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Abstract—Measurements of the microwave surface impedance Zs(T) = Rs(T) + iXs(T) and the complex con-
ductivity σs(T) in the ab-plane of high-quality high-Tc YBCO, BSCCO, TBCCO, and TBCO single crystals are
analyzed. Experimental data of Zs(T) and σs(T) are compared with calculations based on a modified two-fluid
model that includes a temperature-dependent quasiparticle scattering and a unique temperature variation of the
density of superconducting carriers. We describe the agreement and disagreement of our analysis with the
salient features of the experimental data. We review the existing microscopic models based on unconventional
symmetry types of the order parameter and on novel quasiparticle relaxation mechanisms. © 2000 MAIK
“Nauka/Interperiodica”.
¶ 1. INTRODUCTION

High-precision microwave measurements of the tem-
perature dependence of the surface impedance Zs(T) =
Rs(T) + iXs(T) of high-Tc superconductors (HTSC’s)
considerably advance our understanding about the pair-
ing of the superconducting electrons in these materials.
In particular, in 1993, the linear T-dependence of the pen-
etration depth λ(T) – λ(0) ∝ ∆ Xs(T) ∝  T observed below
25 K in the ab-plane of high-quality YBa2Cu3O6.95

(YBCO) single crystals [1] gave rise to productive
investigations of the order parameter of HTSC’s. This
linear variation of λ(T) at low T has by now been
observed not only in orthorhombic YBCO single crys-
tals [2–14] and films [15–18] but also in tetragonal
Bi2Sr2CaCu2O8 (BSCCO) [19–22], Tl2Ba2CuO6 + δ
(TBCO) [23, 24], and Tl2Ba2CaCu2O8 – δ (TBCCO)
[10] single crystals. This temperature dependence does
not agree with the nearly isotropic superconducting
gap, and it is now considered as a strong evidence for
the d-wave pairing in these materials [25–35] in spite of
the fact that the experimental data are not sensitive to
the phase of the superconducting order parameter.
Later research has shown that ∆λab(T) can be linear at
low T for models invoking the proximity effect between
normal and superconducting layers [36] or assuming
the anisotropic s-wave pairing [37–39]. However, none
of these theories can give an explanation for the sub-
stantially different slopes of ∆λab(T) at low T in the
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YBCO samples grown by different methods [40] and
for certain features such as a bump [9, 11, 16, 41] or a
plateau [8, 10, 12], which are observed in the interme-
diate temperature range 0.4 Tc < T < 0.8 Tc. Models con-
taining a mixed (d + s) symmetry of the order parameter
[42–56] hold some promise for a successful description
of these experimental features, but this would require
additional theoretical investigations.

Another important feature of the microwave
response of HTSC crystals is the linear variation with
temperature of the surface resistance Rs(T) in the ab-plane
at low temperatures. At frequencies about 10 GHz and
below, the T-dependence of Rs(T) in BSCCO, TBCO,
and TBCCO single crystals is linear over the range 0 <
T & Tc/2 [19, 21–23]. For YBCO crystals, ∆Rs(T) ∝  T
for T & Tc/3 and Rs(T) displays a broad peak with a val-
ley at higher temperatures [4–14, 57–61]. This peak can
be understood as a competition between an increase in
the quasiparticle lifetime and a decrease in the quasi-
particle density as the temperature is lowered. The suf-
ficiently slow decrease in the quasiparticle density is
indicative of a highly anisotropic or unconventional
order parameter, resulting in a very small or vanishing
energy gap, while the increase in the quasiparticle life-
time is attributed to the presence of inelastic scattering,
which can be due (i) to the exchange of antiferromag-
netic spin fluctuations [62], which would naturally lead
to the d-wave pairing, or (ii) to a strong electron–phonon
interaction [63–65] within the anisotropic s-wave pairing
model [66, 67]. Moreover, there have been suggestions of
unconventional states for describing the charge carriers in
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the CuO2 planes like the marginal Fermi liquid [68, 69]
and the Luttinger liquid [70, 71]. However, to fit the data
of YBCO, the inelastic scattering rate must decrease
with temperature much faster than predicted by any of
these microscopic models. Further, the d-wave model
with point scatterers does predict a finite low-tempera-
ture and low-frequency limit, which is independent of
the concentration and the strength of the scattering cen-
ters [72]. Therefore, the latter model does not explain
the very different values of the observed residual sur-
face resistance Rres ≡ Rs (T  0) on different sam-
ples. Furthermore, the value of this universal surface
resistance is much lower than the Rresvalues obtained
from experiments. There is no microscopic theory
explaining the linear temperature dependence of ∆Rs(T)
up to Tc/2 in crystals with a nonorthorhombic structure
and the shoulder of Rs(T)observed on YBCO [9, 11]
for T > 40 K.

In the absence of a generally accepted microscopic
theory, a modified two-fluid model for calculating Zs(T)
in HTSC single crystals has been proposed indepen-
dently in [73, 74] and then further developed in [8, 40,
61, 75]. Our phenomenological model has two essential
features that make it different from the well-known
Gorter–Casimir model [76]. The first is the introduction
of the temperature dependence of the quasiparticle
relaxation time τ(t) (with t ≡ T/Tc) described by the Gru-
neisen formula (electron-phonon interaction), and the
second feature is the unique density of superconducting
electrons ns(t), which gives rise to a linear temperature
dependence of the penetration depth in the ab-plane at
low temperatures:

(1)

where n = ns + nn is the total carrier density and α is a
numerical parameter in our model.

The goal of this paper is to demonstrate the power
of our model in describing the general and distinctive
features of the surface impedance Zs(T) and the com-
plex conductivity σs(T) in the superconducting and nor-
mal states of different HTSC crystals (whose doping
level corresponds to the highest Tc) at various frequen-
cies. Section 2 describes the systematization of the
Zs(T) measurements, including the analysis that is used
to extract σs(T) from the measured values of Zs(T). Sec-
tion 3 compares experimental data of Zs(T) and σs(T)
over the entire temperature range with calculations
based on our modified two-fluid model. In the conclu-
sion, we compare the concepts of our model with
results of microscopic theories. We hope that this can
be a helpful guide for future investigations of micro-
wave properties of HTSC’s from a microscopic point of
view.
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2. ANALYSIS OF EXPERIMENTAL RESULTS

2.1. Surface Impedance

The surface impedance in the ab-plane of HTSC’s,
expressed in terms of the complex conductivity σs =
σ1 – iσ2, obeys the local equation

(2)

The impedance components are

(3)

(4)

where ϕ = 1 + (σ1/σ2)2. It is obvious that Rs < Xs for
T < Tc .

