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We present an overview of measurements of the surface impedanceZs(T ) = Rs(T ) + iXs(T ) and
complex conductivityσs(T ) = σ1(T )− iσ2(T ) in theab-plane of high-quality high-Tc single crystals
YBCO, BSCCO, TBCCO, and TBCO and their theoretical interpretation. Electrodynamic principles of
the experimental ‘hot finger’ technique, most frequently used in high-precision measurements of the sur-
face impedance, are analyzed. A systematic description of the results of measurements obtained by means
of this technique are presented. The conventional theory of the local electrodynamics of superconductors
is discussed, and it is argued that traditional models do not describe adequately the microwave response of
high-Tc superconductors. The comparison is performed of experimental curves of the surface impedance
and complex conductivity to calculations based on the modified two-fluid model, which includes quasi-
particle scattering and characteristic change in the density of superconducting carriers as a function of
temperature. Further, the existing microscopic models are reviewed, which are based on unconventional
symmetry types of the order parameter and on novel mechanisms of quasiparticle relaxation. The rele-
vance of these models to the experimental data is discussed. The prospects for further research of the
high-frequency response of high-temperature superconductors are outlined.

3.1 INTRODUCTION

Measurements of the surface impedance of high-Tc superconductors (HTS) as a
function of temperature,Zs(T ) = Rs(T )+ iXs(T ), yield information about the na-
ture of quasiparticles in the superconducting state, their scattering, density of states,
and, if a more sophisticated analysis is undertaken, about the superconducting pair-
ing mechanism in these materials.

In this review we will consider measurements of stoichiometrically perfect
single crystals of YBa2Cu3O6.95 (YBCO), Bi2Sr2CaCu2O8 (BSCCO), Tl2Ba2Ca
Cu2O8−δ (TBCCO), and Tl2Ba2CuO6+δ (TBCO) whose doping level corresponds
to the highest critical temperatureTc, the superconducting transition width∆T de-
rived from the measurements ofRs(T ) is small,∆T . 1 K, and the residual surface
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resistance in theab-planeRres ≡ Rs(T → 0) at frequency of∼ 10 GHz is less
than one milliohm. There is good reason to suppose that electrodynamic parameters
of these samples adequately characterize intrinsic microscopic properties of super-
conductors. We will review available phenomenological and microscopic models of
the high frequency response of HTS and discuss the existing achievements as well
as difficulties in explanation of common and distinctive features of the data. As
a whole the experimental and theoretical investigation of electromagnetic response
of HTS should permit the determination of the dominant mechanism for electronic
relaxation in the normal state and its interrelation with superconducting pairing of
HTS, provide information on the order parameter symmetry, and elucidate the role
of defects in these materials.

There are several common features of the microwave response in theab-plane
of HTS crystals. First, high-precision measurements of the in-plane penetration
depthλab(T ) ∝ Xs(T ) of YBCO single crystals at microwave frequencies revealed
a linear temperature dependence [78, 7, 216, 32, 104, 134, 98, 180, 193, 185, 217,
186, 195, 103, 91] for temperatures below 25 K. Such linear variation ofλ(T ) at
low T has by now been observed not only in orthorhombic YBCO single crystals
and films [203, 84, 55, 43], but also in tetragonal BSCCO [180, 97, 179, 122, 175],
TBCO [35, 209], and TBCCO [217] single crystals. This temperature dependence is
incompatible with a nearly isotropic gap of superconductor and it is now considered
to provide strong evidence ford-wave pairing in these materials [145, 147, 148, 23,
87, 36, 212, 88, 89, 172, 17, 132], even though the quantity measured is not sensi-
tive to the phase of the superconducting order parameter. Later research has shown
that∆λab(T ) could be linear at lowT for the models invoking the proximity effect
between normal and superconducting layers [115] or assuming anisotropics-wave
pairing [119, 69, 9]. However, none of these theories can explain substantially dif-
ferent slopes of the∆λab(T ) curves in YBCO samples grown by different methods
[196] or features (a bump [185, 186, 84, 112] or plateau [193, 217, 195]) observed in
the intermediate temperature range0.3Tc < T < 0.8Tc. Models containing a mixed
(d + s)-symmetry of the order parameter [123, 53, 114, 28, 41, 46, 108, 24, 160,
150, 168, 178, 127, 156, 25, 174, 149, 49, 152] hold some promise for a success-
ful description of these experimental features, but checking this requires additional
theoretical investigations.

Another common feature of the electromagnetic response of HTS crystals is
the linear variation with temperature of the surface resistanceRs(T ) in theab-plane
at low temperatures. At frequencies below30 GHz theT -dependence ofRs(T ) in
BSCCO, TBCO, and TBCCO single crystals is linear in the range0 < T . Tc/2
[180, 97, 179, 122, 175, 35, 196]. For YBCO crystals∆Rs(T ) ∝ T for T . Tc/4
and Rs(T ) displays a broad peak at higher temperatures [32, 104, 134, 98, 180,
193, 185, 217, 186, 195, 103, 91, 30, 182, 33, 110, 190]. This peak can be under-
stood in terms of a competition between an increase in the quasiparticle lifetime and
a decrease in the quasiparticle density. The fairly slow decrease in the quasiparticle
density is indicative of a highly anisotropic or unconventional order parameter result-
ing in a very small or vanishing energy gap, whereas the increase in the quasiparticle
lifetime must be attributed to the presence of inelastic scattering, which can be (i)
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due to the exchange of antiferromagnetic spin fluctuations, which would naturally
lead tod-wave pairing [145, 147, 148], (ii) due to strong electron-phonon interac-
tion with a pronounced momentum dependence, which should lead to an anisotropic
s-wave pairing when the repulsive Coulomb interaction is sufficiently small [29].
Moreover, there have been suggestions of some unconventional states for the charge
carriers in the CuO planes like the marginal Fermi liquid [200, 1] and the Luttinger
liquid [12]. However, to fit the data on YBCO, the inelastic scattering rate has to
drop with temperature much faster than any of these microscopic models would
predict. Further, thed-wave model with point scatterers does predict a finite low
temperature and low frequency limit, which is independent of the concentration and
the strength of the scattering centers. So, this model does not explain the sample
dependence of the residual surface resistanceRres and the value of this universal
surface resistance is much lower than the values deduced from experiments. There is
no microscopic theory explaining the linear temperature dependence of∆Rs(T ) up
to Tc/2 in the crystals with non-orthorhombic structure and the shoulder ofRs(T )
at T > 40 K in YBCO [185, 186]. Only in high quality YBCO films and single
crystals does ad-wave theory come close to the experimental results obtained at a
certain finite frequency, when the scattering phase shift is used as fitting parameter
[84].

In the absence of a microscopic theory, a modified two-fluid model has been
suggested [194, 56] which adequately describes the temperature dependence of
Zs(T ) for different HTS single crystals. The success of the two-fluid model could
be taken as an indication that the order parameter is indeed highly anisotropic, so
that there are no contributions to the response function from the density of states that
would diverge in the zero frequency limit.

The elucidation of the issues stated above including establishment of the basic
carrier scattering mechanisms and order parameter symmetry, as well as modifica-
tion of these properties through various types of defects and/or oxygen deficiency,
requires substantial extensions of the existing theoretical framework with a view to
describing the electromagnetic response of high temperature superconductors. If
successful, it would represent a significant step towards understanding the nature of
high temperature superconductivity and will assist in future applications of HTS in
high-frequency electronics.

The structure of this review is as follows. The next section describes the con-
ventional theory of the electrodynamics of superconductors. Section 3.3 is dedicated
to the analysis of measurements that can be performed using the ‘hot finger’ tech-
nique and its limitations, since this method is used in high-precision measurements
of the HTS surface impedance versus temperature in the microwave band more fre-
quently than others. Section 3.4 describes systematized measurements obtained by
means of this technique. Section 3.5 compares experimental curves ofZs(T ) and
σs(T ) to calculations based on the modified two-fluid model. In Section 3.6 we
will discuss microscopic models that have been developed to this day and are based
on possible symmetry types of the order parameter and mechanisms of quasiparti-
cle relaxation. The concluding section describes prospects of further research in the
microwave response of HTS single crystals.
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3.2 ELECTRODYNAMICS OF SUPERCONDUCTORS

3.2.1 Phenomenological Theory

In order to define the electromagnetic properties of a superconductor, the electrody-
namic relations describing magnetic field distribution inside a superconductor should
be derived. Such relations are quite different from those in normal metals. Prior to
their derivation from microscopic Bardeen–Cooper–Schrieffer (BCS) theory [22] the
electrodynamics of superconductors were quite successfully described phenomeno-
logically, first in the framework of London theory [130] and then on the basis of
the more general Ginzburg–Landau theory [64]. Both theories operate with phe-
nomenological parameters which can be estimated from experiment, even without
specifying a microscopic mechanism of superconductivity. This gives an acceptable
description of many practical situations. It is important that the relation between
these phenomenological theories and the BCS microscopic theory was established
recently, which allowed us to express the parameters of the phenomenological the-
ories through material constants of real superconductors. Below we start from the
London theory.

3.2.1.1 Equations of Two-Fluid Electrodynamics

The basic assumption first made by Gorter and Casimir (GC) [73] is that the system
exhibiting superconductivity possesses an ordered (condensed) state, the total energy
of which is characterized by an order parameter. This parameter varies from zero at
T = Tc to unity atT = 0 K, and thus indicates the fraction of the total system which
is in the condensed state. Another part of the system is in a noncondensed state,
and its behavior is taken to be similar to that of the equivalent nonsuperconducting
system. This description is called thetwo-fluid model: all current carriers are divided
into two subsystems, into the superconducting current carriers of densityns (the
superfluid), and into the normal current carriers of densitynn (the normal fluid).

