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Superfluid Density in the Underdoped YBa2Cu3O7�x: Evidence for d-Density-Wave Order
of the Pseudogap
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The investigation of the penetration depth �ab�T; p� in YBa2Cu3O7�x crystals allowed one to observe
the following features of the superfluid density ns�T; p� / ��2

ab �T; p� as a function of temperature T <
Tc=2 and carrier concentration 0:078 � p � 0:16 in CuO2 planes: (i) ns�0; p� depends linearly on p;
(ii) the derivative jdns�T; p�=dTjT!0 depends on p slightly in the optimally and moderately doped
regions (0:10< p � 0:16), however, it rapidly increases with p further lowering; (iii) the latter finding
is accompanied by the linear low-temperature dependence ���ns�T�	 / T changing to ���ns�T�	 /����
T

p
. All these peculiarities can be treated in the framework of the d-density-wave scenario of electronic

processes in underdoped high-Tc materials.
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[3–5] which includes n0�p�. The values of �0�p� and
L�p� determine the doping dependence of the derivative

[17]. In the issue, the DDW model predicts a growth of
the slope of the ns�T; p�=n0 curves at low T and p < 0:1.
In past years, much effort was devoted to study the
nature and properties of pseudogap states of the high-Tc
superconductors’ (HTSC) phase diagram. This area cor-
responds to lower concentration p of holes per copper
atom and lower critical temperatures Tc in comparison
with the optimal value p � 0:16 and the maximum tem-
perature of the superconducting transition. In the under-
doped region, HTSC strongly differ from conventional
materials, both in the normal and the superconducting
states. This difference is likely to occur in p and T
dependences of the superfluid density ns�T; p� of heavily
underdoped HTSC.

It is well known that in clean BCS d-wave super-
conductors (DSC) the dependence �ns�T� � ns�T� �
ns�0� is linear on temperature T 
 Tc: ���ns�T�	 /
T=�0, where n0 � ns�0� and �0 � ��0� are the superfluid
density and the superconducting gap amplitude at T � 0.
This dependence is confirmed by the measurements of the
ab-plane penetration depth �ab�T� �

������������������������������
m�=�0e2ns�T�

p
:

��ab�T� / T at T < Tc=3, where �0, m�, and e are the
vacuum permeability, the effective mass, and the elec-
tronic charge, respectively. The derivative jdns�T�=dTj at
T ! 0 determines the n0=�0 ratio. If thermally excited
fermionic quasiparticles are the only important exci-
tations even at p < 0:16, then the slope of ns�T� curves
at T 
 Tc is proportional to the n0�p�=�0�p� ratio:
jdns�T�=dTjT!0 / n0�p�=�0�p�. The measurements of
�ab�0� in underdoped HTSC showed that the super-
fluid density n0�p� / ��2

ab �0� increases approximately lin-
early with p > 0:08 reaching its maximum value at p �
0:16 [1,2].

When decreasing p < 0:16 and, hence, approaching
the dielectric phase, the role of electron correlations
and phase fluctuations becomes increasingly signifi-
cant. The generalized Fermi-liquid models (GFL) allow
for this through p-dependent Landau parameter L�p�
0031-9007=04=92(6)=067006(4)$22.50 
jdns�T�=dTjT!0 � L�p�=�0�p�. In Ref. [3], the ratio
L�p�=�0�p� does not depend on p; the model [4] predicts
L�p�=�0�p� / p�2. The measurements of YBa2Cu3O7�x
single crystals [6] and oriented powders [7] with the hole
concentration p * 0:1 showed that the slope of ns�T�
dependences at T ! 0 is either slightly p dependent [6],
which agrees with Ref. [3], or diminishes with decreasing
p � 0:16 [7], which contradicts the GFL models [3–5].