For temperature T < Tc and with σ1 ! σ2, Eqs. (3)
and (4) reduce to

(5)

The surface impedance components are measurable
quantities. The real part of the surface impedance, the
surface resistance Rs, is proportional to the loss of the
microwave power. It is caused by the presence of “nor-
mal” carriers. In the centimeter wavelength band, typi-
cal values of the surface resistance in the ab-plane of
HTSC single crystals are between 0.1 and 0.3 Ω above
the transition temperature Tc . When T is decreased
through Tc, the surface resistance abruptly drops but
does not seem to approach zero as T  0. In conven-
tional superconductors (like Nb), Rs(T) decreases expo-
nentially upon decreasing the temperature below Tc/2,
approaching a constant residual surface resistance Rres
as T  0. Rres is due to the presence of various defects
in the surface layer of the superconductor. Therefore, it
is generally accepted that lowering Rres leads to improv-
ing the sample quality. In high-quality HTSC’s, there is
no plateau in Rs(T) for T ! Tc . However, we extrapolate
the value of Rs(T) to T = 0 K and denote it by Rres . The
origin of the residual surface resistance observed in
HTSC crystals remains unclear. It is known that Rres is
strongly material and sample dependent and is approx-
imately proportional to the square of the frequency. At
present, very small values (Rres ≈ 20 µΩ at frequencies
≈10 GHz) are observed in YBCO single crystals [9, 14].

The imaginary part of the surface impedance, the
reactance Xs, is mainly determined by the supercon-
ducting carriers and is due to nondissipative energy
stored in the surface layer of the superconductor.
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In the table, we summarize the main features of the
temperature dependence of the surface impedance of
high-quality YBCO, BSCCO, TBCO, and TBCCO sin-
gle crystals whose residual surface resistance in the
ab-plane (Rres) is less than one milliohm at the fre-
quency ≈10 GHz with the Rs(Tc) values about 0.1 Ω.
There is good reason to believe that the temperature
behavior of the electrodynamic parameters of these crys-
tals is adequately related to the intrinsic microscopic
properties of the superconducting state of HTSC.

To illustrate the data of the table, we show in Fig. 1,
as an example, experimental data of Rs(T) and Xs(T) in
the ab-plane of a BSCCO single crystal at 9.4 GHz
[22]. In this figure, Rs(T) = Xs(T) for T ≥ Tc, which cor-
responds to the normal skin-effect condition. Knowing

Rs(Tc) =  ≈ 0.12 Ω, we obtain the resistivity
ρ(Tc) ≈ 40 µΩ cm. In the normal state (above Tc), the
temperature dependence of Rs(T) = Xs(T) is adequately

described by the expression 2 /ωµ0 = ρ(T) = ρ0 +
bT. For the BSCCO crystal in Fig. 1, ρ0 ≈ 13 µΩ cm and
b ≈ 0.3 µΩ cm/K. The insets in Fig. 1 show Rs(T) and
λ(T) = Xs(T)/ωµ0 for T < 0.7 Tc plotted on a linear scale.
The extrapolation of the low-temperature sections of these
curves to T = 0 K yields the estimates Rres ≈ 0.5 mΩ and
λab(0) = 2600 Å for this crystal.

The experimental curves of ∆λab(T) for YBCO,
TBCO, and TBCCO crystals are also linear in the range
T < Tc/3. It is important to note different slopes of the
∆λ(T) ∝  T curves for T ! Tc . In particular, in YBCO
crystals fabricated by different techniques, the slopes of
∆λab(T) differ by almost one order of magnitude [8, 9, 13].
The reasons for such a discrepancy are still unclear.

At frequencies about 10 GHz and below, the linear
dependence ∆Rs(T) ∝  T in BSCCO (Fig. 1), TBCCO,
and TBCO single crystals may actually extend to the
temperatures ~Tc/2. This property, which is common
for all HTSC crystals with the tetragonal structure, is
not characteristic of YBCO. As noted previously, all
microwave measurements on high-quality YBCO sin-
gle crystals show a broad peak in the Rs(T) curve cen-
tered near 30–40 K up to the frequencies ≈10 GHz. The
peak shifts to higher temperatures and diminishes in
size as the frequency is increased. In higher quality
YBCO crystals, the peak amplitude increases and Rs(T)
reaches its maximum at a lower temperature [14].

The underlying origin of this YBCO feature has
remained unclear. The simplest idea is that the absence
of this peak in crystals with tetragonal structure might
be caused by their “poor” quality, as is the case with
YBCO doped with Zn [2, 4, 58]. However, this conclu-
sion is probably incorrect because (i) there is a suffi-
ciently large set of experimental data indicating that
Rs(T) is a linear function of T for BSCCO, TBCO, and
TBCCO, and (ii) the peak in Rs(T) was also detected in

ωµ0ρ Tc( )/2

Rs
2 T( )
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the YBCO crystals [7, 10, 60] with the parameters Rres

and ρ(Tc) that would characterize the quality of these
crystal as being “poor” compared to those of, for exam-
ple, TBCCO [10] or BSCCO [21]. Results for the latter
crystals are shown in Fig. 2. The more probable cause
of the peak, however, is the presence of an additional
component in the YBCO orthorhombic structure,
namely, the CuO chains that lead to a mixed (d + s)
symmetry of the order parameter in YBCO. The elec-
trons of the chains form an additional band, contribut-
ing to the observed T-dependence of Zs(T). This contri-
bution seems to result in another distinctive feature of
YBCO, namely, a plateau or a bump (see table) on the
λab(T) curve, which has been observed in high-quality
YBCO single crystals [8–12] and films [16, 41]. How-
ever, recent measurements of ∆λab(T) in the YBCO
crystals [14] grown in a high-purity BaZrO3 crucible do
not show such features in the intermediate temperature
range. The authors of [14] argue that the disagreement
with the results of [9] arises from a problem related
with the surface of the crystal. The last observation still
lacks a convincing explanation.

Finally, another feature in the T-dependence of the
impedance of high-quality YBCO crystals was
detected: a noticeable increase of Rs(T) with an increas-
ing temperature (a shoulder) at temperatures larger than
the peak (30 K). It turns out that this shoulder is repro-
ducible in the experiments [9, 11]. Similarly, an expla-
nation of this observation is lacking.
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Fig. 1. Surface resistance Rs(T) and reactance Xs(T) in the
ab-plane of a BSCCO single crystal at 9.4 GHz. The insets
show linear plots of λ(T) and Rs(T) at low temperatures.
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Surface impedance Zs(T) = Rs(T) + iXs(T) in the ab-plane of high-Tc single crystals at frequencies ~10 GHz

HTSC

Superconducting state, T < Tc
Normal state 
1.5Tc > T ≥ Tclow temperatures 

4 K < T ! Tc

intermediate temperatures 
T ~ Tc/2

T  Tc

Orthorhombic 
structure 
YBCO 

Tc ≈ 92 K

∆Rs(T) ∝ T, ∆Xs(T) ∝  T 
at T & Tc/4; 
Essentially different 
slopes 
of ∆λ(T) ∝  T [1–14]

Broad peak in Rs(T) at 25 < T < 45 K 
[4–14, 57–60]
Peculiarities:
1. Shoulder [9, 11] in Rs(T) at T > 40 K;
2. Bump [9] or plateau [8, 10] 
on the curves of Xs(T) at 50 < T < 80 K

Different slope 
of λ(T) [3–14]

