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Anomalous microwave conductivity due to collective transport in the pseudogap state of cuprat
superconductors
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The microwave surface impedanceZs5Rs1 iXs of HgBa2Ca2Cu3O81d , HgBa2CuO41d , Tl2Ba2CuO61d ,
and underdoped YBa2Cu3O6.5 is found to be anomalous in thatRs(T.Tc)ÞXs(T.Tc) in the pseudogap state.
This implies plasmonlike response and negative permittivities«8(v),0 at microwave frequencies indicating
non-Fermi-liquid transport in theab plane. The anomalous microwave response is shown to arise from a
collective mode characterized by a plasma frequencyvpCM;0.1 eV and extremely low dampingGCM

;1025–1024 eV, distinctly different from those observed at optical frequencies.
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The ‘‘normal’’ state aboveTc of the high-temperature cu
prate superconductors is well known to be extremely abn
mal. A wide variety of experimental techniques~photoemis-
sion, optical conductivity, NMR, tunneling, neutro
scattering, infrared, Raman, etc.! ~Ref. 1! have been applied
to its study and suggest that there is a common phenome
ogy for all high-temperature superconductors: the existe
of a partial gap or a pseudogap meaning the suppressio
the low-energy density of states. An important issue is
nature of the pseudogap, several alternative theoretical m
els of this having been proposed, such as superconduc
fluctuations2 or islands,3 competing order parameter,4 and
stripes.5,6

In this paper, we show that low-energy~microwave! mea-
surements of the surface impedanceZs5Rs1 iXs on
HgBa2Ca2Cu3O81d (Hg:1223), HgBa2CuO41d (Hg:1201),
Tl2Ba2CuO61d (Tl:2201), and underdoped YBa2Cu3O6.5 re-
veal new features of transport in the pseudogap state.
measurements indicate a breakdown of the so-called Ha
Rubens limit~where the measurement frequencyv!G, the
carrier relaxation or dissipation rate!, indicating a plasmon-
like response characterized by negative microwave dielec
permittivities «8(v),0, for currents in theab plane. Such
an anomalous conduction in the pseudogap state indic
non-Fermi-liquid ~NFL! behavior rather than a single
particle~Fermi liquid! transport mechanism and that the m
crowave dynamics and the optical response are characte
by different energy scales. A model based upon a collec
phason mode arising from the presence of charge fluc
tions, such as from stripes or a density wave~DW!, quanti-
tatively explains the observed temperature dependence o
perimental data.
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Single crystals of Hg:1201 (Tc594.4 K), Hg:1223 (Tc

5122 K), Tl:2201 (Tc591K), and underdoped
YBa2Cu3O6.5 (Tc560 K) were prepared by appropriat
methods for each material. The high quality of the cryst
discussed here has been confirmed by a variety of o
techniques.7 The data reported here were confirmed w
measurements on several samples of each material.
high-sensitivity microwave measurements ofRs andXs were
carried out in a Nb superconducting cavity resonant at
GHz in the TE011 mode with very high unloadedQ;108.8

SinceZs5Rs1 iXs5Aim0v/s̃, from Rs andXs it is possible
to obtain s1 and s2, the real and imaginary parts of th

conductivity, usings̃5s12 is25 im0v/(Rs1 iXs)
2. In all

microwave measurements,Rs(T) can be measured abso
lutely, while relative changesDXs(T)[Xs(T)2Xs(0) are
typically measured. We obtainXs(0)5m0vlab(0) from es-
timates of the low-T penetration depthlab(0):130 nm
(Hg:1223), 117 nm (Hg:1201), and 260 nm (YBCO6.5).

should be emphasized that becauseXs(Ṫ.Tc)@Xs(0), the
results discussed in this paper are not sensitive toXs(0) or
l(0).

