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Measurement of Counting Statistics of Electron Transport in a Tunnel Junction
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We present measurements of the time-dependent fluctuations of electrical current in a voltage-biased
tunnel junction. We were able to simultaneously extract the first three moments of the current counting
statistics. Detailed comparison of the second and the third moments reveals that the statistics is accurately
described as Poissonian, expected for spontaneous current fluctuations due to electron charge discreteness,
realized in tunneling transport at negligible coupling to environment.
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Photon counting statistics [1,2] is a key technique of
quantum optics, which is routinely used to characterize the
complexity of optical states, such as photon coherence,
entanglement, and squeezing. In contrast, the subject of
electron counting and noise statistics, which is expected to
provide new insights into quantum transport, is essentially
at infancy as an experimental field, with the first advances
made only recently [3—6]. Electron counting proves to be
far more challenging than that of photons primarily be-
cause of the extremely high frequency of electron passage
events at typical current intensity, which requires fast
charge detection. While in some cases Coulomb blockade
can be used to localize electrons, bringing the tunneling
rate down to the radio frequency range [4-6], the time
resolution needed to measure free, nonlocalized electrons
remains a challenge.

Another difficulty stems from the simple fact that, while
photons do not interact, the electrons do. The electric field
fluctuations produced by the electrons that are being mea-
sured can propagate out to the environment and perturb it.
In turn, the environment noise, modulated by the signal,
can couple back to the region of interest, strongly affecting
the measured signal [3,7-11].

The electron problem is especially rich and intriguing:
The electrons remain part of the many-body system while
being detected, allowing quantum phenomena to manifest
themselves in electric noise. This leads to a number of
dramatic effects observed in electric noise, such as, nota-
bly, elementary charge transmutation in the fractional
quantum Hall effect [12-14] and charge doubling in
normal-superconducting junctions [15].

The regime in which electric fluctuations occur sponta-
neously due to charge discreteness, rather than due to
thermal fluctuations, is realized at sufficiently low tem-
peratures [16—18]. It was first demonstrated about 10 years
ago in semiconductor point contacts [19,20] and in meso-
scopic wires [21,22]. Current fluctuations in this regime are
traditionally analyzed using the noise frequency spectrum.
However, a more detailed description [23,24] is provided
by the statistics P(g) of the charge ¢(7) transmitted through
a conductor during a fixed time interval 7 which, in prin-
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ciple, can be small or large compared to the time 79 = e/I.
The low frequency shot noise is just the second central
moment of P(g) at 7 >> 7¢:
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with (- - ) a shorthand for [...P(q, 7)dg. The counting
distribution P(g), which encodes the full information about
noise statistics, was studied in various regimes, including
mesoscopic systems [23], NS junctions [25,26], and
photon-assisted transport [27]. Specifics of the tunneling
regime were considered in [28,29].

The present work extends the shot noise measurements
beyond the second moment in a way uncorrupted by the
presence of electromagnetic environment. In the low trans-
mission tunnel junctions, used in our experiment, indepen-
dent and uncorrelated charge transmission events, and thus
Poissonian statistics, are expected. Our results confirm this
expectation, paving the way to investigation of counting
statistics. We measure current fluctuations by detecting the
probability distribution of voltage across a load resistor,
P(V). The latter is directly related to P(g) when the load
resistance is made much smaller than the tunnel resistance
(see below).

The knowledge of P(g) allows one, in principle, to
obtain all moments of g. However, with the measurement
times 7 >> 7, due to the central limit theorem, the high
moments become increasingly dominated by the lower
order moments. This makes the irreducible parts of the
moments, the cumulants, which contain new information,
increasingly difficult to extract. Thus here we focus on the
third central moment {(Ag®) = {((¢ — §)*) which coincides
with the third cumulant ((g>)).