Normal 
skin-effect

Tetragonal structure
BSCCO

Tc ≈ 90 K [19–22] 
TBCO 

Tc ≈ 80 K [23, 24] 
TBCCO 

Tc ≈ 110 K [10, 12]

∆Rs(T) ∝  T, T & Tc/2
∆Xs(T) = ωµ0∆λ(T) ∝  T, T & Tc/3

Rapid growth 
of Rs(T) and Xs(T)

Rs(T) = Xs(T) = 

∆ρ(T) ∝  T
ωµ0ρ T( )/2
2.2. Complex Conductivity

Equations (2)–(4) allows us to express the real and
imaginary parts of the complex conductivity σs = σ1 –
iσ2 in terms of Rs and Xs as

(6)

Above the superconducting transition temperature,
the mean free path l of current carriers is shorter than the

σ1

2ωµ0RsXs

Rs
2 Xs

2+( )2
-------------------------, σ2

ωµ0 Xs
2 Rs
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Fig. 2. Comparison of the temperature dependence of the
surface resistance Rs(T) of BSCCO and YBCO single crys-
tals at 14.4 GHz. Experimental data are taken from [21]
(BSCCO at 14.4 GHz) and [8] (YBCO at 9.4 GHz, scaled
by ω2 to 14.4 GHz). The inset shows the linear T-depen-
dence of Rs at low T for both materials and a broad peak of
Rs(T) for YBCO.
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skin depth δn in the normal state (for T ≥ Tc, l ! δn), which
corresponds to the conditions of the normal skin effect.
Equations (2)–(4) and (6) also apply to the normal state of

HTSC’s, where Rn(T) = Xn(T) =  with
σn ≡ σ1 (T > Tc) and σ2 ! σ1 at microwave frequencies.

The components σ1(T) and σ2(T) are not measured
directly but can be derived from measurements of Rs(T)
and Xs(T) using Eq. (6).

2.2.1. Low-temperature region (T ! Tc). When
Rs(T) ! Xs(T), Eq. (6) reduces to

(7)

It then follows from Eq. (7) that for low and inter-
mediate temperatures, σ1/σ2 = 2Rs/Xs ! 1. The incre-
ments ∆σ1(T) and ∆σ2(T) depend on the increments
∆Rs(T) and ∆Xs(T) relative to the respective quantity:

(8)

It follows from Eq. (8) that the dominant changes of
σ2(T) are determined mainly by the function Xs(T) =
ωµ0λ(T), which reflects the T-dependence of the mag-
netic field penetration depth.

The T-dependence of the real part of the conductiv-
ity, σ1(T), is determined by the competition between the
increments ∆Rs/Rs and ∆Xs/Xs.

In conventional superconductors, the quantity Xs(T)
(@Rs) is practically T-independent (∆Xs ≈ 0) at temper-
atures T ≤ Tc /2, and Rs(T) decreases exponentially and
approaches the residual surface resistance Rres as T  0.
By subtracting Rres from the measured Rs(T), we obtain,
using Eqs. (7) and (8), the temperature dependence of

ωµ0/2σn T( )

σ1 T( )
2ωµ0Rs T( )

Xs
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σ1(T) predicted by the BCS theory: σ1 = 0 at T = 0 and,
for T ≤ Tc/2, ∆σ1(T) shows an exponentially slow
growth with an increasing temperature. We note that
the smallest value of Rres detected in pure Nb is at least
two orders of magnitude smaller than the smallest value
of Rres measured in YBCO. The extremely small values
of the surface resistance in Eq. (8) indicate that the
increment ∆σ1(T) is always positive in classical super
conductors (∆σ1(T) > 0), at least in the temperature
interval T < 0.8 Tc , before the maximum of the BCS
coherence peak is reached.

For HTSC single crystals, the T-dependence of
∆σ1(T) is radically different from that predicted by the-
ories of the microwave response of conventional super-
conductors. For T < Tc , the increments ∆Rs(T) and
∆Xs(T) in HTSC’s are not small; in addition, ∆Xs(T) @
∆Rs(T). Although Rs(T) < Xs(T), ∆Rs/Rs is not necessar-
ily greater than 3∆Xs/Xs in Eq. (8) or positive at all tem-
peratures. When that occurs, σ1(T) increases with a
decreasing temperature. The function σ1(T) is maxi-
mum at some T = Tmax, and then σ1(T) becomes smaller
with a decreasing temperature. σ1(T) has a peak if the
value of Rres is sufficiently small as T  0:

(9)

If inequality (9) is satisfied, Tmax is a finite tempera-
ture, while for Rres being equal to the right-hand side
of (9), Tmax shifts to 0 K. If Rres is such that (9) is not
satisfied, σ1(T) decreases at low temperatures as the
temperature is increased, which is quite different from
that observed in conventional superconductors.

Thus, the shape of σ1(T) for T ! Tc depends on the
value of the residual surface resistance Rres , whose ori-
gin and accurate value are unknown. For this reason,
the shapes of the σ1(T) curves are not determined
unambiguously for T ≤ Tc/2, unlike the functions Rs(T)
and Xs(T), which are directly measured in experiments.

If we linearly extrapolate Rs(T) to T = 0 and attribute
the resulting value Rs(0) to the residual surface resis-
tance (Rs(0) = Rres) and then substitute the temperature-
dependent difference Rs(T)–Rres into the numerator of
the first expression in Eq. (7), the result is that the σ1(T)
curve has a broad peak for HTSC materials. Near T = 0,
σ1(T) increases linearly with T from zero, reaches a max-
imum at Tmax, and then decreases to σ(Tc). This procedure,
however, ignores the possibility of intrinsic residual
losses. Therefore, some authors (see, e.g., [14, 21, 59])
associate residual losses in HTSC single crystals with a
residual normal electron fluid. This implies that the
source of the residual loss is in the bulk of the sample,
although it is probably not intrinsic. If this contribution
is excluded from the complex conductivity of the
superconductor, one obtains σ1(T = 0)  0, as can be
seen in Fig. 3 from the measurements taken at 13.4,

Rres

Xs 0( )
3

------------
∆Rs T( )
∆Xs T( )
-----------------.<
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22.7, and 75.3 GHz in [14]. The peak of σ1(T) shifts to
higher temperatures, and its size diminishes as the
experimental frequency is increased. In YBCO single
crystals, the temperature Tmax at which the maximum of
σ1 occurs is close to the temperature at which the peak
of Rs(T) occurs.

Finally, one can procure σ1(T) from measurements
of Rs(T) and Xs(T) for T > 0 without any concern about
Rres . In this case, σ1(0) is not determined uniquely.
Whether σ1(T) has a peak depends on the validity of
condition (9). The curves at 1 and 2 GHz in Fig. 3 were
obtained using Eq. (6) without subtracting any residual
losses.

2.2.2. Temperatures close to Tc (T  Tc).
Equations (7) and (8) do not apply near Tc. In this tem-
perature range, it is necessary to use the general local
relations (2)–(4) and (6).