The temperature dependences ofXs andRs for Hg:1223
when the microwave magnetic fieldHvic axis and ofDXs

andRs whenHv'c are shown in Fig 1. In Fig. 1~a! Hvic so
that we are probing in-plane charge dynamics, while in F
1~b!, Hv'c ~i.e., Hviab), the current is flowing in theab
andc directions. In this mixed case, the data are represen
asDXs becauselab1c(0) and henceXs(0) cannot be easily
estimated. At lowT!Tc , lab(T) has a power-law depen
©2002 The American Physical Society01-1
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dence onT, consistent with measurements on other cupr
superconductors.9 Details of the superconducting state w
be discussed separately.

Two principal features of the data for Hg:1223 of Fig.
are evident.~i! Above Tc the curves ofRs vs T andXs vs T
are not parallel, so thatRs(T.Tc)ÞXs(T.Tc). ~ii ! Further-
more,DXs(Tc).DRs(Tc), exactly opposite to that observe
in conventional metals like Nb and Sn, and to within expe
mental accuracy, in optimally doped YBa2Cu3O6.95 @see Fig.
1~a!, inset# and Bi2Sr2CaCu2O8.

Essentially similar data were found for the other materi
in this study: Hg:1201, Tl:2201, and YBa2Cu3O6.5. The in-
equalityRs(T.Tc)ÞXs(T.Tc) for all four materials is evi-
dent from Fig. 2, where we present the data in terms of
anomalyA5Xs /Rs21 vsT for bothHvic @Fig. 2~a!# and as
DXs /Rs21 vsT whenHv'c @Fig. 2~b!#. The anomalyA is
clearly finite ~nonzero! for T.Tc for both orientations. In
optimally doped YBa2Cu3O6.95 the anomalyA(T.Tc)50
from the data of Fig. 1~a!, inset.

The influence of the pseudogap temperature scale on
transport is clearly evident in Fig. 2 for Hg:1223 (T*
5270 K) and Hg:1201 (T* 5260 K).10 The onset of the
pseudogap greatly enhances thec-axis contribution, as is
clearly seen in the data for Hg:1201 and Hg:1223@Fig. 2~b!#,

FIG. 1. ~a! Rs andXs vs T for Hvic and~b! Rs andDXs vs T for
Hv'c for HgBa2Ca2Cu3O81d . The violation of the Hagen-Ruben
limit in Hg:1223 is evident sinceXsÞRs for T.Tc and DXs(Tc)
.DRs(Tc). Similar anomalous results are also observed
Tl2Ba2CuO61d , HgBa2CuO41d , and underdoped YBa2Cu3O6.50

~not shown!. In contrast such a violation is not observed in op
mally doped YBa2Cu3O6.95 @inset to~a!#.
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although the onset can also be seen in the pureab-plane data
@Fig. 2~a!# albeit more gently. Thus our data are consiste
with other findings that thec-axis pseudogap is differen
from theab-plane pseudogap.1

For a conventional metal, the electromagnetic respo
can be expressed in terms of the dynamic conductivity w

ten as s̃(v)[s12 is25sn0 /(11 ivt)5vp
2«0 /(G1 iv),

wherevp is the plasma frequency,G5t21 is the relaxation
or dissipation rate, andsn0 is the zero-frequency~dc! con-
ductivity. In typical metals like Al, vp;15 eV and G
;0.1 eV, a negative dielectric constant is observed at o
cal frequencies (;1013Hz, 0.1 eV) where v;G, and

s2 /s1;1, since«̃512vp
2/v(v2 iG). On the other hand

microwave frequency (;1010Hz,1024 eV) experiments are
in the Hagen-Rubens limitv!G, s2 /s15v/G!1, imply-

ing s̃5sn05vp
2«0 /G, and the conventional Ohm’s law ap

plies. In the Hagen-Rubens limit,Rs5Xs5Am0v/2sn
5m0vdn/2, where the skin depthdn5(2/m0vsn)1/2. Clearly
then our finding thatA(T.Tc)5Xs /Rs21Þ0 shows that
these materials violate the Hagen-Rubens condition in
pseudogap state.11

The violation of the Hagen-Rubens limit immediately im
plies a finite value of the imaginary parts2(T.Tc), since
s25m0v(Xs