The expected statistics are different in the voltage-biased
and current-biased regimes. The former case is described
by the rate of attempts to pass equal to eV/h and a
binomial distribution of successes [23]. At weak trans-
mission, realized in our tunnel junction, the distribution
assumes Poisson form, with the low frequency spectral
density S® of the kth cumulant, corresponding to “long”
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measurement times 7 3> 7, expressed as

s =8P _ ey @)
T

In a current-biased sample, in contrast, the rate of suc-
cesses is fixed at I/e, with the attempts to pass, described
by voltage fluctuations, characterized by Pascal distribu-
tion [8]. Theory of high-order noise statistics in the diffu-
sive regime was developed in Ref. [7], the role of
environment was considered in Ref. [9] (see also [10]).

In the first measurement of the third moment S® Reulet
et al. [3] used a low impedance tunnel junction (R, =
50 Q) as a noise source, with a parallel 50 () load imped-
ance R, of the cable used to feed the voltage to an external
amplifier. The initial results [3] distinctly different from the
Poissonian, in both magnitude and sign, suggested that §
is dominated by the effects extraneous to the junction. A
theoretical investigation [8,9] clarified the importance of
the environment for correct interpretation of the results,
obtaining

sy =5,
- 3)

with R;; = R;R;/(R; + R;) the impedance of the sample
in parallel with the load, S and S the sample and load

noise, and S§3) generated by the voltage-biased sample. The
load resistor, being macroscopic, is not expected to pro-
duce a third cumulant [7,18]. The measurement [3], which
due to R; = R, was neither fully in the voltage-biased nor
in the current-biased regime, was well described by the last

§& =5 - 3R, (87 + 57

term of Eq. (3), dominated by the voltage-dependent s,
Only at room temperature, due to low as? /dV, the result
had the sign of S¢.

To measure the intrinsic S® free of the admixture of the
second moment, we use a new method suggested and
analyzed in Ref. [28] (Fig. 1). Current fluctuations gener-
ated by the sample (voltage-biased tunnel junction of high
impedance) produce voltage fluctuations on the load resis-
tor R;, which are amplified and analyzed with computer.
The statistics of voltage fluctuations on R;, as discussed
below [Eq. (6)], is identical to that of the intrinsic current
fluctuations in the junction, provided that R; is much
smaller than the junction differential resistance and the
voltage drop across the junction is bigger then the tem-
perature [8].

The main source of errors in the measurement of the kth
cumulant ({g¥)) of the distribution P(g) is statistical. In
order to estimate the signal-to-noise ratio, the measured
value ({(g*)) should be compared to its variance var(Ag*)
due to both sample and amplifier noise. The variance is
expressed through the central moments of the order 2k. The
variance of an even order for a generic distribution can be
estimated with the help of the central limit theorem, using
Gaussian statistics:

var (Aqh) = (Ag)'/2 = (2K = DI A (&)
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FIG. 1. Schematic of the experimental setup. The current
source drives constant average current I while the capacitor
C, fixes the voltage across the sample and the load at relevant
frequencies. The bandwidth is determined by the load resistance
R, and stray capacitance C,. The voltage fluctuations across the
load resistor are amplified and digitized by a 12 bit analog-to-
digital (A/D) convertor (Ultraview Corp.) with 5 ns sampling
time and 20 ns interval between the samples. The amplifier input
impedance is determined by R;.

Here the variance (Ag?) in Eq. (4) is due to the sample,
amplifier, and load noise, §@ = ng) + ng) + ng), assum-
ing all three to be uncorrelated. The signal-to-noise ratio
for a single measurement of the third cumulant is thus
estimated as a ratio of S;7 to 15/2(S,7)/2, and therefore
it is beneficial to reduce the sampling time 7 to improve
sensitivity, in accord with the central limit theorem.
However, the amplified signal is correlated at short times
due to the finite bandwidth of the input circuit. This makes
the effective sampling time restricted from below by the
sample parasitic capacitance, Cy, of both intrinsic and stray
kind, and by the effective input resistance R, so that
Terr = R ;C;. Repeating the measurement N times would
further reduce fluctuations by a factor +/N, assuming sta-
tistically independent successive measurements. However,
since the measurements separated in time by less than 7.
are correlated, the maximal improvement is of the order of