Along with the above concept, there are a number of
pseudogap concepts [8–11] proposed in order to describe
the collapse of the single-particle density of states near
the Fermi level, experimentally observed in under-
doped HTSC at T * Tc by various techniques. At micro-
wave frequencies, a breakdown of the normal skin-effect
condition in some HTSC was also treated in terms of
the pseudogap state [12]. In Ref. [13], the pseudogap
order parameter was found to have the same d-wave
symmetry as the superconducting one; it influences the
quasiparticle spectrum at T < Tc as well. In the precursor
pairing model [14], based on the formation of pair elec-
tron excitations with finite momentum at T > Tc, this
influence leads to a rise of �0�p� and a decrease of
n0�p� with p lowering. Hence, the decrease of the deriva-
tive jdns�T�=dTjT!0 / n0�p�=�0�p� is expected. The
ns�T; p�=n0 dependences calculated in Ref. [15] show
that their low-temperature slopes decrease with under-
doping. An alternative behavior of jdns�T�=dTj follows
from the magnetic precursor d-density-wave (DDW) sce-
nario of pseudogap [16]. In this model, a DDW order
parameter W�p; T� is directly introduced into the quasi-
particle band structure. At low energies, the excitation
spectrum of DDW consists of conventional fermionic
particles and holes such as those of DSC with which
it competes at p < 0:2. The DSC gap �0�p� steadily
vanishes with p decreasing, whereas the sum of zero-
temperature squares �2

0�p� �W2
0 �p� remains constant
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The present Letter aims at the experimental verifi-
cation of the theoretical predictions [3–5,14–17]. To
fulfill the task, we investigated �ab�T� dependences in
a YBa2Cu3O7�x single crystal with the oxygen defi-
ciency varied in the range 0:07 � x � 0:47. The ex-
periments were performed by the ‘‘hot-finger’’ technique
[18] at the frequency of !=2� � 9:4 GHz and in
the temperature range 5 � T � 200 K. The initial
YBa2Cu3O6:93 crystal was grown in a BaZrO3 crucible
[19] and had a rectangular shape with dimensions
being 1:6� 0:4� 0:1 mm3 [20]. To change the carrier
density, we successively annealed the crystal in the air
at various temperatures T � 500 �C [21]. Finally, five
crystal states with critical temperatures Tc � 92, 80, 70,
57, 41 K were investigated. Using the empirical relation
[22] Tc � Tc;max�1� 82:6�p� 0:16�2	 with Tc;max �
92 K at p � 0:16 (x � 0:07), we get the concentra-
tions p � 0:12; 0:106; 0:092; 0:078 for the other four
states of YBa2Cu3O7�x with lower Tc values and x �
0:26; 0:33; 0:40; 0:47, respectively. According to ac sus-
ceptibility measurements at the frequency of 100 kHz, the
superconducting transition width amounted to 0.1 K
in the optimally doped state (p � 0:16); however, the
width increased with the decrease of p, having reached
4 K at p � 0:078. The temperature dependences of the
ab-plane surface resistance Rab�T� and reactance Xab�T�
are shown in Fig. 1 for each of the five crystal states. At
T < Tc=3, all Rab�T� curves are linear on T. The residual
losses Rab�T ! 0� do not exceed 40 ��. In more detail,
Rab�T� data will be discussed elsewhere [23]. The Xab�T�
dependences in Fig. 1 are constructed with allowance
made for both (i) the contribution �Xth

ab�T� of thermal
Ω

FIG. 1. Real Rab�T� (solid symbols) and imaginary Xab�T�
(open symbols) parts of the ab-plane surface impedance of the
YBa2Cu3O7�x single crystal for five different Tc values.
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expansion of the crystal which essentially affects the
measured reactance shift �Xab�T� at T > 0:9Tc, and
(ii) the additive constant X0 which is equal to the differ-
ence between the values of ��Xab�T� � �Xth

ab�T�	 and
Rab�T� at T > Tc: Xab�T� � �Xab�T� ��Xth

ab�T� � X0

[20]. So, in the normal state for each of the five crystal
states, we have Rab�T� � Xab�T� which implies the valid-
ity of the normal skin-effect condition. This finding en-
ables one to extract the absolute values of the ab-plane
penetration depth �ab�T� � Xab�T�=!�0 from Xab�T�
curves at T < Tc.