22Rs
2)/(Rs

21Xs
2)2 and a corresponding negativ

microwave dielectric permittivity «8(T.Tc)52s2(T
.Tc)/v«0, for the nonsuperconductingstate aboveTc for
these materials.s2(T) is shown in Fig. 3. In Hg:1223 it
achieves rather large values;106 (V m)21 and decreases
with increasing temperature. The corresponding dielec
constant e5s2 /v«05223106 is large and negative
Tl:2201 also violates the Hagen-Rubens limit, with values
s2;105 (V m)21 leading to e5223105. Essentially
similar results have been found for Tl:2201 in other micr
wave measurements.12 In underdoped YBa2Cu3O6.5 the cor-
respondings2(T.Tc) values ;104 (V m)21 are signifi-
cantly lower. Thus the violation of the Hagen-Rubens limit
less severe~although unambiguous! and is consistent with
the trend that in optimum-doped YBa2Cu3O6.95, DXs(Tc)
,DRs(Tc) and Rs(T.Tc)5Xs(T.Tc) so thats2(T.Tc)
;0(!s1) within experimental error.

The above conclusions concerning finites2(T.Tc)
;s1(T.Tc) are directly a consequence of the data and
p

FIG. 2. ~a! Experimental data~dark lines! for
the anomalyA5Xs /Rs21 vs T and the model
~light lines! when Hvic. ~b! DXs /Rs21 vs T
whenHv'c. The arrows indicate the pseudoga
temperatureT* .
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 65 132501
obtained from any modeling of the dynamics. In the fram
work of a Drude relaxation models̃(v)[s12 is2

5sCM0 /(11 ivCMtCM)5vpCM
2 «0 /(GCM1 iv) valid at mi-

crowave frequencies, we can obtainvpCM andGCM from the
s1(10 GHz,T) ands2(10 GHz,T) data. The resulting val-
ues ofvpCM;0.1 eV are significantly lower than indicate
by optical spectra. More striking are the extremely low d
sipation or scattering ratesGCM;1025–1024 eV. These
low values ofGCM are to be expected from the finites2
since s2 /s15v/GCM;0.1–1. Similar small values ofG
and alsovp are observed in the heavy fermion materia
UPt3 (vp/2p;0.3 eV, G;631025 eV) ~Ref. 13! and the
conducting polymer polypyrrole (0.007 eV, 1.
31024 eV) ~Ref. 14! from microwave measurements. Th
temperature dependences ofvpCM(T) and GCM(T) are
shown in Fig. 4. In Hg:1201 and Hg:1223, the temperat
dependences appear to be tied to the pseudogap temper
although no consistent trend is apparent.

Optical experiments show a Drude peak at much hig
frequencies than microwaves, leading to the parame
vp,opt/2p;2 eV andGopt;0.1 eV. These magnitudes als
correspond to ARPES measurements of the quasipar
scattering rate. It is clear that these high-energy experim
are not able to observe the very low dissipation rates repo
in this experiment, sincev@vpCM ,GCM for them, and fur-
ther the collective mode observed in this work has sm

FIG. 3. s2(T.Tc) for Hg:1201, Hg:1223, Tl:2201, and
YBCO6.5.
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spectral weight *s(v)dv5pvpCM
2 «0/2 and vpCM

!vp,opt . Thus our results clearly show a disparity in ener
scales between the microwave and optical frequency tra
port.

Using the Drude formvpCM
2 5ne2/m* «0, we can extract

the effective massm* . For n we use conventional estimate
of 0.2 holes per plane, leading ton;1027/m3. The resulting
effective masses then are somewhat large,m* ;300–400 for
Hg:1223, 100–200 for Tl:2201,;100 for YBa2Cu3O6.5, and
8000–23 000 for Hg:1201 in the temperature range of
data. These large masses are comparable with those obs
in one-dimensional~1D! charge density waves~CDW’s!.15