The conductivity σ2(T) in the ab-plane of HTSC
crystals abruptly drops to very small values in the nor-
mal state. The expression [Tc/σ2(0)]dσ2(T)/dT at T = Tc

that defines the slope of λ2(0)/λ2(T) at T = Tc varies
between –2 and –4 for different crystals.

The real part of the conductivity, σ1(T), does not
show a coherence peak near T = 0.85Tc, as predicted by
BCS. Usually, the real part of the conductivity of HTSC
single crystals has a narrow peak near Tc, which
increases with decreasing the frequency [21, 23, 24].

1.14 GHz
2.25 GHz
13.4 GHz
22.7 GHz
75.3 GHz

0 20

1

2

3

4

5

6

40 60 80
T, K

σ1, 107Ω–1m–1

Fig. 3. Real part of the conductivity σ1(T) of YBCO single
crystal at different frequencies [14]. The data (symbols) are
the courtesy of the Vancouver group (D.A. Bonn). Solid line
is the T-dependence of σ1(T) at 1.14 GHz calculated using
the modified two-fluid model and taking the inhomoge-
neous broadening of the superconducting transition into
account (δTc = 0.4 K in Eq. (21), see Section 3.3).
SICS      Vol. 91      No. 4      2000



806 TRUNIN et al.
The width of the narrow peak of σ1(T) coincides with
the width of the Rs(T) transition at microwave frequen-
cies. A possible explanation of the sharp peak just
below Tc is an inhomogeneous broadening of the super-
conducting transition [77–79] or the fluctuation effects
[24, 80, 81].

3. MODIFIED TWO-FLUID MODEL

As was shown in [65], high Tc values (Tc ~ 100 K),
the temperature dependence of the resistivity, the fre-
quency dependence of the momentum relaxation time,
and other properties of the normal state in optimally
doped HTSC’s are well described within the frame-
work of the Fermi-liquid approach involving strong
electron–phonon coupling (SC) [63]. The SC model
also explains some of the features of the superconduct-
ing state of HTSC’s. It follows from the Eliashberg the-
ory that the distinctive property of superconductors
with strong coupling is that the gap in the spectrum of
electronic excitations is smeared. Strictly speaking,
there is no gap whatsoever at T ≠ 0 [82, 83]. This leads
to breaking of Cooper pairs, smearing of the peak in the
density of states at "ω = ∆(T) due to the inelastic scat-
tering of electrons by thermally excited phonons, and
suppression of coherence effects. As a result, the ampli-
tude of the coherence peak decreases and, according to
[84, 85], virtually disappears at frequencies around
10 GHz if the electron–phonon coupling constant
exceeds unity. Moreover, the quasiparticle generation
mechanism is radically different from that of the BCS
model. The quasiparticles are generated without jumps
across the energy gap and can be in states with all ener-
gies down to "ω = 0. These states can be classified as
gapless, and the quasiparticles can be treated [65] as
normal current carriers in the two-fluid model. Thus, it
is not surprising that an important consequence of the
SC model is the nonexponential behavior of Rs(T) [86]
and λ(T) [87]. Power-law temperature dependences
were also predicted by the two-fluid Gorter–Casimir
(GC) model [76]; near Tc, they proved to be quite close
to the results of calculations performed in the SC
model. In particular, the curves λ2(0)/λ2(T) calculated
by the SC model [88–91] proved to be sufficiently close
to the function ns(t)/n = 1 – nn(t)/n = 1 – t4 in the GC
model. At T = Tc, the slopes of these curves are in agree-
ment with those measured with different YBCO single
crystals and are equal to –3 [4] or –4 [5, 8, 10]. The
experimental fact that there is no BCS coherence peak
in the conductivity of HTSC crystals indicates the
necessity of taking the strong coupling effects near Tc

into account and the feasibility of interpreting HTSC
properties at microwave frequencies in terms of a two-
fluid model.

Complex conductivity σs is a basic property of super-
conductors. In accordance with the GC model [76], the
JOURNAL OF EXPERIMENTAL
expressions for the components of σs = σ1 – iσ2 are

(10)

At temperatures T ≤ Tc , the total carrier concentra-
tion is n = ns + nn , where ns, n are the fractions of the
superconducting and normal carrier densities (both
have the same charge e and effective mass m). The real
part σ1 is determined solely by the normal component,
while both components (normal and superconducting)
contribute to the imaginary part σ2. In the GC model,
the relaxation time τ of normal carriers is independent
of the temperature. This is acceptable if we assume that
the behavior of normal carriers in superconductors is
similar to that of normal carriers in normal metals at
low temperatures. Scattering of electrons at very low
temperatures is due to impurities and is independent of
the temperature. Therefore, the temperature depen-
dence of the real part of the conductivity (10) in the GC
model is determined entirely by the function nn(T) with
ns(T) = n – nn(T) only.

For sufficiently low frequencies (ωτ)2 ! 1, the
expressions of the conductivity components in Eq. (10)
transform into simple relations

(11)

where λ =  is the London penetration depth
of a static magnetic field.

Penetration of alternating fields into superconduc-
tors is controlled by the frequency-dependent skin
depth. Using complex conductivity (11), one obtains
the complex skin depth δs by generalizing the corre-
sponding expression for a normal conductor:

(12)

With an increasing angular frequency ω, the skin
depth Reδs decreases; therefore, the London penetra-
tion depth λ gives the upper bound for the penetration
of the electromagnetic field into a superconductor. In
the GC model, the λ value diverges near Tc as λ(t) =

λ/(2 ) and the function σ2(t)/σ2(0) = 4(1 – t) tends
linearly to zero at T = Tc with a slope equal to –4. At the
same time, at T = Tc , the skin depth Reδs, defined by
Eq. (12), crosses over to the skin depth δn for a normal
conductor.
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3.1. Scattering and Surface Resistance
of HTSC Single Crystals

In conventional superconductivity, one assumes that
the mean free path does not vary with the temperature
below Tc. In a normal metal at much higher tempera-
tures than the corresponding Tc of a conventional super-
conductor, the electron scattering rate is proportional to
T [92]. Since the transition temperatures of HTSC’s are
much larger than those of conventional superconduc-
tors, it stands to reason that temperature affects the
electron scattering rate of the quasiparticles of HTSC’s
below Tc but is limited to a constant rate at low temper-
atures. Therefore, if a two-fluid model is to be success-
ful in explaining transport properties of HTSC’s, it is
natural to include a temperature variation of τ into that
model.

To obtain an expression for τ(T), we rely on the
analogy between the “normal fluid” component in the
superconducting state and charge carriers in a normal
metal. According to Mathissen’s rule, the reciprocal
relaxation time at temperatures below the Debye tem-
perature Θ is

(13)

The first term on the right-hand side is due to impurity
scattering and is independent of temperature, and the
second is due to the electron–phonon scattering and is
proportional to T5.

From Eq. (13), we express τ(T) as

(14)

where β is a numerical parameter (β ≈ τ(Tc)/τ(0)), pro-
vided this ratio is much less than unity. It must be
pointed out, however, that this approximation is not
always satisfied.