\/T /Tetr» where T is the measurement time. In the case of

a high impedance tunnel junction, the noise is dominated
by the resistor R; thermal noise, 2kzT/R;. The measure-
ments were performed at 4.2 K to reduce both this noise
and the noise of the amplifier. We used a cryogenic ampli-
fier built with ATF-35143 transistors. The amplifier voltage
noise, expressed as 2k TR, translates into R < 500 () at
the bath temperature. Ignoring for now both the shot noise
produced by the sample and the amplifier noise, we esti-
mate the signal-to-noise ratio as
AINT

S/N = . 5
/ V15QkgT/R)Y? JT7e ©)

Replacing 7 by 7. and plugging in Eq. (5) we find the

signal-to-noise ratio §/N o R,l/ 2C; ! 1t is therefore clear
that it pays to decrease C, and increase R, to improve S/N.
We placed a cryogenic amplifier in the vicinity of the
sample to reduce as much as possible the capacitance C;.
The choice of the R, is restricted by the desire to keep most
of the signal at frequencies well above the 1/f corner of
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the amplifier. We chose R; = 9.1 k{), which together with
the stray capacitance of about 4 pF gives 7. = R,C, =
40 ns and signal bandwidth (27 7.¢) ! = 4 MHz. We used
a current source to set an average current. To preserve the
voltage bias conditions, a capacitor C, was introduced,
which kept the voltage constant across the sample-load
circuit at all relevant frequencies. _

We used tunneling through a 30 A thick SiO, gate oxide
of a p-channel Si field-effect transistor to produce a shot
noise. In this system tunneling occurs only under negative
gate voltage required to induce a hole channel. The differ-
ential resistance of the barrier R, = (91/9V)~' > 107 Q
was much bigger than R;, placing the sample securely in
the voltage-biased regime. Indeed, the maximal contribu-
tion of the second term in Eq. (3),

ol 6ekyT
—3Z(el + 2kyT/R))e - ~ — "B
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is estimated as 5.2 X 10™*% A3/Hz2, which is 2 orders of
magnitude smaller than eI ~5 X 1074 A3/Hz?> (Fig. 2
and 3).

The amplified voltage V, was sampled with an A/D
convertor during 5 ns intervals about 10'° times at each
bias current value. Typical distribution P(V,,) is presented
in Fig. 2, upper inset. To clean the obtained histogram, we
correct for nonequal bin widths of the converter by cali-
brating the latter against a linearly swept signal (Fig. 3,
lower inset). The effect of normalizing P(V,) with the
converter calibration, illustrated in Fig. 2 lower inset, is
twofold. First, the histogram loses the noisy features on the
smallest scale. Simultaneously, the envelope is somewhat
corrected on a large scale. The latter effect, due to averag-
ing, has longer stability time, which is fortunate, since the
noisy features, while less stable, were found to have little
effect on the second and third cumulants.
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FIG. 2. Measured value of the noise, S@, as a function of the
current. Different markers represent the data of three different
measurements. The straight line S@ = eI, corresponding to the
expected noise intensity [32], is shown for guidance. Upper
inset: raw voltage histogram sample. Lower inset: cleaned his-
togram, illustrating the result of normalizing with the A/D
converter calibration (see text).

For a linear circuit, the amplified voltage V,(w) and the
input current i(w) Fourier components are proportional:
V. (w) = Z(w)K(w)i(w), with Z the load impedance and K
the amplification. Therefore the third cumulant is related to
the respective spectral densities of V, as

@) + 00
o7 [[ S Ao - whdodo’ )