Figure 2 shows the low-temperature sections of �ab�T�
curves. The linear extrapolation (dashed lines) of these
dependences at T < Tc=3 gives the following �ab�0� val-
ues: 152, 170, 178, 190, 198 nm for p � 0:16; 0:12;
0:106; 0:092; 0:078, respectively. The error in �ab�0� is
largely determined by the measurement accuracy of the
additive constant X0. In our experiments, the root-mean-
square difference between Rab�T� and Xab�T� in the nor-
mal state corresponded to about 5 nm accuracy in the
�ab�0� value.

As follows from Fig. 3, halving of the concentration
(namely, from p � 0:16 to p � 0:078) results in an ap-
proximately 2 times smaller ��2

ab �0� � n0�0e2=m� value.
Similar behavior n0�p� / p within the range 0:08< p �
0:16 was observed by other groups [1,2]. It is easily seen
that this dependence contradicts Uemura’s relation
n0�p� / Tc�p� [24]. The naive linear extrapolation of the
dashed line in Fig. 3 at p < 0:08 leads to a nonphysical
result: n0�p� is finite at vanishing p. To the best of
our knowledge, there is no data of superfluid density
λ
µ

FIG. 2. Low-temperature dependences of �ab�T� (open sym-
bols) measured for five states of the YBa2Cu3O7�x crystal with
Tc � 92 K, Tc � 80 K, Tc � 70 K, Tc � 57 K, and Tc � 41 K.
Dashed lines are linear extrapolations at T < Tc=3.
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FIG. 4. The measured dependences of �2
ab�0�=�

2
ab�T� �

ns�T�=ns�0� at T < Tc=2 in YBa2Cu3O7�x with different dop-
ing. The solid line is the �2

ab�0�=�
2
ab�T� dependence in the BCS

d-wave superconductor (DSC). The inset shows the ns�T�=n0
experimental curve for p � 0:092 and the ones obtained using
�ab�0� increased (open stars) and decreased (solid stars) by
40 nm.

λ
→

µ

λ
µ

FIG. 3. The values of ��2
ab �0� � ns�0��0e

2=m� (right scale)
and slopes jd��2

ab �T�=dTjT!0 � �0e
2=m�jdns�T�=dTjT!0

(left scale) as a function of doping p � 0:16���������������������������������������������
�1� Tc=Tc;max�=82:6

p
with Tc;max � 92 K in YBa2Cu3O7�x.

Error bars correspond to experimental accuracy. The dashed
and dotted lines guide the eye. The solid line is the
j dns�T�=dTj / p�2 dependence.
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measurements in HTSC at p < 0:08. As for theoretical
predictions, n0 linearity on p extends down to p � 0 in
the model [3], while in the DDW scenario [17,25] it exists
in the underdoped range of the phase diagram where the
DSC order parameter grows from zero to its maxi-
mal value (Fig. 1 from Ref. [25]). The latter agrees with
our data.

In Fig. 3, we also show the slopes jd��2
ab �T�=dTjT!0 /

jdns�T�=dTjT!0 of ��2
ab �T� curves obtained from �ab�T�

dependences at T < Tc=3. The value of jd��2
ab �T�=dTj

changes slightly at 0:1<p � 0:16 in accordance with
Ref. [3]. However, it grows drastically at p & 0:1; namely,
the ��2

ab �T� slope increases 2.5 times with a p decrease
from 0.12 to 0.08. The jd��2

ab �T�=dTj / p�2 dependence
[4] is shown by the solid line in Fig. 3 and roughly fits the
data at p � 0:12. The dotted line drawn through
jd��2

ab �T�=dTj experimental points in Fig. 3 qualitatively
agrees with the behavior of this quantity in the DDW
model [17,25].