Equation (14) corresponds to the low-temperature
limit of the Bloch–Grüneisen formula, which includes
impurity scattering and can be presented over a wide
temperature range by the expression

(15)

where κ = Θ/Tc . For T < Θ/10 (κ > 10t), Eq. (15)
approaches the form of Eq. (14). For T > Θ/5 (κ < 5t), we
obtain from Eq. (15) the linear T-dependence 1/τ(t) ∝  t.
Examples of 1/τ(t) for different parameters of β, κ, and
τ(Tc) are shown in Fig. 4.

For ωτ(Tc) ! 1, which is normally satisfied at
microwave frequencies in HTSC’s, the parameter
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ωτ(Tc) is obtained from measurements of Rs(Tc) and
Xs(0):

(16)

At frequencies ≈10 GHz, the value of ωτ for the best
HTSC crystals is of the order of 10–3 at T = Tc and
remains less than unity at all temperatures T < Tc , as is
discussed in what follows. In the two-fluid model,
therefore, the expressions of the conductivity compo-
nents in Eq. (10) turn into the simple form (11).

All experimental data of Rs(T) for high-quality
HTSC single crystals can be elucidated by our two-
fluid model with τ(T) given by Eqs. (14) or (15).

Measurements of Rs(T) of YBCO single crystals at
frequencies of order or less than 10 GHz are analyzed
first. The values of σ2(T)/σ2(0) = λ2(0)/λ2(T) = ns(T)/n
measured in the same experiments and those of
σ1(T)/σ(Tc) obtained from Eq. (11) are substituted into
Eq. (3). We then use the relation nn(T)/n = 1 – σ2(T)/σ2(0),
which is obtained from the experimental data, and take
τ(T) from Eqs. (14) or (15).

Setting β = 0.005 and κ = 9 in Eq. (15) and taking
the experimental values σ2(T)/σ2(0) from Fig. 11 (see
below) and ωτ(Tc) = 7.5 × 10–4 at 1.14 GHz, we find
from Eqs. (11) and (3) the T-dependence of Rs(T),
shown by the curves in Fig. 5. These curves match the
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Fig. 4. Scattering rate of quasiparticles calculated form
Eq. (14), dotted line: β = 0.005, and Eq. (15), solid line: β =
0.005, κ = 9; dashed line: β = 0.02, κ = 4. The triangles are
calculated from 1/τ = [1 – λ2(0)/λ2(T)]/[µ0σ1(T)λ2(0)], with
σ1(T) and λ(T) at 1.14 GHz and λ(0) = 1600 Å in the ab-
plane, with the currents parallel to the a-direction of the
YBCO crystal [14]. The inset shows the low-temperature
parts of the curves. The circles are from Fig. 8 of [14].
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data of [14] over the entire temperature range. The
same result is obtained using Eq. (14) instead of
Eq. (15), with β = 0.005. For κ @ 1 and T & Tc, Eqs. (14)
and (15) are identical.

It follows from Eqs. (5) and (11) that for αt ! 1 [see
Eq. (1)], a rough estimate of the temperature tm at which
Rs(T) is maximum is obtained from the relation β .
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20 30100
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Fig. 5. Experimental Rs(T) data of YBCO single crystal [14]
at 1.14 GHz (circles) and 2.25 GHz (squares). Solid curves
are calculations using Eqs. (3), (11), and (14). The dashed
curves are calculated at 1.14 GHz with the term t5 replaced
by t4 in the numerator of Eq. (14); the dotted curves, with t6.
The inset shows a linear plot of Rs(T) at low temperatures at
1.14 GHz.
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Fig. 6. Comparison between the calculated (solid line) and
measured (squares) surface resistance Rs(T) of YBCO single
crystal at 10 GHz. Experimental data are from [9].
JOURNAL OF EXPERIMENTAL 
4 . The value of τ(0) is found from the slopes dRs/dT
and dXs/dT of the experimental data of Rs(T) and Xs(T)
as T  0 (ωτ(0) < 1):

(17)

With Eqs. (16) and (17), the parameter β ≈ τ(Tc)/τ(0)
is determined from the surface impedance data. As β
increases, the maximum and minimum of Rs(T) change
into an inflection point with horizontal tangent; for
larger β, the maximum of Rs(T) disappears com-
pletely [74].

The linear growth of Rs(T) with T at low tempera-
tures (inset in Fig. 5) is a direct consequence of the lin-
ear change of λ(T) near T = 0, which is proportional to
the coefficient α in Eq. (1), and is the result of a con-
stant scattering rate at low temperatures, as shown in
Fig. 4.

The dashed and dotted curves shown in Fig. 5 are
the calculated Rs(T) values at 1.14 GHz, with t5

replaced by t4 (dashed curve) and by t6 (dotted curve) in
Eq. (14). The best fit of the experimental data is 1/τ(t) ∝  t5.
Moreover, Eq. (15) enables us to incorporate the
shoulder of Rs(T) obtained with YBCO single crystals
in [9, 11]. This is shown in Fig. 6, which contains mea-
surements (squares) of Rs(T) at 10 GHz taken from [9]
and calculations (solid line) of Rs(T) based on Eqs. (11)
and (3) with ωτ(Tc) = 4 × 10–3, σ2(T)/σ2(0) obtained
from the same experimental data [9], β = 0.02, and κ = 4
in Eq. (15).

The calculated curves in Figs. 5 and 6 are very close
to the experimental data and display the following com-
mon and unique features of Rs(T) for T < Tc and ωτ < 1
of high-quality YBCO single crystals fabricated by dif-
ferent methods: (i) the linear temperature dependence
of the surface resistance, ∆Rs(T) ∝  T, caused by the lin-
ear variation of ∆Xs(T) ∝  ∆λab(T) ∝  T at temperatures
T ! Tc and by the limit τ(T)  const at low tempera-
tures; (ii) the broad peak of Rs(T) in the intermediate
temperature range due to the rapid decrease of the relax-
ation time τ(T) ∝  T–5 with an increasing temperature; and
(iii) the increase in Rs(T) in the range Tc/2 < T < Tc (Fig. 6)
caused by the crossover from T–5 to T–1 of τ(T) in Eq. (15),
which occurs in Fig. 6 at a lower temperature than in
Fig. 5. The behavior of 1/τ(T) for these two YBCO
crystals is shown in Fig. 4.

Up to this point, we did not take the residual surface
resistance Rres of the samples into account. In the
YBCO crystals, whose data are plotted in Figs. 5 and 6
scaled to the same frequency (10 GHz), the resistance
is Rres < 50 µΩ. Rres/R(Tc) < 10–3 is so small that Rres was
neglected even at T ! Tc. In most HTSC crystals that
were investigated, however, Rres/R(Tc) > 10–3 (see, e.g.,
Figs. 1 and 2). Therefore, it is important that Rres is
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added to the calculated Rs(T) values when comparing
the latter with the experimental data.

