Anisotropic microwave resistance of YBa$_2$Cu$_3$O$_{6.95}$ and the modified two-fluid model

Herman J. Fink
Department of Electrical and Computer Engineering, University of California, Davis, California 95616

M. R. Trunin
Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow District, Russia
(Received 1 March 2000)

Experiments of the anisotropic microwave surface resistance of YBa$_2$Cu$_3$O$_{6.95}$ crystals by Hosseini et al. [Phys. Rev. Lett. 81, 1298 (1998)] are well described by a modified two-fluid model proposed by the authors. For currents perpendicular to the ab plane at 22 GHz, the electron-scattering rate $\tau(T)^{-1}$ is nearly temperature (T) independent below the transition temperature T_c, while for currents in the ab plane, $\tau(T)^{-1}$ is approximately two orders of magnitude smaller and constant below $\sim T_c/4$, increasing rapidly by two orders of magnitude between $T_c/4$ and T_c. The real part of the conductivity σ' has a prominent maximum near 35 K for in-plane currents, while for c-axis currents $\sigma'(T)$ decreases rapidly below T_c.

The modified two-fluid model of the microwave surface impedance $Z_s = R_s + iX_s$ of cuprates is discussed in Refs. 1–6 with regard to the temperature dependence of $Z_s(T)$ in the ab plane for different optimally doped high-T_c single crystals. Here, we apply our model to the anisotropic microwave properties of high-quality single crystals of YBa$_2$Cu$_3$O$_{6.95}$ (YBCO).

The real part of the surface impedance $\text{Re}[Z_s] = R_s$ is a measure of the microwave power absorbed. With the definition $s = (\sigma' - i\sigma'')^2$, where σ' and σ'' are the real and imaginary parts of the conductivity, the real part of Z_s is

$$ R_s = \frac{\omega \mu_0}{2\sigma''} \sqrt{\frac{1 + s - 1}{1 + s}}. \quad (1) $$

The relevant equations describing the microwave impedance of cuprates by the modified two-fluid model, in the notation of Ref. 3, are the following ($t = T/T_c$):

We write for the resistivity

$$ \rho_{dc}(t) = \rho_r + \rho_i(1)t^5g(t), \quad (2) $$

where ρ_r is the inherent residual and $\rho_i(1)$ the intrinsic resistivity, the latter at T_c. ρ_r is temperature independent in the modified two-fluid model,

$$ g(t) = f\left(\frac{\Theta_D}{T_c} \frac{1}{t}\right) / f\left(\frac{\Theta_D}{T_c}\right), \quad (3) $$

with Θ_D the Debye temperature and

$$ f(\Theta_D/T) = \int_0^{\Theta_D/T} x^5 dx/(e^{x^2} - 1)(1 - e^{-x}). \quad (4) $$

We define a resistivity ratio $r = \rho_r/\rho_i(1)$ with $1/\rho_i(1) = \sigma'_i(1) = \sigma_{dc}(T_c)(r+1)$. The electron scattering time is

$$ \tau(T) = \frac{\mu_0 \lambda^2(0) \sigma_{dc}(T_c)(r+1)}{r + t^5g(t)}. \quad (5) $$

and the conductivity components ($\sigma = \sigma' - i\sigma''$) are

$$ \sigma'(t) = \sigma_{dc}(T_c) \left[\frac{n_0(t)/n}{r + t^5g(t)} \right] \frac{r + 1}{1 + [\omega \tau(t)]^2}. \quad (6) $$

$$ \sigma''(t) = [\omega \mu_0 \lambda^2(t)]^{-1} + \omega \tau(t) \sigma'(t). \quad (7) $$

$n_0(t)/n = 1 - [\lambda(0)/\lambda(t)]^2$ is the quasiparticle fraction. The term $[\omega \mu_0 \lambda^2(t)]^{-1} = n_0(t) e^2/m \omega$ arises from the superelectrons and is the dominant term in Eq. (7) at low temperatures.

Experiments that deal with the anisotropy of the microwave surface impedance and complex conductivity of optimally doped YBCO single crystals are listed in Refs. 7–15. Here, we investigate in detail experiments of Hosseini et al. at 22 GHz that deal with measurements of the T dependence of the surface impedance for currents along the a axis, b axis, and c axis of an untwinned single crystal of YBCO. We believe that the data of Ref. 13 are representative of YBCO.