The temperature dependence of the superfluid density
ns�T� at low T in the heavily underdoped YBa2Cu3O7�x
proves to be one more check-up of the DDW scenario of
pseudogap. �2

ab�0�=�
2
ab�T� � ns�T�=n0 dependences ob-

tained from the data in Fig. 2 are shown in Fig. 4 for
different values of p. The solid line represents the DSC
result. The evident peculiarities in Fig. 4 are the concavity
of ns�T�=n0 curves corresponding to the heavily under-
doped states (p � 0:078 and p � 0:092) and their devia-
tion from DSC and the curves for p � 0:16; 0:12; 0:106. It
should be noted that these peculiarities do not strongly
depend on �ab�0� values. This is demonstrated in the inset
of Fig. 4, where the ns�T�=n0 experimental curve for p �
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0:092 is compared to the ones obtained using �ab�0�
increased (open stars) and decreased (solid stars) by
40 nm. Actually, the latter value is much higher than
the experimental uncertainty.

The behavior of the superfluid density ns�T�=n0 in
Fig. 4 contradicts the conclusions of the precursor pairing
model [15], but agrees with the DDW scenario [17].
According to Ref. [17], at temperatures much smaller
than the relevant energy scales W0 and �0, only the nodal
regions close to the points (�=2; �=2) and symmetry-
related points on the Fermi surface will contribute to
the suppression of the superfluid density. In a wide range
of temperatures, the ns�T� dependence will be linear for
the optimally and moderately doped samples, in which
�0 is larger than or comparable to W0 and plays a leading
role in the temperature dependence of the superfluid
density. However, for the heavily underdoped samples,
the situation is quite different. Though in the asymptoti-
cally low-temperature regime the suppression of the
superfluid density is linear on temperature, there is an
intermediate temperature range over which the suppres-
sion actually behaves as

����
T

p
. It is worth emphasizing that

the authors of Ref. [17] state that these features are
independent of the precise W0�p� and �0�p� functional
forms. The only input that is needed is the existence of
DDW order which diminishes with p increase and com-
plementary development of the DSC order. The DDW
order eats away part of the superfluid density from an
067006-3
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FIG. 5. Comparison of experimental ��2
ab �T� / ns�T� curves

(symbols) with linear �����2
ab �T�	 / T (dashed lines) and root

�����2
ab �T�	 /

����
T

p
(solid lines) dependences for moderately

doped (p � 0:106, x � 0:33) and heavily underdoped (p �
0:092, x � 0:40; p � 0:078, x � 0:47) YBa2Cu3O7�x.
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otherwise pure DSC system. Actually, in the intermedi-
ate temperature range 0:1Tc < T & 0:5Tc, the experi-
mental ns�T� curves in YBa2Cu3O6:60 and YBa2Cu3O6:53

with p < 0:1 are not linear but similar to
����
T

p
depen-

dences. This is confirmed by Fig. 5, where the mea-
sured curves ��2

ab �T� / ns�T� are compared with linear
(/T) in YBa2Cu3O6:67 (p � 0:106) and

����
T

p
dependences

���2
ab �T� � �3

����
T

p
(�ab and T are expressed in �m and

K) in YBa2Cu3O6:60 (p � 0:092) and ���2
ab �T� �

�3:5
����
T

p
in YBa2Cu3O6:53 (p � 0:078). The dashed lines

in Fig. 5 correspond to the linear at T < Tc=3 depen-
dences of �ab�T� presented in Fig. 2 and extended to
higher temperatures. It is also interesting that these pecu-
liarities of ���2

ab �T� dependences in YBa2Cu3O6:60 and
YBa2Cu3O6:53 are accompanied by inflection of the re-
sistivity �ab�T� curves in the normal state of these
samples which can be illustrated by Fig. 2 from Ref. [21].

Thus, three main experimental observations of this
paper, viz. (i) linear dependence of n0�p� in the range
0:078 � p � 0:16, (ii) drastic increase of the low-
temperature ns�T� slope at p < 0:1, and (iii) the deviation
of �ns�T� dependence from universal BCS behavior
���ns�T�	 / T at T < Tc=2 towards ���ns�T�	 /

����
T

p

with decreasing p < 0:1, evidence the DDW scenario
[16,17,25] of electronic processes in underdoped HTSC.
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Nevertheless, the measurements of ns�T� at lower tem-
peratures and in the high-quality samples with smaller
carrier density are necessary for an ultimate conclusion.
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