The total currentJ is the sum of a normal currentJn and a supercurrentJs

J = Jn+Js ≡ σnE + Js, (3.1)

whereE is an electric field andσn is a conductivity associated with normal electrons.
Within the London model, the set of Maxwell’s equations in a quasi static case

curlH = σnE + Js, curlE = −µ0
∂H

∂t
(3.2)

(µ0 = 4π × 10−7 H/m) should be completed by the equation of motion of super-
conducting electrons with the chargee and effective massm (the first London’s
equation)

E =
m

nse2

∂Js

∂t
≡ µ0λ

2
L

∂Js

∂t
, (3.3)
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which is equivalent to

Js = − A

λ2
L

, (3.4)

whereA is vector potential (curlA = H) andλL is the London penetration depth

λL =
√

m

µ0nse2
. (3.5)

From (3.2) and (3.3) one can easily obtain the second London’s equation

∆H − H

λ2
L

= 0. (3.6)

According to (3.4), the London description is local, which means that the field
is constant over a coherence lengthξ0 dictating the scale of electron pair correc-
tion. The local case holds whenλL � ξ0 = ~vF/π∆(0), wherevF is the Fermi
velocity and∆(0) is the isotropic superconducting gap atT = 0. In the opposite
regime,ξ0 � λL, the scale of the vector potential variationλL is smaller than the
coherence volume given byξ0, and therefore the local description does not hold.
In the presence of impurity scattering the coherence lengthξ(l) is assumed to be
1/ξ(l) = 1/ξ0 + 1/l [159], wherel is the average mean free path of electrons in the
normal state. According to Abrikosov’s concept [2], superconductors are classified
as pure (l > ξ0) and dirty (l < ξ0) on one hand, and London (ξ � λ) and Pippard
(ξ � λ) on the other. AsT → 0, ξ = ξ0 � λ = λL in pure London supercon-
ductors andξ(l) ∼ (ξ0l)1/2 � λ(l) ∼ λL(ξ0/l)1/2 in dirty superconductors. In
pure Pippard superconductorsξ = ξ0 � λ ∼ λL(ξ0/λL)1/3, and in dirty super-
conductorsξ(l) � λ(l). The relationship between the current and magnetic field in
London superconductors is local (the London limit), whereas in Pippard supercon-
ductors this relation is essentially nonlocal (the Pippard limit). In accordance with
these concepts, high-Tc materials should be classified as London superconductors,
pure rather than dirty. In the case when an energy gap is an anisotropic function
of the electron quasimomentum,∆(p), and has a line node on the Fermi surface of
a pure superconductor,ξ(p) > λL in a narrow region about this line in the quasi-
momentum space. The contribution of this region to the microwave response of the
superconductor should be expressed in terms of nonlocal electrodynamics, but theo-
retical estimates [118] indicate that nonlocal effects in this region are essential only
at very low temperaturesT < 3 K. Therefore we shall not take these corrections into
account in the following discussion.

From the London’s equations one can derive the distributions of fields and cur-
rents in a superconducting specimen under various conditions. The static distribution
of a magnetic field and current within a superconductor of an arbitrary shape can be
found, as well as the response of a superconductor to an external high-frequency
electromagnetic field.
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3.2.1.2 Complex Conductivity in the Gorter–Casimir Two-Fluid Model

In the framework of London theory the response of a superconductor to an external
electromagnetic field is fully determined by the equations (3.1–3.6) in which a con-
ductivity associated with normal electrons,σn, is introduced phenomenologically in
order to account for the behavior of the normally conducting electron fluid. The su-
perconductor’s response to a weak alternating electromagnetic field of frequencyω,
Eeiωt, is then given by

J = Jn + Js = σsE = (σ1 − iσ2)E. (3.7)

In accordance with GC model [73], at all temperaturesT ≤ Tc the total carrier
concentration isn = ns + nn, wherens,n are the fractions of superconducting and
normal carrier densities (both have the same chargee and effective massm). The
equation of motion for the superconducting carriers is London’s first equation (3.3).
The normal current carriers are affected by alternating electric field and the averaged
‘force of friction’ containing the relaxation timeτ of normal carriers, the motion of
normal carriers being described by Newton’s second law. By solving the equations
of motion, we obtain expressions for the components of complex conductivityσs =
σ1 − iσ2:

σ1 =
nne2τ

m

[
1

1 + (ωτ)2

]
, σ2 =

nse
2

mω
+

nne2

mω

[
(ωτ)2

1 + (ωτ)2

]
. (3.8)

The complex conductivityσs is a basic property of a superconductor. The real
part of conductivityσ1 is determined purely by the normal component whereas both
the components, normal and superconducting, contribute to the imaginary partσ2.

For sufficiently low frequencies(ωτ)2 � 1 and temperatures not too close
to Tc the expressions for the conductivity components in (3.8) transform to a very
simple form:

σ1 =
e2τ

m
nn, σ2 =

e2

mω
ns =

1
µ0ωλ2

L

. (3.9)

Penetration of alternating field in a superconductor is then given by frequency-
dependent skin depth. Based on the result for the complex conductivity, one can
obtain the skin depthδs by the generalization of the corresponding expression for a
normal conductor

δs =
√

2λL√
ωτ(nn/ns)− i

. (3.10)

With the increase of frequencyω the skin depthδs decreases, and therefore
the London penetration depth of a static field,λL, gives the upper bound for the
penetration of electromagnetic field into a superconductor.
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3.2.1.3 Surface Impedance

A dissipationless current can flow through a superconductor only in a static case,
whereas at finite frequencies energy dissipation is present. Losses in a metallic sam-
ple are generally characterized by the surface impedance [120] which is given in the
local regime by the simple formula

Zs = Rs + iXs =
(

iωµ0

σ1 − iσ2

)1/2

. (3.11)

The impedance components in terms of the conductivity components

Rs =

√
ωµ0(ϕ1/2 − 1)

2σ2ϕ
, (3.12)

Xs =

√
ωµ0(ϕ1/2 + 1)

2σ2ϕ
, (3.13)

whereϕ = 1 + (σ1/σ2)2. It is obvious thatRs < Xs atT < Tc.
The components of the surface impedance are measurable quantities. The real

part of the surface impedance, i.e., the surface resistanceRs, is proportional to the
loss of the microwave power and caused by the presence of normal carriers. The
imaginary part of the surface impedance, i.e., the reactanceXs, is largely determined
by the response of superconducting carriers and characterizes the nondissipating en-
ergy stored in the superconductor surface layer.

Equations (3.11–3.13) allow us to express the real and imaginary parts of the
conductivity in terms ofRs andXs:

σ1 =
2ωµ0RsXs

(R2
s + X2

s )2
, σ2 =

ωµ0(X2
s −R2

s)
(R2

s + X2
s )2

. (3.14)

Above the superconducting transition temperature, the mean free pathl of cur-
rent carriers is shorter than the skin depthδn in the normal state (atT ≥ Tc), l � δn,
which corresponds to the conditions of the normal skin effect. Equations (3.11–3.14)
also apply to the normal state of HTS, whenRn(T ) = Xn(T ) =

√
ωµ0/2σn(T )

andσn ≡ σ1(T ≥ Tc), σ2 ≈ 0.
It is straightforward to get the analogues of (3.11–3.14) for normalized quan-

tities, relating the real and imaginary parts of the impedance to the components of
complex conductivity and vice versa:

Rs(T )
Rs(Tc)

=

√
σ(Tc)(ϕ1/2 − 1)

σ2ϕ
,

Xs(T )
Xs(Tc)

=

√
σ(Tc)(ϕ1/2 + 1)

σ2ϕ
, (3.15)

σ1(T )
σ(Tc)

=
4R2

s(Tc)RsXs

(R2
s + X2

s )2
,

σ2(T )
σ2(0)

=
λ2(0)
λ2(T )

=
X2

s (0)(X2
s −R2

s)
(R2

s + X2
s )2

.

(3.16)
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HereRs(Tc) = Xs(Tc) andσ(Tc) = σ1(Tc) are the impedance and conductivity at
T = Tc, Xs(0) andσ2(0) are the values atT = 0, andλ =

√
1/ωµ0σ2.

With a decrease of temperatureT < Tc, whenσ1 � σ2, according to (3.12)
and (3.13)

Rs ≈
(ωµ0)1/2σ1

2σ
3/2
2

=
1
2
ω2µ2

0σ1λ
3, Xs ≈ (ωµ0/σ2)1/2 = ωµ0λ. (3.17)

In the opposite limiting case (σ1 � σ2) in close proximity to the transition
temperatureTc, we haveσ1 → σ(Tc) andσ2 → 0, and the quantities

Rs ≈
√

ωµ0

2σ1

(
1− σ2

2σ1

)
, Xs ≈

√
ωµ0

2σ1

(
1 +

σ2

2σ1

)
(3.18)

become equal atT = Tc.

3.2.1.4 Temperature Dependences ofZs(T ) andσs(T ) in the
Gorter–Casimir Model

An analysis of the temperature dependencesZs(T ) andσs(T ) allows one to check
whether a theoretical model provides an adequate description of the electromagnetic
properties of a superconductor.

The temperature dependences of various physical quantities belowTc are intro-
duced in the GC model empirically, by postulating thatnn(t) = nt4, ns = n(1−t4),
wheret ≡ T/Tc is reduced temperature. As a result, the London penetration depth
(3.5) is given by

λL(T ) =
λL(0)√
1− t4

. (3.19)

The relaxation timeτ in the Gorter–Casimir model is independent of temper-
ature. This is quite natural if we assume that the behaviour of normal carriers in
superconductors is similar to that of normal carriers in normal metals. Scattering of
electrons at low temperatures (in conventional superconductorsTc < 10 K) is due
to impurities and independent of the temperature. Therefore the temperature depen-
dence of the conductivity components (3.8), (3.9) in the GC model is determined by
the functionsnn(T ) andns(T ) = n − nn(T ) only. These dependences are shown
in the inset to Figure 3.1.