(V)=

with A(w) = Z(w)K(w). For the broadband amplifiers
used, the amplification K(w) was almost frequency inde-
pendent between the low ~0.5 MHz and high ~25 MHz
frequency cutoffs intentionally introduced to filter the 1/f
amplifier noise and the wide-band noise at frequencies well
above (277.;)”!. The complex product Z(w)K(w) was
obtained from calibration, introducing a known current
through a small capacitor C, typically of 2.4 pF. We then
used Eq. (7) for Vf) and a similar expression for V,(lz) to
extract S® and S?. The second cumulant S® combines
the shot, thermal, and amplifier noise contributions. Since
only the former depends on current, the amplifier noise
and the thermal noise, obtained from S@ at zero current,
can easily be subtracted [30]. The resulting noise S@,
shown in Fig. 2, varies linearly with current as expected
(eV =4 eV > kpT at all currents). The measured value
agrees with the expected value, el, within a calibration
error of 5%.

In order to extract properly the third cumulant of the
voltage, one should account for the effect of amplification
nonlinearity that can mix & with @), Let us consider the
amplifier nonlinearity, Vo, = K(Vi, + V2 /U), which con-
tributes to (§V2,,) as follows:

(BV3D/K3 —(8V3)=9(8V2)}/U + O(U™?). (8)

bin number
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FIG. 3. Measured third cumulant S of the transmitted charge,
obtained separately for different current directions. (Markers are
the same as in Fig. 2; the straight line is S = ¢21.) Upper inset:
S® vs I without amplifier nonlinearity correction. Lower inset:
normalized histogram of the linearly swept signal, used to
calibrate the A/D converter (see text).
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The right-hand side would affect the value S calculated
from (8VJ2,) (similar analysis for (SV2,) vyields
(8V2,)/K* — (8V2%) = 2(8V2)/U). The parameter U can
be estimated by applying an ac signal and measuring its
second harmonic. We took special care to reduce nonline-
arity of the amplifier track, especially the last amplifier in
the chain. We managed to make it comparable to the
nonlinearity of the cryogenic amplifier, which was differ-
ent for different measurements, depending on the regime.
We found U to exceed 20 mV, thus having a negligible
effect on S@. However, estimates show that the nonline-
arity correction to S® can be as large as 10~% A3/Hz2.
We attribute the third cumulant at zero current (see the
upper inset of Fig. 3) to this nonlinearity and determine U
as the ratio 9(8V2)7_,/(8V3,)i=o. Using this U, we sub-
tract the nonlinearity contribution, Eq. (8), from the data at
all currents. This procedure, as illustrated in Fig. 3, upper
inset, restores zero value at / = 0, but has little effect on
the slope of the dependence S vs I. We therefore con-
clude that the nonlinearity, while necessary to account for
to improve accuracy, is not strong enough to compromise
the measurement of 95 /d1. The results, shown in Fig. 3,
are found to be in excellent agreement with the Poissonian
S = 2.

As an additional check, we also reversed the current
direction. Since we had to apply negative voltage on the
gate to induce holes, it required rebonding the sample (see
Fig. 3, upper inset). We found the third cumulant to be an
odd function of current, as expected.

Finally, we note that the literature is not entirely unani-
mous regarding the Poissonian character of tunneling
transport. Dissent is exemplified by Ref. [31], predicting
a new ‘“‘quantum regime’’ at sufficiently low frequencies,
limited by inverse flight time in a noninteracting fermion
model. Reference [31] obtains S for the tunneling current
of the sign opposite to Poissonian S and also of much
smaller magnitude, quadratic in transmission rather than
linear as in Eq. (2) above. The conditions stated in Ref. [31]
are fulfilled in our experiment: the time interval between
electron tunneling and its detection, estimated from EM
signal propagation speed, is of order 3 X 107! s, which is
much shorter than the sampling time, 5 ns, placing the
measurement securely at low frequency in the sense of
Ref. [31]. The results [31] are thus not in accordance with
our observations.

In summary, we present the first measurements of the
charge counting statistics in voltage-biased tunnel junction
up to the third cumulant. The results, obtained by analyzing
the distribution of transmitted charge, are in excellent
agreement with expectations for the Poissonian process,
making electron counting statistics amenable to experi-
mental investigation.
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