Figure 7 compares the measured Rs(T) and Xs(T) of
BSCCO, plotted in Fig. 1, with the results of calcula-
tions based on Eqs. (3) and (4). In this case, we added
the constant Rres = 0.5 mΩ to the calculated values of
Rs(T). The calculations are based on measurements of
σ2(T)/σ2(0) obtained in the same experiment and are
plotted in the inset to Fig. 13 (see below), with the
parameters ωτ(Tc) = 0.9 × 10–2, β = 2 and κ = 3 in
Eq. (15). It is clear that the agreement between the cal-
culated and experimental curves is good throughout the
temperature interval 5 ≤ T ≤ 120 K.

Another reason for including Rres is the ratio
Rres/R(Tc) ∝ ω 3/2. Figure 8 is based on the experimental
data of BSCCO single crystal measured in [21] at three
frequencies: 14.4 (ωτ(Tc) = 0.7 × 10–2), 24.6, and
34.7 GHz. The solid curves are the calculations at these
frequencies obtained from Eqs. (11) and (3) using τ(T)
from Eq. (15) with β = 0.1 and κ = 4. The comparison
procedure is different from that discussed above for
YBCO crystals because Rres ∝ ω 2 is added to the calcu-
lated Rs(T) values. The inset of Fig. 8 shows a linear
plot of the measured and calculated surface resistance
at low temperatures. We emphasize that at temperatures
below Tc/2, the value of ∆Rs(T) is proportional to T.

In the millimeter and shorter wavelength bands, the
condition ωτ < 1 may not be satisfied in the supercon-
ducting state of the purest HTSC single crystals
because of the fast growth of τ(T) with decreasing
T < Tc . In analyzing the experimental data of Zs(T) and
σs(T), therefore, it is natural to not only take Rres into
account but also to use the more general Eq. (10) of the
two-fluid model to replace Eq. (11). The Rs(T) data of
[14] at the frequencies of 13.4, 22.7, and 75.3 GHz are
shown in Fig. 9 with the calculated Rs(T) values
(obtained on the same YBCO crystal that was used in
Fig. 5). We used τ(Tc)/τ(0) ≈ β = 5 × 10–3 in Eq. (14) for
all curves shown in Fig. 9 (the same as previously used
in Fig. 5) and added Rres = 0.3 mΩ to Rs(T) [Eq. (3)] at
75.3 GHz only. The conductivity components σ1(T) and
σ2(T) involved in Eq. (3) are obtained from the experi-
mental data of σ2(T)/σ2(0) at 1.14 GHz [14] (shown in
Fig. 11) and from Eq. (10).

Figure 10 shows another example. The experimental
Rs(T) data (squares) of a TBCO single crystal (Tc = 78.5 K)
[23] are compared with the results of calculations based
on Eqs. (3), (10), and (15). The curve representing the
theoretical values Rs(T) + Rres is plotted using β = 0.1,
κ = 5.5, ωτ(Tc) = 1.7 × 10–2, Rres = 0.8 mΩ, and with
σ2(T)/σ2(0) shown in the inset (circles) of Fig. 10.
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3.2. Temperature Dependence
of the Superconducting Electron Density

In the previous section, we accentuated that the
modified two-fluid model describes all features of the
surface resistance Rs(T) of different HTSC’s over a
wide frequency range with only one parameter (k). This
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Fig. 7. Comparison between the calculated (solid lines) and
measured surface impedance (symbols) of BSCCO single
crystal (see Fig. 1). A constant Rres = 0.5 mΩ is added to the
values of Rs(T)obtained from Eq. (3).

Fig. 8. Experimental data of the BSCCO single crystal [21]
at various frequencies: 14.4 GHz (circles), 24.6 GHz (trian-
gles), and 34.7 GHz (squares). The solid curves are the cal-
culated [Rs(T) + Rres]-functions, with the respective Rres
value of 0.29, 0.85 and 1.7 mΩ. The inset shows the linear
temperature dependences of the surface resistance at low
temperatures.
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was done using the measured (known from the same
experiment) T-dependences of the superconducting

electron density . However, we think that our
phenomenological model would be incomplete unless
simple formulas are available that correctly describe
the measurements of ∆λab(T). Figures 10 (the inset), 11,
and 12 show σ2(T)/σ2(0) = λ2(0)/λ2(T) = ns(T)/n in the
ab-plane of TBCO, YBCO, and BSCCO single crystals
from [23, 14, 21], respectively. All of these quantities
change linearly with temperature at low temperatures
and can be approximated by the function [73]

(18)

where α is a numerical parameter. For t ! 1, Eq. (1) fol-
lows from Eq. (18). For the cited experiments, the val-
ues of α fall into the range 0.4 < α ≤ 0.9. Near Tc , we
obtain λ(t) ∝  ns(t)–1/2 ∝  (1 – t)–α/2, which is also in rea-
sonably good agreement with the experimental data.
However, Eq. (18) yields an infinite value of the deriv-
ative dσ2(t)/dt ∝  (1 – t)α – 1 at t = 1 for α < 1.

An approximation for ns(t)/n proposed in [75] is
close to Eq. (18),

(19)

and is shown by solid lines in Figs. 11 and 12. Equation

(19) insures that the slope of  = 5α – 6 at
Tc is finite and negative for α < 1.2.

However, the above functions for ns(t) in their sim-
plest forms (18) and (19) do not account for all features
in λ2(0)/λ2(T) detected recently in YBCO crystals (see

λab
2– T( )

ns/n 1 t–( )α ,=

ns/n 1 α t– 1 α–( )t6,–=

λ2 0( )/λ2 t( ) Tc

13.4 GHz
22.7 GHz
75.3 GHz

0 20

10–4

40 60 80

10–3

10–2

10–1

T, K

Rs, Ω

Fig. 9. Comparison between the calculated (lines) and mea-
sured [14] (symbols) surface resistance Rs(T) of the YBCO
single crystal at 13.4, 22.7, and 75.3 GHz. We assumed
Rres = 0.3 mΩ for 75.3 GHz, zero for the other frequencies.
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table) in the intermediate temperature range [8–11].
Moreover, the slope of these curves at T ! Tc requires
that α > 1 in Eq. (18), which would lead to a zero slope
of the σ2(T)/σ2(0) curve T = Tc . Therefore, we have
added an additional empirical term to the right-hand
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Fig. 10. Surface resistance Rs(T) of a TBCO single crystal
at 24.8 GHz taken from [23]. Solid curve is the calculated
[Rs(T) + Rres]-function with Rres = 0.8 mΩ. The inset shows
the measured [23] (circles) and calculated results of
σ2(T)/σ2(0) (solid line) using Eq. (18) with α = 0.9.
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Fig. 11. Plots of Eq. (18) (dashed line, α = 0.42) and
Eq. (19) (solid line, α = 0.47), showing the fit to the empir-
ical σ2(T)/σ2(0). The experimental data (circles) are from
[14] at 1.14 GHz. The inset shows the temperature depen-
dences of σ2(T)/σ2(0) at various frequencies calculated
from Eqs. (10), (19) and (14).
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side of Eq. (18) without violating the particle conserva-
tion condition ns + nn = n:

(20)

where 0 < δ < 1 is the weight factor. For δ ! 1 and α > 1,
the dominant contribution to σ2(T) throughout the rele-
vant temperature range is still due to the first term on
the right-hand side of Eq. (20), while the second is
responsible for the finite slope of σ2(T)/σ2(0) at T = Tc ,

ns/n 1 t–( )α 1 δ–( ) δ 1 t4/δ–( ),+=

0 20

0.2

40 60 80 100

0.4

0.6

0.8

1.0

T, K

σ2(T)/σ2(0)

Fig. 12. Comparison between the calculated (solid curve:
Eq. (19), α = 0.74; dotted line: Eq. (18), α = 0.7) and mea-
sured [21] (symbols) of the σ2(T)/σ2(0) values of BSCCO
single crystal [75].
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Fig. 13. Comparison between the calculated (solid line) and
measured (circles) values of σ2(T)/σ2(0) of the YBCO sin-
gle crystal [8]. The inset shows the measured and calculated
values with Eq. (20) used for the temperature dependences
of σ2(T)/σ2(0) of the BSCCO crystal shown in Fig. 1.
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which is equal to –4 in accordance with the GC model.
As δ increases, the second term on the right-hand side
of Eq. (20) becomes more essential. The experimental
curve of σ2(T)/σ2(0) derived from the Rs(T) and Xs(T)
measurements of the YBCO crystal in [8] is properly
described by Eq. (20) with δ = 0.5 and α = 5.5 (Fig. 13).
This calculation reflects the characteristic features of
the experimental data, namely, the linear section of ns
and the positive second derivative (α > 1) in the low-tem-
perature region, the plateau in the intermediate tempera-
ture range, and the correct value of the slope near Tc.

Using Eq. (20) with α = 2 and δ = 0.2, we can also
describe the T-dependence of σ2(T) of BSCCO crystals
(Figs. 1 and 7), plotted in the inset to Fig. 13.

3.3. The Real Part of the Conductivity

Since the measurements and calculations of Rs(T),
Xs(T), and σ2(T) are in good agreement and consistent
with σ1(T) in the range T < Tc , the modified two-fluid
model can be a powerful tool in describing the electro-
dynamic properties of HTSC’s. The only feature that
has not been investigated by this model is the behavior
of Zs(T) and σs(T) in the temperature range near Tc .
A spectacular display is the narrow peak in the real part
of the conductivity (see Fig. 3).

The narrow peak near Tc can be described by an
effective medium model [79, 93] that takes the inhomo-
geneous broadening of the superconducting transition
into account. We assume that different regions of a given
specimen experience transitions to the superconducting
state at different temperatures within the T-range δTc . If
the dimension of each of these regions is smaller than
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Fig. 14. Experimental data of σ1(T) at 14.4 and 34.7 GHz of
the BSCCO single crystal [21] (symbols) and the calcula-
tions of σ1(T) (lines) using Eqs. (14), (21), and (6), with
sample inhomogeneities taken into account (δTc = 2 K).
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the magnetic field penetration depth (microscopic-scale
disorder), the distribution of the microwave currents
over the sample is uniform and the calculation of the
effective impedance Zeff of the sample reduces to two
operations: adding the impedances Zs of all regions in
the specimen (with different Tc) that are connected in
series along a current path and averaging over the sam-
ple volume. As the result, we obtain

(21)

where the distribution function f (Tc) is such that the
fraction of the sample volume with critical tempera-
tures in the range Tc < T < Tc + dTc equals f (Tc)dTc . In
the simplest case, f (Tc) is a Gaussian function. In the
experiments of [14], the width of the superconducting
resistive transition was approximately 0.4 K, which we
equate to the width of the Gaussian distribution f (Tc).
Using general relations (6) with the effective imped-
ance components obtained from Eq. (21), we calculate

 near Tc and plot it together with the experimen-
tal data for YBCO in Fig. 3. The overall agreement is
good.

In the framework of the discussed approach, 
displays a narrow peak at T* = Tc – δTc. It is easy to

Zs
eff T( ) Rs
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Fig. 15. Comparison of the experimental T-dependence of
σ1(T) (open circles) of the TBCO single crystal at 24.8 GHz
[23] with the one calculated using the modified two-fluid
model (solid line) and taking the inhomogeneous broaden-
ing of the superconducting transition into account (δTc = 2.5 K
in Eq. (21)).
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check that the relative peak amplitude is approximately
equal to

(22)

where γ = δTc/[Tcωτ(Tc)], implying that the peak
decreases with the decrease of the superconducting
resistive transition width. Usually, experiments yield
γ > 1 (e.g., the data of [14] give γ ≈ 7 at 1.14 GHz);
therefore, the peak amplitude should be inversely pro-
portional to the frequency.

In calculating the σ1(T) curves for other specimens,
we also applied the above procedure to incorporate cor-
rections caused by the inhomogeneous broadening of
the superconducting transition. We adjusted the previ-
ous calculations of Rs(T) (Figs. 7, 8, and 10) and σ2(T)
(Figs. 10, 12, and the inset to Fig. 13) by substituting

the resulting  into Eq. (6) for the conductivity
σ1. The resulting curves for BSCCO and TBCO are
shown in Figs. 14–16.

4. DISCUSSION AND CONCLUSION

We have presented a summary of measurements of
the surface impedance Zs(T) = Rs(T) + iXs(T) of high-
quality YBCO, BSCCO, TBCO, and TBCCO crystals
in the superconducting and normal states (table). For

σ1 T∗( ) σ Tc( )–
σ Tc( )

-----------------------------------
γ if γ 1>

γ2 if γ 0.1,<



≈

Zs
eff T( )
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Fig. 16. The conductivity σ1(T) of the BSCCO single crystal
at 9.4 GHz extracted from the surface impedance measure-
ments of Fig. 1 and the calculation based on the modified
two-fluid model, which takes the inhomogeneous broaden-
ing of the superconducting transition into account (δTc =
4.5 K). σ1(T) does not have a broad peak at low tempera-
tures in this particular case.
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frequencies &10 GHz, the common features of all these
materials are the linear temperature dependence of the
surface resistance (∆Rs(T) ∝  T) and that of the surface
reactance (∆Xs(T) ∝ ∆λ ab(T) ∝  T) at temperatures T ! Tc;
their rapid growth as T  Tc; and their behavior in the
normal state corresponding to a linear T-dependence of

∆ρab(T), with Rs(T) = Xs(T) = . There are
differences between the T-dependence of Zs(T) in
BSCCO, TBCCO, or TBCO single crystals with tetrag-
onal lattices and in YBCO crystals with an orthorhom-
bic lattice. The linear resistivity region extends to near
Tc/2 for the tetragonal materials and terminates near or
below T < Tc/3 for YBCO. At higher temperatures,
Rs(T) of YBCO has a broad peak. In addition, the λab(T)
curves of some YBCO single crystals have unusual fea-
tures in the intermediate temperature range.

We describe all of the above features of Zs(T) and

σs(T) = σ1(T) – iσ2(T) = iωµ0/  of high-quality
HTSC crystals by generalizing the well-known GC
two-fluid model as follows.