The components (3.17) of the surface impedance reduces with help of (3.9) to

Rs ≈ ω2µ2
0λ

3
Lnne2τ/2m ∝ t4/(1− t4)3/2, Xs ≈ ωµ0λL ∝ (1− t4)1/2.

(3.20)

These expressions describe qualitatively well the temperature dependence of the
surface impedance in a temperature range not too close toTc where the condi-
tion (ns/nn)(ωτ)2 � 1 holds. At low temperatures the functionsXs(T )/Xn and
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Figure 3.1 Real and imaginary parts of the surface impedance and complex conductivity (insert) in the
Gorter–Casimir two-fluid model; the only parameterωτ = 0.1.

σ2(T )/σn saturate rapidly as the temperature drops and achieve their limits(2ωτ)1/2

and(ωτ)−1, corresponding to zero temperature, whereasσ1(T ) andRs(T ) tend to
zero following a power law.

As follows from (3.18) in the immediate vicinity of the transition tempera-
ture there is a very narrow peak in the curveXs(t) at tm = (1 − ωτ/

√
3)1/4,

whose amplitudeXs(tm) ≈ 1.16Xs(1). Such a peak has been observed in con-
ventional superconductors tantalum and niobium [201, 202]. In accordance with
(3.19) the penetration depth diverges nearTc asλL(t) = λL/2

√
1− t and the func-

tion σ2(t)/σ2(0) = 4(1 − t) tends to zero atT = Tc linearly with a slope equal to
−4. At the same time, atT = Tc the skin depthδs defined in (3.10) crosses over to
the skin depthδn for a normal conductor.

The dependences ofRs(T )/Rn andXs(T )/Xn from (3.15) based on the GC
model are shown in Figure 3.1.

3.2.2 BCS Theory

Qualitatively, the London theory provides fairly satisfactory agreement with the ex-
perimental data for many real superconductors. For not too low temperatures and
frequencies below 10 GHz, it can be used for practical estimates of losses in super-
conducting resonators and transmission lines. However in most cases this theory is
not suitable for a quantitative comparison of temperature and frequency dependences
of the surface impedance with experimental data.

The electrodynamics of superconductors in the framework of the BCS theory
was first discussed by Mattis and Bardeen [137] and Abrikosov, Gor’kov and Kha-
latnikov [6]. The general electrodynamic formulas are given in the review of Nam
[151].
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In the local limitqvF � ∆ complex conductivityσ(ω) of an isotropic super-
conductor can be written in the form [137, 6, 151]

σ(ω) =
iω2

pl

µ0ω

∫
dω′ tanh

(
ω + ω′

2T

)
×

(
N∗(ω + ω′)N∗(ω′) + D∗(ω + ω′)D∗(ω′)− 1

ε∗(ω + ω′) + ε∗(ω′) + iγimp

)
− tanh

(
ω′

2T

) (
N(ω + ω′)N(ω′) + D(ω + ω′)D(ω′)− 1

ε(ω + ω′) + ε(ω′) + iγimp

)
+

[
tanh

(
ω + ω′

2T

)
−− tanh

(
ω′

2T

)]
×

(
N(ω + ω′)N∗(ω′) + D(ω + ω′)D∗(ω′)− 1

ε(ω + ω′)− ε∗(ω′) + iγimp

)
. (3.21)

Hereωpl is the plasma frequency in a given direction:ωpl = 2N(0)e2v2
F /3 for the

spherical Fermi surface andωpl = 2N(0)e2v2
F for the cylindrical one. The values

γimp represent the electron relaxation rate due to impurity scattering treated in the
Born approximation,ε(ω) =

√
ω2 −∆2 is an excitation energy,N(ω) = ω/ε(ω),

D(ω) = ∆/ε(ω). An imaginary part of the conductivity at low frequencies can be
expressed in terms of the inverse penetration depth Imσ(0) = 1/µ0ωλ2

L.
Let us consider the properties of the real part of the conductivityσ1 in more

detail. In the low-frequency limit,~ω � ∆,

σ1(ω) = Reσ(ω) '
ω2

pl

µ0T

∞∫
0

dω′

cosh2(ω′/2T )

× Re[1 + N(ω + ω′)N∗(ω′) + D(ω + ω′)D∗(ω′)]

× Im

(
1

ε∗(ω + ω′)− ε(ω′)− iγimp

)
. (3.22)

Equation (3.22) can be further simplified in the dirty limit,l � ξ, at low
frequenciesω � ∆(T ) and temperatures not too close toTc (i.e., ∆(T ) ∼ T ). In
this case

σ1(T )
σ(Tc)

' ∆(T )
2kBT

cosh−2

(
∆(T )
2kBT

)
ln

(
∆(T )
~ω

)
. (3.23)

As follows from the expression (3.23), the BCS theory [22] predicts two dis-
tinctive features in theT -dependence of the superconductor microwave response
[22, 137, 6], namely an exponential drop inσ1(T ) andRs(T ) ∝ exp(−∆(0)/kT ) in
the rangeT < 0.5Tc, and an increase in the conductivityσ1(T ) for 0.7 < T/Tc ≤ 1
with respect to its valueσn at T = Tc. The first feature is due to the thermally
activated generation of normal quasiparticles above the gap∆(T ) , while the sec-
ond one, the so-called ‘coherent peak’, is due to the logarithmic factor in (3.23), i.e.,
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Figure 3.2Plots ofRs(T ) andXs(T ) in Nb. The inset shows the real part of the conductivity,σ1/σn,
and Londons’ field penetration depth,λL, versus temperature derived from measurements ofRs(T ) and
Xs(T ) using (3.12) and (3.13). The solid curves show calculations based on the BCS formula (3.23).

the singularities in the quasiparticle and pair densities of statesN(ω) andD(ω) at a
quasiparticle energy equal to∆(T ).

The exponential behaviour ofRs(T ) in conventional superconductors has been
studied in detail (see, for example, [199] and references therein). On the other hand,
the coherent peak inσ1(T ) in the regionT ∼ 0.85Tc was detected not so long
ago in Nb and Pb at a frequency of 60 GHz [111] and in Nb at 10 GHz [192],
when highly accurate concurrent measurements ofRs(T ) andXs(T ) had become
possible. Figure 3.2 shows as an example measurements ofRs(T ) andXs(T ) of
a niobium sample, whose critical temperature isTc = 9.2 K. These measurements
were obtained using the ‘hot finger’ technique, which is convenient for studies of
HTS crystals whose surface area is usually small (∼ 1 mm2). The symbols ()
plot the functionσ1(T )/σn derived from measurements ofRs(T ) andXs(T ) using
(3.16). These data are in qualitative agreement with calculations (solid curve) based
on the BCS formula (3.22).

Note that in the BCS model the magnitude of the scattering rate strongly af-
fects the functionσ1(T )/σ(Tc). To illustrate this we have plotted in Figure 3.3 the
conductivities calculated from (3.22) for a number of thel’s [71]. It can be seen that
the coherent peak disappears as the clean limit is approached, i.e., if the mean free
path of electrons in the normal statel > 10ξ0. For HTS single crystals such largel
values are irrelevant.

The first measurements of functionsZs(T ) andσs(T ) in HTS crystals did not
show the behaviour predicted by the BCS theory. In particular, instead of a broad
coherent peak inσ1(T ), a narrow peak (it is shown by the dashed line in Figure 3.4)
with a width close to that of the superconducting transition, which can been seen in
the curve ofRs(T ), was observed. In principle, one more possibility of modifying
the result forσ1(T )/σ(Tc) in the BCS model, is to change the ratio2∆/Tc. As
was shown in [38], for2∆/Tc > 3.52 the coherent peak for given values ofω and
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Figure 3.3Dependence of the coherent peak on the mean free partl; ω/∆0 = 0.02.

Figure 3.4Comparison between measurements (dashed line, YBCO crystal) ofσ1/σn and calculations
based on the SC model taking into account inhomogeneous broadening of the superconducting transition
(solid line). The inset showsσ1/σn as a function of temperature calculated using the BCS and SC models
[71].
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l/ξ0 becomes narrow; but to fit the experimental data in Figure 3.4 one should take
unrealistically large values of2∆/Tc ∼ 100. This disagreement between the BCS
model and microwave measurements of HTS is not surprising because there exist
many analogous claims in the literature, which give evidence that strong-coupling
effects play an important role in superconducting pairing of HTS.

3.2.3 Eliashberg Model

A generalized version of the BCS theory for the case of strong electron–phonon
coupling was developed by Eliashberg [50]. According to [151], the complex con-
ductivity σ(ω) in this case is given again by the expression (3.21), in which

ε(ω) = Z(ω)
√

ω2 −∆2(ω) (3.24)

is the energy of quasiparticles andZ(ω) is Migdal’s renormalization function.
In strong coupling regime functions∆(ω) andZ(ω) become complex, have an

energy dispersion and obey the set of Eliashberg equations

[1− Z(ω)]ω + iγimpN(ω) =
∫

dω′

×
∫

dΩ α2F (Ω)I(ω + iδ, Ω, ω′) Re N(ω′),

(3.25)

Z(ω)∆(ω) + iγimpD(ω) = −
∫

dω′

×
∫

dΩ α2F (Ω)I(ω + iδ, Ω, ω′) Re D(ω′),

(3.26)

where

I(ω + iδ, Ω, ω′) =
N(Ω) + 1− f(ω′)
ω + iδ − Ω− ω′

+
N(Ω) + f(ω′)

ω + iδ + Ω− ω′
. (3.27)

HereN(ω) = ω/
√

ω2 −∆2(ω), D(ω) = ∆(ω)/
√

ω2 −∆2(ω), N(Ω) andf(ω)
are Bose and Fermi distribution functions andα2F (Ω) is the spectral function of
electron–phonon interaction. The coupling constantg is defined as

g = 2

∞∫
0

(α2F (Ω)/Ω) dΩ.