Figure 1 shows the experimental points of $[\lambda(0)/\lambda(t)]^2$, taken from Ref. 13, for microwave currents flowing along the a axis, b axis, and c axis of the YBCO crystal. The experimental data fit the following equations. For the a axis and b axis,

$$ [\lambda(0)/\lambda(t)]^2 \approx 1 - at - (1-a)t^6, \quad (8) $$

and for the c axis,

$$ [\lambda(0)/\lambda(t)]^2 \approx 1 - at^2 - (1-a)t^8. \quad (9) $$

The main difference between Eq. (8) and Eq. (9) is that at low temperatures ($T \ll T_c$), in agreement with experiments, Eq. (8) provides for a linear T dependence of the ab plane penetration depth $[\Delta \lambda_{ab}(T) \times T]$, while for currents along the c axis, Eq. (9) leads to $\Delta \lambda_c(T) \times T^2$. We note that the linear temperature dependence of $\Delta \lambda_{ab}$ in high-quality YBCO single crystals is generally accepted, contrary to the T^2 dependence of $\Delta \lambda_c$. In particular, in the experiments of

0163-1829/2000/62(5)/3046(4)/15.00 PRB 62 3046 ©2000 The American Physical Society
FIG. 1. Equations (8) and (9) showing the fit to the empirical
\[\frac{\lambda(0)}{\lambda(T)} \] as a function of temperature. The experimental
points are from Ref. 13, Fig. 2.

Refs. 9 and 11, the low-temperature \(\lambda_s(T) \) exhibits a linear
variation contrary to what is observed in Ref. 13.

Figure 2 is a linear plot of the surface resistance \(R_s(T) \),
calculated from Eq. (1), with Eqs. (5)–(7) for the \(a \) axis, \(b \) axis,
and \(c \) axis. The parameters used in the calculations are
stated in the figure. The \(\lambda(0) \) values of the \(a \) and \(b \) axes are
compatible with those of Refs. 14 and 15. The \(\lambda(0) \)
value for the \(c \) axis was chosen to fit the experimental data of
Ref. 13. The overall fit is good, in particular for the \(a \) axis.
The experimental data, extrapolated to \(T=0 \), show a small
but finite resistance denoted by \(R_0 \), which was
added to the calculated \(R_s(T) \) values obtained from Eq. (1).
This resistance is different in nature from the residual resistivity
denoted here by \(\rho_r \). It is not clear what the origin of
\(R_0 \) is except that its imprint on the measurements is different
from that of the residual resistivity \(\rho_r \). The experimental
data of the \(c \) axis stray considerably, and it is unclear if the
peak below \(20 \) K is outside the experimental accuracy or if
\(R_s(T) \) actually increases with decreasing temperature below
\(20 \) K. We shall remark on this peak later.

Figure 3 is the same as Fig. 2 except that \(R_s(T)+R_0 \) is
plotted on a semilogarithmic scale with the experimental
points extracted from Ref. 13. Near \(T_c \), the surface
resistance changes by orders of magnitude and has a discontinuous
slope at \(T_c \), neglecting broadening of the transition due
to sample inhomogeneities and/or fluctuations. The plotted
curves above \(T_c \) for the \(a \) axis and \(b \) axis are compatible with
the experimental data of Ref. 12 but are distinct from the
experiments of Ref. 13 and, therefore, are not shown in
Fig. 3. For the \(c \) axis, only one value of the resistivity above
\(T_c \) is given, which was used to plot the curve above \(T_c \).

It is possible to calculate \(\sigma'(T) \) from the experimental
surface resistance data, using Eq. (1) and Eq. (7) instead of
Eq. (6). This procedure is exact not only at low temperatures
but also near and above \(T_c \), provided the superelectron density \(n_s(T) \) is
deposited to zero at and above \(T_c \). Substituting Eq. (7) into Eq. (1), one obtains a fourth-order polynomial in
\(\sigma'(T) \),

\[
c_4 \sigma'^4 + c_3 \sigma'^3 + c_2 \sigma'^2 + c_1 \sigma' + c_0 = 0,
\]

with

\[
\sigma_0 = (\omega \mu_0)/(2R_{\text{exp}}^2),
\]

\[
\sigma_0 = (\omega \mu_0 \lambda^2(T))^{-1} n_s(T),
\]

\[
v = \omega \tau(T),
\]

\[
c_4 = (1 + v^2)^2,
\]
The normalized scattering rate \([\omega\tau]^{-1}\) as a function of temperature for the \(a\), \(b\), and \(c\) axes, calculated from Eq. (5).

The curves calculated from Eqs. (6) are a good fit to the \(a\) axis, \(b\) axis, and \(c\) axis data, neglecting the low-temperature peak of the \(c\) axis data.

We find the following: Our modified two-fluid model, which is employed here, describes and fits well the experimental data of Ref. 13, although the \(c\) axis data of the surface resistance \(R_s\) and the conductivity \(\sigma'\) look quite different from the \(a\) and \(b\) axis data. As can be seen from Fig. 3, \(R_s\) is one order of magnitude larger for the \(c\) axis above \(T_c\) than for the \(a\) axis or \(b\) axis, while below \(T_c/2\) the reverse is true, at least down to approximately 20 K. Whether the \(c\) axis peak of \(R_s\) below 20 K is real or an artifact due to an inaccuracy in the small difference, obtained from subtracting two large numbers, remains an open question. Ignoring this peak, the overall agreement between the experimental data and the proposed two-fluid model is very respectable.