(i) We introduce a temperature dependence of the
relaxation time of the quasiparticles in accordance with
the Bloch–Grüneisen law. We find that the Rs(T) curves
in different HTSC crystals are well described using
Eqs. (14) or (15) for 1/τ(T). In the latter equation, there
is only one fitting parameter, κ = Θ/Tc , while the other
parameter β = τ(Tc)/τ(0) ! 1 can be estimated directly
from the experimental data with the help of Eqs. (16)
and (17). The absence of the broad peak of Rs(T) in tet-
ragonal HTSC single crystals is due to a less rapid
increase of τ(T) with decreasing the temperature. In
other words, the value of β is smaller for YBCO crys-
tals than for BSCCO, TBCO, or TBCCO. For the latter
crystals, the residual losses Rres are usually large and
they have to be taken into account.

(ii) We replace the well-known temperature depen-
dence of the density of superconducting carriers in the
GC model (ns = n(1 – t4)) by one of the functions in
Eqs. (18), (19) or (20). All of these functions change
linearly with temperature for t ! 1 (see Eq. (1)). This
permits one to extract the common and distinctive fea-
tures of Xs(T) and σ2(T) from different HTSC crystals.

It also follows from the equations of the modified
two-fluid model that at low temperatures (t ! 1) and
low frequencies (ωτ(0) < 1), all curves of Zs(T) and
σs(T) have linear regions: σ1 ∝ α t/β, since nn/n ≈ αt and
τ ≈ τ(0) ≈ τ(Tc)/β. Furthermore, ∆σ2 ∝ –αt. In accor-
dance with Eq. (5), we then have Rs ∝ α t/β and ∆Xs ∝
∆λ ∝ α t/2. As the temperature increases, the curve of
σ1(t) passes through a maximum at t & 0.5 if the ine-
quality (9) is valid. This peak is due to the superposition
of two competing effects, namely, the decrease in the
number of normal carriers as the temperature decreases
(for t < 1) and the increase in the relaxation time (which
saturates at t ~ β1/5) where the impurity scattering starts

ωµ0ρ T( )/2

Zs
2 T( )
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to dominate. The features in the Xs(T) and σ2(T) curves
for YBCO single crystals in the intermediate tempera-
ture range (plateau [8] or bump [9]) can also be
described within the framework of our modified two-
fluid model if we take into account the modification of
ns(t) described by Eq. (20) with 0 < δ ≤ 0.5. In HTSC
single crystals, the narrow peak in the real part of the
conductivity σ1(T) occurring near Tc can be explained
in terms of an effective medium model, where the
strong electron–phonon coupling of the quasiparticles
and the inhomogeneous broadening of the supercon-
ducting transition are taken into account.

It is natural to compare the tenets of our phenome-
nological model with the results of microscopic theo-
ries. As was shown in [40] and [61], the simple formula
(1), which defines the linear low-temperature depen-
dence of the magnetic field penetration depth in the ab-
plane of HTSC crystals, is consistent with the d-wave
model [25–27] in the strong (unitary) scattering limit
[31]. Besides, there is nothing foreign in introducing
the function 1/τ(T) ∝  T5 for the purpose of characteriz-
ing scattering in the superconducting state of HTSC.
A similar temperature dependence of the relaxation
rate of quasiparticles follows from the SC model if the
phonon corrections to the electromagnetic vertex are
taken into account [94].

In the framework of our modified two-fluid model,
the linear low-temperature dependence of the real part
of the conductivity σ1(T) is consistent with a constant
scattering rate, as it is in a normal metal. While the
assumption of a Drude form of the conductivity is sup-
ported by the d-wave microscopic analysis [31], it was
shown that in the usual impurity scattering models, pair
correlations lead to a strong temperature dependence of
the scattering time (neglecting vertex corrections),
namely, τ(T) ∝  T in the unitary limit or τ(T) ∝  1/T in the
Born limit. An attempt to resolve this problem in [16]
by choosing an intermediate scattering rate has not pro-
vided satisfactory results yet. Very recently, the authors
of [95] and [96] argued that the experimental observa-
tion σ1(T) ∝  T could be explained by the generalized
Drude formula σ1(T) ∝  nqp(T)τ(T) if the quasiparticle
density varies as nqp(T) ∝  T (as indeed happens for the
d-wave pairing) and if the effective quasiparticle scat-
tering time τ(T) saturates at low T. Various possible
physical mechanisms of the temperature and energy
dependence of τ are discussed in [95, 96]: scattering
from the “holes” of the order parameter at impurity
sites and scattering from extended defects. These
mechanisms may provide the required saturation of
τ(T) at low T. As was discussed recently in [97], the ver-
tex corrections can also modify the low-temperature
conductivity. However, the temperature dependence
has not been investigated yet.

Nevertheless, the microscopic models aimed at
investigating the microwave response using a pure d-
wave order parameter symmetry cannot account for the
linear section of the Rs(T) curves extending to Tc/2 (at
the frequencies 10 GHz and below) in tetragonal HTSC
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single crystals, for the observation of radically different
values of the slopes of σ2(T) for T ! Tc (corresponding
to α > 1 in Eq. (20)) observed on YBCO crystals [8–12],
and for unusual features of σ2(T) in the intermediate
temperatures range.

Recently, observations of unusual microwave prop-
erties of HTSC materials have caught the attention of a
number of researchers [43–47, 55, 56]. These observa-
tions are tentatively attributed to the mixed (d + s) wave
symmetry of the order parameter. Most studies deal
with the low-temperature variation of the London pen-
etration depth and its relation to an order parameter of
mixed symmetry. In particular, it was shown in [55] that
the low-temperature properties of λ(T) can be used to
distinguish between a pure d-wave order parameter and
one with the (s + id) symmetry, having a small subdom-
inant s-wave contribution in systems connected with a
tetragonal lattice. Moreover, additions of impurities
suppress the d-wave symmetric part to the benefit of the
s-wave part. As a result, a variety of low-temperature
dependences of λ(T) can occur for various impurity
concentrations. This allows one, in principle, to deter-
mine whether the order parameter of a superconductor
with an orthorhombic lattice pertains to the (s + id) or
the (s + d) symmetry [53]. In [46], the (d + s) model was
generalized by taking the normal state anisotropy into
account. This is the realistic approach to high-Tc

cuprates with an orthorhombic distortion, since recent
microwave conductivity data suggest that a substantial
part of the ab-anisotropy of λ(T) is a normal state
effect. It was shown that such an anisotropy affects not
only the ab-anisotropy of the transport coefficients but
also the density of states and other thermodynamic
quantities. The possible temperature variation of the
penetration depth λ(T) was analyzed recently in [56] in
the framework of the (d + s) model of hybrid pairing.
The slope of ∆λ(T) ∝  T for T ! Tc and its dependence on
the ∆s/∆d admixture in the gap function were analyzed
quantitatively, with the impurity scattering taken into
account. However, the quantitative comparison of the
latter calculation with the experimental data has not been
performed yet. More interesting discoveries in this field
of research can be expected in the near future.
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