The quasiparticle lifetime is given by1/τ(ω, T ) = 2ω Im Z(ω, T ) + γimp,
whereγimp is the impurity scattering rate in the Born (weak scattering) limit. Note
that, according to the strong-coupling (SC) theory for conductivity, the quantities
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Figure 3.5 Relative-temperature dependences of the functionsσ2(T )/σ2(0) (solid lines) and
σ1(T )/σ(Tc) (dashed lines) for the coupling constants2(1, 1′), 3.5(2, 2′) and5(3, 3′) (from the top
to the bottom, respectively) [102].

σ(ω) andτ(ω) are related by an integral equation. As a result, as shown in [44] the
simple Drude-type formula

σ(ω) = i
ω2

pl

µ0

1
ε(ω) + i/τ(ω)

, (3.28)

which is often used for data analysis, is valid only in the weak coupling limit when
the energy dispersion of all corresponding quantities is weak.

It follows from the Eliashberg theory that the distinctive feature of supercon-
ductors with strong coupling is that the gap in the spectrum of electronic excitations
is smeared. Strictly speaking, there is no gap whatever atT 6= 0 [51, 101]. This
leads to breaking of Cooper pairs, smearing of the peak in the density of states at
ω = ∆(T ) due to inelastic scattering of electrons by thermally excited phonons, and
suppression of coherence effects. As a result, the amplitude of the coherent peak
decreases and, according to [135, 102], virtually disappears at frequencies around
10 GHz if the electron–phonon coupling constantg > 2. This behaviour is shown
by dashed lines in Figure 3.5 and in the inset to Figure 3.4. Moreover, the mecha-
nism of quasiparticle generation is radically different from that of the BCS model.
They are generated without jumps across the energy gap and can be in states with all
energies down to~ω = 0. These states can be classified as gapless, and the quasipar-
ticles can be treated as normal current carriers in the two-fluid model [66, 131]. So it
is not surprising that an important consequence of the SC model is the nonexponen-
tial behavior ofRs(T ) [45] andλ(T ) [116]. Power-law temperature dependences
were also predicted by the two-fluid GC model (see (3.19, 3.20)), and nearTc they
proved to be quite close to calculations by the SC model [144]. However, whereas
the agreement between experimental curves on the one hand and calculations by the
SC and GC models [144, 40, 167, 14] on the other, in the neighbourhood ofTc, could
be deemed satisfactory, deviations in the low-temperature range were enormous. As
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Figure 3.6Curves of∆λab(T ) in the low-temperature range. The squares plot the data from [154]. The
solid line shows calculations by the two-band model [69] (see Section 3.5). The dotted line is a calculation
by the BCS model, the dashed line by the isotropic SC model [71].

an example, measurements of∆λab(T ) in theab-plane of YBCO given in [154] are
compared with BCS and SC curves [69] in Figure 3.6. A curve predicted by the GC
phenomenological theory would be an almost horizontal straight line in this graph.

The first high-quality YBCO crystals were manufactured at the University of
British Columbia (UBC group) by Lianget al. [125]. A broad peak in the surface
resistance versus temperature,Rs(T ), centred atT ≈ 35 K in those crystals was first
reported by Bonnet al. [30], and a linear dependence∆λab(T ) ∝ T in the range
4 < T < 25 K by Hardyet al. [78]. These results, which seemed very unusual from
the viewpoint of traditional models of the microwave response of superconductors,
generated an intense discussion of the symmetry of the order parameter in HTS and
the role of quasiparticle scattering, and stimulated development of theoretical models
of the high-frequency response. By the present time, the first experimental data
concerning YBCO single crystals [78, 30] have been confirmed by experimenters
from other laboratories. When high-quality BSCCO, TBCCO, and TBCO single
crystals had become available, it was possible to discuss common and distinctive
features in the impedance and conductivity as functions of temperature of various
HTS crystals. This discussion will be presented below.

3.3 EXPERIMENTAL PROCEDURE

3.3.1 Principles of the ‘Hot Finger’ Technique

The most convenient technique for measurements of the surface impedance of small
HTS samples in the X–W microwave frequency bands is the so-called ‘hot finger’
method. Measurements using this method in the centimetre wavelength band have
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Figure 3.7Diagram of the microwave cavity used in the ‘hot-finger’ technique.

been conducted at Northeastern University (NEU) [184], UBC [32], Maryland Uni-
versity [133], University of Tokyo [182], Cambridge University, University of Cali-
fornia [113], and at the Institute of Solid State Physics (ISSP) [196]. The underlying
idea of the method is that a sample is set on a sapphire rod at the centre of a su-
perconducting cylindrical cavity resonating at theH011 mode, i.e., at the antinode
of a quasihomogeneous microwave magnetic field (Figure 3.7). By varying the rod
temperature, measuring theQ-factor and frequency shift∆f of the cylindrical cav-
ity, and comparing them with the parameters of the empty cavity,Q0 and∆f0, one
can determine the sample surface resistanceRs and reactanceXs as functions of
temperature.

Electromagnetic modes driven by an external source are characterized in a
lossy cavity by a complex frequency [11]

ω̂i = ωi +
iωi

2QiL
, (3.29)

whereωi = 2πfi andQiL are the inherent frequency andQ-factor of the loaded
cavity. For a cavity operated in the transmission mode

1
QiL

=
1
Qi

+
1

Q1
+

1
Q2

. (3.30)

HereQi is the inherentQ of the unloaded cavity,Q1 andQ2 are the input and output
Q’s, which characterize the coupling between the cavity and external microwave
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circuits. In (3.29) and (3.30)QiL = QL, Qi = Q, andfi = f if there is a sample in
the cavity;QiL = Q0L, Qi = Q0, andfi = f0 for the cavity without a sample but
with a sapphire rod inside.

The difference between the averaged microwave powers absorbed in the cavity
with a sample and the empty cavity is the powerP directly absorbed in the sample:

P =
1
2

∫
S

RsH
2
s dS, (3.31)

whereHs is the tangential component of the microwave magnetic field on the sample
surface, and integration is performed over the areaS of the entire sample surface.
The energy stored in the cavity is

W =
µ0

2

∫
V

H2 dV, (3.32)

whereV is the inside volume of the cavity, andH2 is the magnetic field squared
generated in the cavity with the sample inside. The difference between the reciprocal
Q-factors of the cavity is determined by the relation

1
Q
− 1

Q0
=

P

ωW
=

Rs

∫
S

H2
s dS

ωµ0

∫
V

H2 dV
=

Rs

Γs
, (3.33)

where

Γs =
ωµ0

∫
V

H2 dV∫
S

H2
s dS

(3.34)

is the sample geometrical factor.
Let the complex resonant frequency of the loaded cavity beω̂ and the frequency

of the cavity without a samplêω0. The frequency differencêω− ω̂0 is the frequency
shift caused by the sample,ω̂s. Provided that the couplingQ-factorsQ1 andQ2 are
constant, we derive from (3.29), (3.30), and (3.33) the value ofω̂s:

ω̂s = ωs +
iωRs

2Γs
. (3.35)

A change in the sample temperature leading to a change in its impedance,
∆Zs(T ) = ∆Rs(T ) + i∆Xs(T ), can be treated as a small perturbation resulting in
the shift∆ω̂s(T ) in the complex frequencŷω = ω̂(Zs):

∆ω̂s(T ) =
∂ω̂

∂Zs
∆Zs =

∂ω̂

∂Zs
(∆Rs + i∆Xs). (3.36)

On the other hand, as follows from (3.35),

∆ω̂s(T ) =
iω

2Γs

(
∆Rs −

2iΓs∆ωs(T )
ω

)
, (3.37)
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Figure 3.8 Temperature dependences of1/Q and∆f measured in a YBCO single crystal. The full
symbols correspond to the cavity with sample inside, the open symbols depict data from the empty cavity.

hence, by comparing this to (3.36), we obtain the change in the sample surface reac-
tance

∆Xs(T ) = −2Γs∆ωs(T )
ω

, (3.38)

where∆ωs(T ) = ∆ω(T )−∆ω0(T ).
Thus, measurements of the realRs(T ) and imaginaryXs(T ) parts of the sur-

face impedance are derived from experimental curves ofQi(T ) and∆fi(T ) using
the relations

Rs(T ) = Γs[Q−1(T )−Q−1
0 (T )],

Xs(T ) = −2Γs

f0
[∆f(T )−∆f0(T )] + X0, (3.39)

whereΓs is the sample geometrical factor given by (3.34) andX0 is an additive
constant.

Figure 3.8 shows the recorded temperature dependences of theQ0(T )-factor
and resonance frequency shift∆f0(T ) for an empty cavity as well as for the cavity
containing a YBCO single crystal (Q,∆f ). TheQ0-factor (open squares) is prac-
tically independent of temperature, while the pronounced monotone change in∆f0

(open circles) is due to the temperature dependence of the dielectric constant and
thermal expansion of the sapphire rod. The data depicted in Figure 3.8 correspond
to the measurements carried out on a thick rod of diameter 3.5 mm. The use of a
thin rod (1.5 mm in diameter) leads to a decrease in the shift∆f0(T ) by an order of
magnitude over the temperature range4.2 ≤ T ≤ 130 K.

As follows from (3.39), measurements of two quantities are needed to deter-
mineRs(T ) andXs(T ) in absolute units, namelyX0 andΓs. In measuring these
quantities, one should take into account the strong anisotropy of layered HTS single
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Figure 3.9 (a) Transverse orientation of a sample with respect to microwave magnetic field,Hω‖c;
arrows on the surfaces show directions of microwave currents; (b) longitudinal orientation,Hω ⊥ c.

crystals, which manifests in the notable difference between transport parameters in
theab-plane and along thec-axis. Therefore values ofΓs andX0, and the technique
of their determination depend on the crystal alignment (Figure 3.9) with respect to
the microwave magnetic fieldHω, which points along the cavity axis.