The normalized scattering rate \([\omega\tau]^{-1}\) as a function of temperature is shown for the three axes in Fig. 5. The experimental parameters that are the key to this model are \(\lambda(T), \sigma_{ab}(T_c)\), and the resistivity ratio \(r\) relative to the term \(t^2g(t)\) in the electron-scattering time \(\tau\), Eq. (5). At low temperatures, over the temperature interval where \(r \approx t^2g(t)\), the slopes of \(R_s\) and \(\sigma'\) are mainly controlled by the temperature dependence of \(\lambda(T)\), because \(\tau(T) \approx\) const over this temperature interval. This implies a linear temperature increase of \(R_s(T)\) and \(\sigma'(T)\) for the \(a\) axis and \(b\) axis, while for the \(c\) axis the slopes of \(R_s(T)\) and \(\sigma'(T)\) are zero at low temperatures and, therefore, \(R_s(T)\) and \(\sigma'(T)\) increase considerably less rapidly.

Since two-dimensional conduction in the \(ab\) plane is favored in cuprates, the resistance perpendicular to the \(ab\) plane above \(T_c\) is much larger than the in-plane resistance (see Fig. 3) and gives rise to much larger \(r\) values for the \(c\) axis. Therefore, a constant \(c\) axis electron-scattering rate is predominant because \(r \approx t^2g(t)\) for most temperatures below \(T_c\), as is seen in Fig. 5 for the \(c\) axis. From this we infer that \(R_s(T)\) and \(\sigma'(T)\) for the \(c\) axis are mainly controlled by the \(c\)-axis \(\lambda\), except close to \(T_c\).

For smaller electron-scattering rates by impurities, such as for the \(a\) axis and \(b\) axis, that is, for smaller values of the
resistivity ratio \(r \), the value of \(r + t^2 g(t) \) increases rapidly as the temperature is increased above 30 K. As a consequence, \(R_s(T) \) and \(\sigma^*(T) \) decrease above 35 to 40 K. \(R_s(T) \) tends toward a minimum near 65 to 75 K before reaching its much larger normal state value (due to a very rapid decrease of \(\sigma^* \) very close to \(T_c \)), while \(\sigma^*(T) \) tends toward \(\sigma_{dc}(T_c) \).

It is surprising to obtain smaller \(R_s(T) \) values (smaller microwave losses) for currents flowing perpendicular to the \(ab \) plane than for currents in the \(ab \) plane for \(T \leq 60 \) K, since above \(T_c \), the resistance is considerably larger for currents perpendicular to the \(ab \) plane than in the plane. YBCO conducts principally in the \(ab \) planes. The reason for this unusual behavior is that \(\tau(T) \approx \text{const} \) for temperatures below \(\sim 30 \) K for all three axes. One can show that the quasiparticle density at low temperatures is much smaller and increases much slower for the \(c \) axis than for the \(a \) axis or \(b \) axis.

Our model has the following distinct features: (i) the su- perelектron density \(n_s(T) = \lambda(T)^{-2} \) with \(n_s(T) + n_n(T) = \text{const} \), (ii) the electron scattering rate \(\tau(T) = \frac{1}{1 + \frac{T^2}{T^2}} \), (III) \(f(T) \) is independent of frequency at microwave frequencies, at least for the temperature interval \(0 < T \leq 1.2 T_c \), with the inherent residual resistivity \(\rho_r \) temperature independent, and \(f(T) \) related to the Bloch-Grüneisen \(T \)-dependent resistivity. Since for the present YBCO specimen \(\Theta_D \geq T_c \), we could have put \(g(t) = 1 \) in Eqs. (2), (5), and (6). This simplification effects mainly the minimum in Fig. 2 for both the \(a \) axis and the \(b \) axis. Since \(r > 1 \), it does not change noticeably the \(c \)-axis results.

We do not draw any conclusions regarding the normal-state resistance above \(\sim 1.2 T_c \). In our model, \(\lambda(T) \) and \(\sigma_{dc}(T_c) \) are experimental (measured) quantities. It does not matter whether the slope of \(\lambda(T) \) is finite or zero at \(T = 0 \) K. The value of \(\rho_r \) (or \(r \)), which is a measure of the inherent residual resistivity at low temperatures, can also be obtained from experiments. The model that we have used adopts an intrinsic electron-scattering rate proportional to \(T^3 f(T) \), as for scattering by phonons in the Bloch-Grüneisen theory of the normal state, and, as we have seen, it does give rise to a good fit to \(R_s(T) \) in the superconducting state of YBCO. However, the door is wide open on why this fit works as well as it does, since the scattering mechanism in the superconducting state of YBCO is not yet understood. This remains an open question.

The present two-fluid analysis of YBCO is limited to the experiments of Ref. 13 with some numerical information taken from Refs. 12, 14, and 15. It is possible that other cuprates have different temperature dependences of \(\lambda(T) \) than used here. Nevertheless, the present model should be a useful guide for investigations of anisotropy of other cuprates at microwave frequencies. This analysis should also be helpful for future microscopic studies of \(\lambda(T) \), \(\tau(T) \), and the inherent residual resistivity \(\rho_r \) of YBCO and perhaps other cuprates.
