that the theory of quantum cor�
rections [22] owing to the electron–electron interac�
tion predicts the nonmonotonic temperature depen�
dence of the resistance near the parameter value rs ~
3.5. However, this dependence has a minimum. The
appearance of the minimum is due to opposite signs of
the contributions to the conductivity from the ballistic
(proportional to the temperature) and diffusive (pro�
portional to the logarithm of the temperature) terms.
It is important that the position of the minimum in the
temperature depends both on the transport time τ and
on the interaction parameters. For example, the extre�

mum at  =  = –0.4 is reached at Tτ/� ≈ 0.03 (see
Fig. 8 in [22]), i.e., seemingly in the pure diffusive
regime. The maxima in the temperature dependence of
the conductivity calculated by Eqs. (3) and (4) are at
T ≈ 1.6 and 23 K for ps = 1.1 × 1012 and 1.5 × 1012 cm–2,
respectively. This explains the opposite signs and sig�
nificantly different magnitudes of the calculated shifts
of the minimum of the conductivity owing to correc�
tions from the interaction for different hole densities
in Fig. 3.

To conclude, we have shown that the mechanism of
the observed crossover in the temperature dependence
of the resistivity is the transition from weak localiza�
tion to antilocalization caused by a change in the rela�
tion between the spin–orbit and phase relaxation
times. Our analysis indicates that there is a region of
parameters where antilocalization is manifested in the
temperature dependence of the resistivity for two�
dimensional systems with spin–orbit interaction, in
contrast to the commonly accepted opinion that the
behavior of such systems is universally insulating, as
was predicted by Altshuler and Aronov [2], consider�
ing the quantum corrections associated with the elec�
tron–electron interaction.
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