3.3.2 Samples and Their Geometrical Factors

The ways of determination of the values ofΓs andX0 in the transverse (Hω‖c, Fig-
ure 3.9a) and longitudinal (Hω ⊥ c, Figure 3.9b) orientations of the crystal were
discussed in review [190]. Measurements of the surface impedanceZHω⊥c

s (T ) in
the longitudinal orientation [134, 97, 179, 175, 110, 181, 110, 31, 188, 92, 191] are
interesting primarily because they yield information about anisotropic properties of
HTS crystals. This paper is mainly dedicated to the analysis of theab-microwave
response in the transverse orientation (Figure 3.9a) of high-Tc single crystals, which
usually have the shape of a plate with dimensionsa ∼ b ∼ 1 mm, c ∼ 0.1 mm.
In this case a sample is set on the end of a sapphire rod so that the crystalc-axis
is aligned with the microwave magnetic field,Hω‖c, and high-frequency currents,
which determine the sample microwave response in both normal and superconduct-
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ing states, circulate in theab-planes. AtT < 0.9Tc the fieldHω penetrates into the
sample to a depthλab ∼ 10−4 mm, atT ≥ Tc to the skin depthδab =

√
2ρab/ωµ0,

which is δab ∼ 5 × 10−3 mm at a frequency of∼ 10 GHz and the resistivity
ρab(Tc) ∼ 100 µΩ cm typical of HTS crystals. Sinceλab � c andδab � c, then,
neglecting the anisotropy in theab-plane, it is possible: (i) to treat the impedance
Zab

s as a parameter defined similarly to the case of a semi-infinite isotropic sample
at all temperatures; (ii) to consider the distribution of fieldHs, hence the parameter
Γs in (3.34), to be approximately constant with temperature.

For all HTS single crystals the inequalityδ � l, which is equivalent to the
criterion of the normal skin effect, holds. For this reason, the constantX0 in (3.39)
for Hω‖c is derived from the condition of equality between the real and imaginary
parts of the normal state impedance, and the identity of the temperature dependences
Rab

s (T ) andXab
s (T ) in the rangeT ≥ Tc provides a simple test of the measuring

technique.
Statements (i) and (ii) give a clue to how the sample geometrical factorΓab

s can
be determined in the transverse orientation. Firstly, one can use a metallic simulator
of the tested sample of the same shape and dimensions, provided that the conditions
of the normal skin effect hold. Given the simulator resistivity as a function of tem-
perature,ρ(T ), and having measuredQi(T ) and∆fi(T ) of the cavity containing the
simulator, one can use the relation

ρ(T ) =
2R2

s(T )
ωµ0

(3.40)

and derive from (3.39) the value ofΓs, assuming that it equals the geometrical factor
Γab

s of the HTS crystal. Secondly, having measuredQi(T ) and∆fi(T ) of the empty
cavity and of the cavity loaded with the HTS crystal, one can directly measureρab(T )
of the sample and deriveΓab

s using (3.39) and (3.40). This procedure, however, leads
to degradation of a sample, because electric contacts should be attached to its surface.
Nonetheless, we employed this technique in determination ofΓab

s of two TBCCO
and YBCO single crystals grown at ISSP using the techniques described in [117]
and [193], respectively. Their dimensions were abouta× b× c ≈ 1× 1× 0.1 mm3

(TBCCO) and1.7× 1.7× 0.1 mm3 (YBCO). In particular, the geometrical factor of
the YBCO crystal proved to beΓab

s ≈ 1.8× 104 Ω.
We attempted to develop a method for estimating numerically the geometrical

factor based on (3.34), assuming that a sample has the shape of a square plate with
dimensionsa × a × c, c � a, and the magnetic field amplitude at the centre of the
unperturbed cavity isH0 [190]. The calculation procedure considers the sample as
a thin plate with slightly rounded edges [26]. This approach yields the well-known
geometrical barrier to penetration of flux lines from the sample edges [26, 215, 94].
In this case, the field distribution on the edges of a plate in the Meissner state is given
by the formula [26]Hs(x) = H0x/

√
(a/2)2 − x2,−a/2 + c/4 ≤ x ≤ a/2− c/4,

with the exception of a very narrow region (≈ c/4) near the edge, where the integral∫
S

H2
s dS is logarithmically divergent. On the edges of the sample, the field is

assumed to be homogeneous and equal toHedge ≈ H0

√
a/c. As a result, we obtain
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Figure 3.10Surface resistanceRs and reactanceXs of a YBCO single crystal as functions of tempera-
ture.

Figure 3.11Surface resistanceRs and reactanceXs of a BSCCO single crystal versus temperature.

the geometrical factor of HTS crystals for the case of their transverse alignment with
respect to the microwave fieldHω in the cavity:

Γs =
ωµ0V

4γ0A

(
ln

(a

c

)
+ 1

)−1

, γ0 =
V H0

2

2
∫

V
H2 dV

, (3.41)

whereA is the area of theab-face of the crystal,γ0 is a constant determined by
the known [164] field configuration of the resonant modeH011. In the cavity used
in our experiments, whose diameter and height were42 mm (f = 9.4 GHz), this
constantγ0 = 5.3. The calculations ofΓs by (3.41) for thin single crystals were
in satisfactory agreement with experimental data. Figures 3.10 and 3.11 show the
measurements ofRs(T ) andXs(T ) in YBCO (Γs ≈ 1.8×104 Ω) [193] and BSCCO
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(a×b×c ≈ 1.5×1.5×0.1 mm3, Γs ≈ 2.4 ·104 Ω) [175] samples respectively. They
demonstrate the behaviour typical of the HTS single crystal impedance forHω‖c.

3.3.3 Accuracy of Measurements

The uncertaintyδRs in measurements of the surface resistance,δRs = Γsδ(Q−1 −
Q−1

0 ) = ΓsδQ/Q2, is determined by the uncertaintyδQ/Q, which was within 1%
atQ ∼ 107 in our experiments. IfΓs = 10 kΩ, then we haveδRs ≈ 10 µΩ. As the
temperature drops several degrees belowTc, the increment∆Xs(T ) = ωµ0∆λ(T ),
and, givenXs(T ) expressed in absolute units, one can determine the magnetic field
penetration depthλ(T ) = Xs(T )/ωµ0. The uncertainty in the relative value of the
penetration depth is∆λ(T ), δ(∆λ) = (2Γs/ωµ0)(δ(∆ω)/ω), which equals several
ȧngstr̈om. The error inλ(T ) can be up to 30% of the actual valueλ(0) and is largely
determined by the measurement accuracy of the constantX0.

The source of possible errors in measurements ofλ(T ) is thermal expansion
of the sample. Since the resonant frequency is determined by the volume where the
microwave field is confined, the thermal expansion of the sample is equivalent to
a smaller penetration depth of the microwave field, and this leads to an additional
frequency shift∆fl in the brackets on the right of (3.39). Changes∆li (∆a and∆c)
in the sample dimensionsa × a × c, wherec � a, due to thermocycling lead to a
change in its volume by(∆c · a2 + 2∆a · ac) and an additional shift of the cavity
resonant frequency

∆fl(T ) =
f0µ0

4W

∫
S

∆li(T )H2
s dS, (3.42)

whereW is given by (3.32). The comparison of this contribution with the resonant
frequency shift∆fλ(T ) due to the change in the field penetration depth∆λab(T )
show that [196, 190]

∆fl

∆fλ
=

∆c/2(ln( a/c)− 1) + ∆a

∆λab(ln(a/c) + 1)
. (3.43)

In YBCO and BSCCO single crystals withTc ' 90 K, λab increases by about
one thousanḋangstr̈oms as the temperature grows from 4.2 K to 80 K, and atT >
80 K the growth rate is considerably higher. Experimental data indicate that atT <
30 K the relative change in dimensions of YBCO [214, 141, 142] and BSCCO [107,
143] crystals,ε = ∆li/li, is very small,εi < 10−5. In the temperature range
30 < T < 100 K the thermal expansion coefficientαi = dεi/ dT is an almost
linear function of temperatureT : moreover, in theab-plane of YBCO crystalsαab ≈
0.3× 10−7T , and in the direction of thec-axisαc ≈ 10−7T . Hence we haveεab ≈
10−4 andεc ≈ 3 × 10−4, and for typical crystal dimensionsa ≈ b ≈ 1 mm and
c ≈ 0.1 mm they increase by∆a ≈ ∆b ≈ 1000 Å and ∆c ≈ 300 Å when the
temperature grows from 30 to 100 K. In BSCCO single crystalsεab is twice as large,
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andεc is approximately the same as in YBCO. We are unacquainted with data on
thermal expansion of TBCO and TBCCO at temperaturesT ≤ Tc.

Thus, the contribution of∆fl(T ) to the total frequency shift of the cavity with
a sample inside is negligible in the range of low temperaturesT < 40 K. How-
ever, at higher temperatures it may be quite considerable, especially for BSCCO
single crystals. This circumstance should be taken into account when using (3.39)
in determination ofλab(T ) = Xs(T )/ωµ0. In particular, the curve ofXs(T ) in
Figure 3.11 was plotted with due account of the thermal expansion of the BSCCO
sample. Otherwise, i.e., when the thermal shift∆fl in (3.39) is negligible, the curve
of reactance, which follows that plotted in Figure 3.11 up toT ≈ Tc, has a smaller
slope atT > Tc, and the discrepancy is 25 mΩ atT = 150 K. Since the thermal ex-
pansion of samples is not measured in microwave experiments, the only criterion of
the authenticity of experimental curves ofλab(T ) is their reproducibility for crystals
of various sizes.