The simultaneous enhancement oftCM(5GCM
21 ) and m*

leavess1 nearly unchanged, so the microwave anomaly c
sists of a large value ofs2(T.Tc). It should be noted tha
earlier analysis of microwave scattering rates in Bi:2212 a
YBa2Cu3O6.95 ~Ref. 16! assumed an effective massm*
5me ~no mass enhancement! so that theG deduced from the
microwave conductivity forT.Tc in those cases is muc
larger than those deduced here. Massive carriers withm*
;103 have been deduced from microwave measurement
nonsuperconducting La2CuO4.17

The microwave results are suggestive of a phason m
of a CDW, whose electrodynamic response can be re
sented ass̃CM(v)5sCM0 /(12vpin

2 /v21 ivtCM). In the
unpinned casev@vpin(→0), the response reduces to th
Drude form s̃CM(v)5s0 /(11 ivtCM) used above. If the
phason has a finite pinning frequency, the model cannot
plain the dc conductivity, which is actually enhanced belo
the pseudogap transition. To approximately describe this
sidual conductivity, we introduce a second Drude comp
nent, which is unaffected by the pseudogap transition.
simplicity, we assume the same marginal Fermi liquid fo
for the unrenormalized scattering of both components:s

5ŝ0 /(tMFL
21 1 ivm* )1r cŝ0 /(tMFL

21 1 iv), with r c the ratio

of the ungapped to gapped contributions,ŝ05vp
2«0, and

tMFL
21 5Av21p2(T21T0

2), T0 providing a low-temperature
cutoff. The CDW effective mass enhancement ism* /m51
1z, with z5aD2(T)5z0(12T/T* ), where D(T) is the
gap, assumed to have a BCS form.18

Figure 2 shows the resulting calculated variation withT of
the measured anomalyA5(Xs2Rs)/Rs5g211A11g2

compared with the experimental data for the caseHv i c
r

FIG. 4. ~a! Plasma frequencyvpCM and ~b!
dissipation rate GCM in meV vs T for
Hg:1201, Hg:1223, Tl:2201, and YBCO6.5, fo
Hvic.
1-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 132501
where g5s2 /s1. Parameters are (m* ,T* ,T0 /T* ,r c)
5(1000, 400 K,0.3, .85) for Hg:1201, (400, 450 K, 0, 0
for Hg:1223, (500, 400 K, 0.5, 0.9) for Tl:2201, an
(150, 400 K, 0.3, 6) for YBCO6.5. The model reproduces
the temperature dependence of (Xs2Rs)/Rs found experi-
mentally, decreasing at higher temperatures. The calcul
T* is an onset temperatureTon* , while the experiment mea
sures a crossoverTcr* , whereXs /Rs changes most rapidly
We have compared only the caseHvic for the pureab-plane
currents, since the mixed caseHv'c requires an an addi
tional c-axis contribution and is the subject of future wor
We note that the microwave data do not find any clear in
cations for pinning of the phason mode~i.e., s2 is positive!.

We have thus demonstrated that a collective mode
proach is capable of explaining the anomalous microw
data, while requiring a high-frequency component for e
plaining the optical data. Since pair fluctuations persist o
for a few K aboveTc , the phenomena discussed here m
be associated with pseudogap dynamics, rather than su
conducting dynamics.19
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In conclusion, we have presented microwave experime
that unambiguously reveal entirely novel transport proper
of the nonsuperconducting or pseudogap state of sev
high-temperature superconductors. The pseudogap state
been probed at microwave time scales in several of th
materials. The results show that the low-frequency trans
is likely to be collective in nature, consistent with earli
suggestions of NFL aboveTc ~Ref. 20! and characterized by
extremely low damping distinctly different from optica
transport parameters. The results are quantitatively expl
able in terms of a collective phason mode. Such a pha
mode response can arise from a DW order parameter4 or also
from stripe fluctuations, which have CDW-like dynamics21

The implications of these results both for the pseudo
state, as well as the pseudogap-superconductor transition
intriguing and of considerable importance.

We thank A.H. Castro Neto for valuable discussions. T
work was supported by ONR and NATO.
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