3.4 EXPERIMENTAL RESULTS

3.4.1 Surface Impedance of YBCO, BSCCO, TBCCO, and TBCO Single
Crystals: Their Common and Distinctive Features

First measurements of the surface impedance of HTS materials in the microwave
band date back to the time of their discovery in 1986–1987. The first microwave ex-
periments with ceramic samples, as well as thin films and single crystals, which were
produced soon after the discovery of HTS, were rare and produced only rough esti-
mates of HTS parameters since the quality of those samples left much to be desired.
An important parameter of HTS crystals characterizing their quality is the residual
surface resistanceRres = Rs(T → 0), which is the loan-term taken from the ter-
minology of conventional superconductors. There is, however, a marked difference
between these two cases: whereasRres in conventional superconductors is clearly
defined as the level of the plateau on theRs(T ) curve in the regionT < Tc/4, no
plateau has been detected on the characteristic curves of theRs(T ) in HTS (see be-
low), andRres is set to the valueRs(T = 0), which is obtained by extrapolating to
the zero temperature the linear section of theRs(T ) curve in the regionT � Tc. It
was found in experiments with conventional superconductors [199] that the parame-
terRres ∝ ω2 and is determined by various defects in the surface layers of samples,
therefore, it is generally accepted that the sample quality is the higher, the lowerRres.
The residual surface resistance of HTS materials is also approximately proportional
to the microwave frequency squared, but its value was several orders of magnitude
higher thanRres in conventional superconductors like Nb or Pb. It was clear to ev-
eryone that high-frequency properties of HTS materials were largely determined by
irregularities in their structures, namely their inhomogeneity, the presence of weak
links, twins and other defects in their surface layers.

The situation changed radically in 1992–1993, when first high-quality YBCO
single crystals [78, 30, 125] and thin films [112] with considerably smallerRres
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Figure 3.12Surface resistanceRs and reactanceXs of a TBCCO single crystal versus temperature.

had been manufactured. Measurements of those samples revealed a temperature
dependence of the surface impedance,Zs(T ), which could not have been detected in
earlier experiments against the background of high residual losses. The UBC group
detected for the first time

(a) linear dependencesλab(T ) andRs(T ) in the range4 < T . 25 K and
(b) a broad peak inRs(T ) centred at about 40 K.

These features ofZs(T ) in YBCO single crystals were confirmed by exper-
iments performed by other groups [134, 98, 180, 193] and have been generally
recognized by this time. Notice that features (a) and (b) can be observed only in
YBCO crystals of the highest quality. Doping of initially perfect single crystals
with Zn [7, 216, 32] changes the linear functionλab(T ) to quadratic and spreads
the peak inRs(T ). The dependence∆λab(T ) ∝ T 2 is typical of YBCO thin films
[18, 139, 161], in which impurities and weak links occur more frequently than in sin-
gle crystals. Therefore it is generally accepted that the quadratic dependenceλ(T ) is
largely due to the presence of defects in samples (extrinsic origin), unlike the features
(a) and (b), which are due to intrinsic microscopic properties of HTS materials. This
conjecture was later confirmed by systematic research of YBCO thin films [203]: as
their quality improved, the quadratic dependenceλ(T ) in the low-temperature range
was replaced by a linear function. A detailed analysis of the results mentioned above
and concerning microwave studies of YBCO crystals and films before 1996 is given
in the review by Bonn and Hardy [34].

Given the apparent difference between the temperature dependencies in YBCO
and conventional superconductors, the natural question arose about the applicability
of properties (a) and (b) to other HTS materials which, unlike YBCO, have a tetrag-
onal structure and contain no Cu–O chains. The progress in the fabrication technol-
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ogy of HTS samples has allowed the researchers to investigate microwave properties
of BSCCO [180, 97, 179, 122, 175], TBCCO [217], and TBCO [35, 209] single
crystals of high quality. In addition, the notable reduction in the homogenization
time of growth solutions and in the time of crystal growth by the conventional tech-
nique [125] of YBCO manufacture in standard zirconium dioxide (ZrO2) crucibles
stabilized with yttrium, alongside the utilization of BaZrO3 crucibles [54, 124],
has allowed the production of high-purity YBCO crystals with resistivityρ(Tc) ≈
40 µΩ cm and residual surface resistanceRres ≈ 100 µΩ cm at 10 GHz, i.e., lower
than in previously reported experiments. Microwave measurements of such crys-
tals produced using the accelerated growth technique in ZrO2 and BaZrO3 crucibles
have been performed recently by the ISSP [193, 217], NEU [185, 186], and UBC
[103, 91] groups. These measurements have demonstrated features (a) and (b) in the
curves ofλab(T ) andRs(T ), as well as new features ofZs(T ) in the range of higher
temperatures.

3.4.1.1 Surface Impedance in the Normal State

Examples of experimental curvesRs(T ) andXs(T ) recorded in the transverse ori-
entation,Hω ‖ c (Figure 3.9a), are given in Figure 3.10 for an YBCO single crystal,
in Figure 3.11 for a BSCCO crystal, and in Figure 3.12 for a TBCCO crystal. In
all these graphs,Rs(T ) = Xs(T ) for T ≥ Tc, which indicates that the experiments
were performed under the normal skin-effect conditions. The values ofXs(T ) were
obtained using (3.39), in which the additive constantX0 was determined by fitting
measurements of∆Xs(T ) to Rs(T ) in the rangeT ≥ Tc. The quantityXs(T )
expressed in absolute units, in its turn, determinesλ(0) = Xs(0)/ωµ0. In the cen-
timetre band of electromagnetic waves, typical values of the surface resistance in the
ab-plane of high-Tc single crystals in the normal state near the critical temperature
Tc are about 0.1Ω. From the measurement ofRs(Tc) =

√
ωµ0ρ(Tc)/2 ≈ 0.12 Ω in

the YBCO single crystal (Figure 3.10), we deriveρ(Tc) ≈ 38 µΩ cm [193]. All the
functions of temperatureRs(T ) = Xs(T ) plotted in Figsures 3.10–3.12 in the region
T ≥ Tc are adequately described by the formula2R2

s(T )/ωµ0 = ρ(T ) = ρ0 + bT .
For example, in the BSCCO crystal (Figure 3.11)ρ0 ≈ 13 µΩ cm,b ≈ 0.3 µΩ cm/K
[175].

The normal skin-effect condition,Rs(T ) = Xs(T ) at T ≥ Tc, was also
proved by measurements of the surface impedance in theab-plane of different YBCO
[7, 180, 193, 182, 110] and BSCCO [180, 97, 175, 182] single crystals. The issue
of the temperature dependence of the impedance of TBCO [209, 75] crystals raises
controversy. The problem is that, even if curves ofRs(T ) are matched to curves of
∆Xs(T ) in the rangeT ≥ Tc, the change in the reactance∆Xs(T ) in the supercon-
ducting region is larger than the change∆Rs(T ), so that we obtain negative values
of Xs(0). It is also complicated by the circumstance that the coefficients of thermal
expansion for TBCO cannot be found in literature. If we assume that the thermal
expansion coefficient of TBCO in the rangeT > Tc equals that of BSCCO [143] or
TBCCO [80] and take into account the frequency shift∆fl(T ) in (3.39), the curves
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Figure 3.13 Surface resistanceRs and penetration depthλab in YBCO, TBCCO, and BSCCO single
crystals as functions of temperature forT < 0.7Tc.

of Rs(T ) andXs(T ) for TBCO are parallel to one another in the normal state. But
the attempt to bring these curves to coincidence so as to satisfy the condition of nor-
mal skin effect leads to the valueXs(0) = ωµ0λab(0) < 0. Thus, the problem can
be solved by either discovering the cause of the negative contributiondXs < 0 in
the rangeT < Tc, which should be subtracted from the measurements of∆Xs(T )
to obtain true values of the reactance,Xs(T ) > 0, which equalsRs(T ) at T > Tc,
or explaining the positive differenceXs(T ) − Rs(T ) in the normal state of TBCO
at which a reasonable value ofXs(0) is obtained [191].

3.4.1.2 Surface Impedance in the Superconducting State

It is more convenient to compare the surface impedance versus temperature,Zs(T ),
in the superconducting state in different HTS single crystals by dividing the entire
temperature interval into three sections, namely the ranges of low (T < Tc/3), inter-
mediate (T ∼ Tc/2), and subcritical (T ∼ Tc) temperatures.
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Figure 3.14Surface resistanceRs of a TBCO single crystal (Tc ≈ 78 K) versus temperature [35] at sev-
eral frequencies: circles correspond to 14.4 GHz, black squares to 24.8 GHz, open squares to 35.9 GHz.

Low Temperatures,T < Tc/3

Figure 3.13 shows a set of typicalRs(T ) andλ(T ) curves in the rangeT < 0.7Tc

measured at ISSP in YBCO [193], BSCCO [175], and TBCCO [217] crystals. These
curves correspond to the low-temperature sections of the graphs in Figures 3.10–3.12
with the ordinate plotted using a linear scale.

In the low-temperature range, changes in the surface resistance∆Rs(T ) ∝ T
for all crystals whose data are plotted in Figure 3.13. A similar linear dependences
∆Rs(T ) are observed in YBCO [32, 104, 134, 98, 180, 193, 185, 217, 186, 195, 103,
91], BSCCO [180, 97, 122, 175], and TBCO [35] (Figure 3.14) single crystals, when
the microwave frequencies do not exceed about 30 GHz. For vanishing temperature,
Rs(T ) extrapolates to a finite residual surface resistanceRres. Its magnitude, even
in samples of the highest quality, is a factor of several tens higher thanRres of con-
ventional superconductors. At present, extremely low values ofRres ∼ 50 µΩ at
frequencies∼ 10 GHz have been observed in YBCO single crystals [180, 185, 91].

The functions∆λ(T ) = ∆Xs(T )/ωµ0 in YBCO, BSCCO (Figure 3.13), and
TBCO (Figure 3.15) crystals in the rangeT < Tc/3 are also linear. The curve of
λ(T ) for TBCCO atT > 12 K shown in Figure 3.13 has clearly rectilinear shape. It
is important to notice the different slopes of the∆λ(T ) ∝ T curves forT � Tc. In
particular, in YBCO crystals fabricated by different techniques the slopes can differ
almost an order of magnitude [180, 193, 185, 103]. The reasons for such discrepancy
is still unclear.

The extrapolation of low-temperature sections ofλ(T ) curves toT = 0 K
in Figure 3.13 yields the following estimates ofλab(0) in several single crystals of
different materials: 1400̊A (YBCO), 3700Å (TBCCO), and 2600̊A (BSCCO).
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Figure 3.15 Linear section of the curve of field penetration depthλab versus temperature in a TBCO
single crystal [35]. The inset shows the curve of∆λ(T ) over a wider temperature range.

Figure 3.16Surface resistanceRs(T ) in a high purity YBCO single crystal at different frequencies from
[91].

Intermediate Temperatures,T ∼ Tc/2

At frequencies of about10 GHz, the linear dependence∆Rs(T ) ∝ T in BSCCO,
TBCCO (Figure 3.13), and TBCO (Figure 3.14) single crystals extends to tempera-
tures∼ Tc/2. The magnetic field penetration depthλ(T ) monotonically increases
with the temperature.



In-Plane Microwave Response of High-Tc Single Crystals: Experiment and Theory 187

Figure 3.17Comparison of the temperature dependences of the surface resistanceRs(T ) of BSCCO and
YBCO single crystals at 14.4 GHz. Experimental data are taken from [122] (BSCCO at 14.4 GHz) and
[193] (YBCO at 9.4 GHz, scaled byω2 to 14.4 GHz). The inset shows the linearT -dependences ofRs

at lowT for both materials and a broad peak ofRs(T ) for YBCO.

This property of the surface impedance, common for all HTS single crystals
with the tetragonal structure, is not characteristic of YBCO. As was noted previously,
all microwave measurements of high-quality YBCO crystals show a broad peak in
theRs(T ) curve centred at about 30–40 K at frequencies∼ 10 GHz. The peak shifts
up in temperature and diminishes in size as the measurement frequency is increased
(Figure 3.16). In YBCO single crystals of higher quality the amplitude of the peak
rises andRs(T ) reaches its maximum at a lower temperature [91].

The underlying cause of this YBCO feature, which distinguishes it from other
HTS materials, has remained unclear. The simplest idea that the absence of this peak
in crystals with the tetragonal structure might be caused by their poor quality, as is the
case in YBCO doped with Zn [7, 216, 32], looks unlikely because, firstly, there is a
sufficiently large set of experimental data indicating thatRs(T ) is a linear function in
BSCCO, TBCO, and TBCCO, and secondly, the peak inRs(T ) was also detected in
such YBCO crystals [98, 217, 110] whose parametersRres andρ(Tc), characterizing
their quality, were inferior compared to those of, e.g., BSCCO [122]. Results for the
latter crystals are shown in Figure 3.17. The more probable cause of the peak is the
presence of an additional component in the YBCO orthorhombic structure, namely
Cu–O chains, which leads to a mixed (d + s)-symmetry of the order parameter in
YBCO. The electrons of the chains form an additional band, contributing to the
observed dependenceZs(T ). This contribution seems to result in another distinctive
feature of YBCO, namely the plateau (Figure 3.13) or bump (Figure 3.18) on the
curve ofλab(T ).

This feature has been observed in the purest YBCO single crystals [193, 185,
217, 186, 195] and films [84, 112]. Curve 1 in Figure 3.18 refers to an YBCO
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Figure 3.18Magnetic field penetration depth∆λab as a function of temperature for YBCO single crystals
[185] manufactured using different techniques: (1) in BaZrO3 crucibles; (2) in ZrO2 yttrium stabilized
crucibles; (3) data from [78]. The inset shows curves of surface resistanceRs(T/Tc) for samples 1 and
2.

crystal with notably smaller values ofρ(Tc) andRres than in samples 2 and 3, whose
∆λab(T ) curves have a standard shape. In Figsures 3.10 and 3.13 the quantitiesXs

andλab in a YBCO single crystal are almost constant with the temperature in the
intermediate range.

However, the recent measurements of∆λab(T ) in a high purity BaZrO3-grown
YBCO crystal [103] show no such features in the intermediate temperature range.
The authors of [103] argue that the disagreement with the results of [185] arises
from some sort of problems with the surfaces of the crystals. However that may be,
the problem is still open.

In discussing features of the imaginary partXs(T ) of the surface impedance
in the intermediate temperature range, one should be careful, taking into account
the possibility of the crystal thermal expansion distorting curves ofλ(T ). As was
shown in the previous section, this process has little effect on the shapes ofλ(T )
curves atT < 40 K. The observed in [193, 217] plateaux on theλab(T ) curves
have approximately the same width of about 20 K, but their positions with respect
to Tc/2 vary in several YBCO single crystals manufactured by the same technique
[193]. Measurements on one of these crystals were performed at the laboratory under
Sridhar’s direction (NEU), and they confirmed the existence of a plateau. Hence, we
can assert that the plateaux on the curves ofλ(T ) [193, 217] are real features of
the surface reactanceXs(T ), characteristic of YBCO single crystals fabricated at
ISSP. On the other hand, the curves of surface resistanceRs(T ) obtained in the same
experiments [193, 217] have the usual shape (Figure 3.10).

Finally, another feature in the impedance of high-quality YBCO crystals,
namely a notable increase inRs(T ) with temperature beyond the peak atT ∼ 40 K,
was detected in the experiments of NEU-group [185, 186]. The corresponding curve
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of Rs(T ) [185] is shown in the inset to Figure 3.18 (curve 1). The surface resistance
as a function of temperature is easily derived from measurements of the cavityQ
using (3.39). This function is not affected by the sample thermal expansion. The
gradual increase inRs(T ) in the intervalTc/2 < T < Tc can be hardly attributed
to coexistence of different phases in the sample. The emergence of a superconduct-
ing phase with a certainTc is indicated in microwave experiments by a jump (an
abrupt drop) inRs(T ) at the critical temperature, which was observed, for exam-
ple in a TBCCO crystal (Figure 3.12), which has two superconducting phases [183],
namely 2212 (Tc1 ' 112 K) and 1212 (Tc2 ' 81 K). YBCO single crystals grown
using BaZrO3 crucibles and measured at a frequency of 10 GHz [185, 186] are sam-
ples of high purity and curve 1 in the inset to Figure 3.18 proved to be reproducible
[186, 188].

Temperatures Close toTc, T → Tc

In all HTS single crystals, the surface resistanceRs(T ) drops abruptly at the point
of transition from the normal to superconducting state. At frequencies of about
10 GHz, Rs(T ) of high-quality YBCO crystals falls off by a factor of one hun-
dred or more as the temperature drops to one degree belowTc. The quantityXs(T )
also jumps at the transition point, but by a smaller factor. Opinions differ about the
temperature dependence of the magnetic field penetration depthλab(T ) around the
critical point, which has been investigated in YBCO crystals of high quality fabri-
cated by different techniques. Some authors [104, 103, 16] measured the function
λab(T ) ∝ (1−T/Tc)−0.33, corresponding to the so-called 3DXY fluctuation model
[128, 60, 170]. Others [186] detected in the neighbourhood ofTc the dependence
λab(T ) ∝ (1 − T/Tc)−0.5, in agreement with the BCS theory. The exponent mea-
sured in the crystals fabricated at ISSP proved to have an intermediate value between
−0.33 and−0.5.

The main peculiarities of the temperature dependences of the surface impe-
dance in different HTS single crystals are summarized in Table 3.1.

3.4.2 Complex Conductivity

Now let us discuss the temperature dependence of the complex conductivityσs =
σ1 − iσ2. The componentsσ1(T ) andσ2(T ) are not measured directly but derived
from measurements ofRs(T ) andXs(T ) using (3.14).

At temperatures not very close toTc and in HTS crystals of high quality
Rs(T ) � Xs(T ), and (3.14) can be simplified:

σ1(T ) =
2ωµ0Rs(T )

X3
s (T )

, σ2(T ) =
ωµ0

X2
s (T )

. (3.44)
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It follows from (3.44) that in the ranges of low and intermediate temperatures
σ1/σ2 = 2Rs/Xs � 1. The increments∆σ1(T ) and∆σ2(T ) depend on relative
changes∆Rs(T ) and∆Xs(T ):

∆σ1 ∝
(

∆Rs

Rs
− 3

∆Xs

Xs

)
, ∆σ2 ∝ −

∆Xs

Xs
. (3.45)

Hence, the curves ofσ2(T ) are determined only by the functionXs(T ) =
ωµ0λ(T ) and reflect the basic properties of the field penetration depth versus tem-
perature, namely its rectilinear shape at low temperatures in all high-quality HTS
crystals and the features detected in YBCO in the intermediate temperature range.

The behaviour of the real partσ1(T ) of the conductivity, as follows from
(3.45), is determined by the competition between relative increments∆Rs/Rs and
∆Xs/Xs.

In conventional superconductors like Nb,Xs(T ) (� Rs) is a very weak func-
tion of temperature in the temperature rangeT ≤ Tc/2 (∆Xs ≈ 0), andRs(T )
drops exponentially with decreasing temperature, approaching the constant level of
the residual surface resistanceRres asT → 0. By subtractingRres from the mea-
surements ofRs(T ), we derive, using (3.44), the temperature dependenceσ1(T )
predicted by the BCS model:σ1 = 0 at T = 0 and shows an exponentially slow
growth with temperature forT ≤ Tc/2 (Figures 3.2, 3.3). The extremely smallRres

andRs in (3.45) indicate that the increment∆σ1(T ) in classical superconductors is
always positive,∆σ1(T ) > 0, at least in the temperature intervalT < 0.8Tc, before
the maximum of the BCS coherent peak is reached.

For HTS single crystals the dependencesσ1(T ) are radically different from
those predicted by conventional theories (BCS, SC, GC) of the microwave response
of superconductors. In the rangeT < Tc the increments∆Rs(T ) and∆Xs(T )
in HTS are not small, and in addition,∆Xs(T ) � ∆Rs(T ). AlthoughRs(T ) <
Xs(T ), ∆Rs/Rs is not necessarily greater than3∆Xs/Xs in (3.45) or positive at all
temperatures. When that occurs,σ1(T ) increases with decreasing temperature. The
functionσ1(T ) is maximum at someT = Tmax, and thenσ1(T ) becomes smaller
with decreasing temperature.σ1(T ) has a peak if the value ofRres is sufficiently
small asT → 0,

Rres <
Xs(0)

3
∆Rs(T )
∆Xs(T )

∣∣∣∣
T→0

. (3.46)

If the right-hand side of (3.46) is deemed constant, the peak positionTmax

should shift to the low side down toT = 0 with the increase inRres. If inequality
(3.46) fails, the functionσ1(T ) in HTS materials, unlike conventional superconduc-
tors, should not rise but drop monotonically as the temperature rises fromT = 0.

Thus, the shape of theσ1(T ) curve forT � Tc depends on the choice of
the residual surface resistanceRres, whose origin and accurate value are unknown.
For this reason, the shapes ofσ1(T ) curves are not determined unambiguously for
T ≤ Tc/2, unlike the functionsRs(T ) andXs(T ), which are directly measured in
experiments.
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Figure 3.19Real part of the conductivityσ1(T )/σ(Tc) of a YBCO single crystal calculated by (3.16).
Values ofRs(T ) substituted in this equation were derived from curves of Figure 3.10 (or 3.13) by sub-
tracting the residual resistanceRres ' 230 µΩ.

If we linearly extrapolateRs(T ) to the regionT � Tc down toT = 0 and
attribute the resultingRs(0) to the residual surface resistance,Rs(0) = Rres (by
analogy with conventional superconductors), and then substitute the temperature de-
pendent differenceRs(T ) − Rres in the numerator of the first formula in (3.44), all
resultingσ1(T ) curves for HTS materials have shapes of broad peaks. Starting with
a steep linear section in the neighborhood ofσ1(0) = 0, the curve ofσ1(T ) rapidly
arrives at its peak valueσ1(Tmax), which is always higher than the normal state con-
ductivity σ(Tc): σ1(Tmax) > σ(Tc). An example of aσ1(T )/σ(Tc) curve for a
YBCO single crystal derived from measurements ofZs(T ) plotted in Figure 3.10
by using (3.14) and subtractingRres ' 230 µΩ is given in Figure 3.19. This
procedure, however, completely ignores the possibility of intrinsic residual losses.
Therefore, some authors (see, e.g., Refs. [91, 122, 33, 81]) associate residual losses
in HTS single crystals with a residual normal electron fluid. This implies that the
source of the residual loss is in the bulk of the sample, although it is probably not
intrinsic. If this contribution is excluded from the complex conductivity, one obtains
σ1(T = 0) → 0, as can be seen in Figure 3.20 for the measurements taken at 13, 23,
and 75 GHz [91]. The peak ofσ1(T ) shifts to higher temperatures and diminishes in
size as the experimental frequency is increased. In YBCO single crystals, the tem-
peratureTmax of the maximum ofσ1(T ) occurs close to the temperature at which
the peak ofRs(T ) occurs.

Finally, one can directly derive functionσ1(T ) from measurements ofRs(T )
andXs(T ) without any concern aboutRres. In this case,σ1(0) is not determined
uniquely, and whetherσ1(T ) has a peak depends on the validity of condition (3.46).
Curves ofσ1(T ) obtained using (3.14) without subtracting any residual losses are
plotted in the following graphs: two upper curves in Figure 3.20 shows data obtained
at 1.14 and 2.25 GHz [91]; Figure 3.21 plots curvesσ1(T ) for YBCO crystals char-
acterized by the experimental curves 1 and 2 shown in Figure 3.18 [185]; Figure 3.22
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Figure 3.20 Real part of the conductivityσ1(T ) of YBCO single crystal extracted from the surface
resistance measurements of Figure 3.16 at different frequencies [91].

Figure 3.21Temperature dependences of the conductivityσ1 of optimally doped YBCO single crystals
grown in BaZrO3 (top) and yttria-stabilized zirconica (bottom) crucibles. The data are extracted from the
measurements of Figure 3.18. The sharp peakC present in both cases. Note the appearance of a new
peakB in YBCO BaZrO3 grown crystal [185].
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Figure 3.22Conductivityσ1(T ) of BSCCO single crystal extracted from the surface impedance mea-
surements of Figure 3.11. A low temperature broad peak is absent.

Figure 3.23Real part of conductivityσ1(T ) in BSCCO single crystal at different frequencies exhibits a
broad peak at low temperature [122].

shows the dependenceσ1(T ) for BSCCO derived from the surface impedance mea-
surements given in Figure 3.11; Figure 3.23 plots the real parts of the conductivity
in BSCCO single crystal at different frequencies taken from [122].

Figures 3.22 and 3.23 show two possible shapes ofσ1(T ) curves in BSCCO
single crystals, namely, the presence of the peak in Figure 3.23 (Rres ≈ 300 µΩ
at 14.4 GHz from Figure 3.17; see also Figure 3.28 below) and its absence in Fig-
ure 3.22 (Rres ≈ 500 µΩ at 9.4 GHz from Figure 3.11). The higher the crystal
quality, the more clearly the peak in the conductivity atT < Tc can be seen. Two
upper curves in Figure 3.20 correspond to the characteristicRs(T ) of the YBCO
crystal withRres ∼ 1 µΩ at a frequency∼ 1 GHz (Figure 3.16). NearT = 0, σ1(T )
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increases linearly withT and reaches its peak value atTmax, σ1(Tmax), which is
higher than the normal state conductivityσ(Tc).

It is clear from Figures 3.19 and 3.21 that the features of the YBCO surface
impedanceZs(T ) in the intermediate temperature range also manifest in the con-
ductivity σ1(T ) of these samples. In particular, a new conductivity peak (labeledB
in Figure 3.21) around 80 K in YBCO crystal grown in BaZrO3 crucible is correlated
with the features of the impedanceZs(T ) atT > Tc/2 (Figure 3.18).

Let us also discuss the behaviour ofσs(T ) nearTc, where (3.44) and (3.45)
do not apply. In this temperature range, it is necessary to use the general local rela-
tions (3.11–3.14) or their analogues for normalized quantities (3.15) and (3.16).

The conductivityσ2(T ) in theab-plane of HTS crystals abruptly drops to very
small values in the normal state. The derivative(Tc/σ2(0)) dσ2(T )/ dT atT = Tc,
defining the slope ofλ(0)2/λ(T )2 curves atT = Tc, varies between−2 and−4 in
different crystals.

The real part of the conductivity,σ1(T ), does not show a coherence peak (Fig-
ures 3.2, 3.3) about0.85Tc predicted by BCS. Usually the curve ofσ1(T ) of HTS
single crystals in the neighbourhood ofTc has the shape of a narrow peak (see Fig-
ures 3.4, 3.20–3.23) which becomes higher with decreasing frequency (Figure 3.23).
The peak width virtually coincides with the width of the phase transition from the
normal to superconducting state on the curveRs(T ), and transforms to a broad max-
imum peaking atT < Tc/2. A possible explanation of the sharp peak just belowTc

is fluctuation effects [209, 16, 93] or inhomogeneous broadening of the supercon-
ducting transition [71, 67, 153, 197].

3.5 MODIFIED TWO-FLUID MODEL

As was noted in the first two sections of this review, none of the models briefly de-
scribed there (GC, BCS, and SC) can account for the impedanceZs(T ) and conduc-
tivity σs(T ) as functions of temperature in the ranges of low and intermediate tem-
peratures. At the same time, as was shown in [66, 131], highTc values (Tc ∼ 100 K),
the temperature dependence of the resistivity, the frequency dependence of the mo-
mentum relaxation time, and other properties of the normal state in optimally doped
HTS’s are well described within the framework of the Fermi-liquid approach involv-
ing strong electron–phonon coupling [50]. In particular, the curves ofλ2(0)/λ2(T )
numerically calculated by the SC model [144, 40, 167, 14] proved to be fairly close
to the functionns(t)/n = 1 − nn(t)/n = 1 − t4 in the GC model. The slopes of
these curves atT = Tc are in agreement with those measured in different YBCO
single crystals and equal to−3 [32] or−4 [134, 193, 217]. In combination with the
experimental fact that there is no BCS coherent peak in the conductivity of HTS crys-
tals, this indicates the necessity of taking into account effects of strong coupling near
Tc and the feasibility of interpreting of HTS properties at microwave frequencies in
terms of a two-fluid model.

A modified two-fluid model has been proposed independently in [194, 56] and
then further developed in [193, 217, 195, 196, 190, 191, 197, 58, 57, 59]. This phe-
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nomenological model has two essential features that make it different from the GC
model [73]. The first is the introduction of the temperature dependence of the quasi-
particle relaxation timeτ(t) (with t ≡ T/Tc), and the second feature is the unique
density of superconducting electronsns(t), which gives rise to a linear temperature
dependence of the penetration depth in theab-plane at low temperatures,

λ2(0)
λ2(t)

=
ns(t)

n
' (1− αt), (3.47)

whereα is a numerical parameter.

3.5.1 Scattering and Surface Resistance of HTS Single Crystals

The first attempts to determine the temperature dependenceτ(T ) by comparing mea-
surements ofσ1(T ) andσ2(T ) with calculations by (3.8) were undertaken in study-
ing HTS crystals in which the real part of conductivity had a peak atT ∼ Tc/2
[30, 182, 33]. The conclusion from this comparison was thatτ should increase with
decreasing temperature in the rangeT < Tc, but for various reasons (poor quality
of crystals, utilization of curves measured in different experiments etc.) the result-
ing functionsτ(T ) were rather peculiar:1/τ ∝ exp (T/T0), T0 ∼ 10 K [33] or
1/τ ∝ (AT 6 + B) [182]. A more detailed analysis was required taking into account
both common properties and specific features of the impedance and conductivity of
high-quality HTS crystals.

For ωτ(Tc) � 1, which is normally satisfied at microwave frequencies in
HTS’s, the parameterωτ(Tc) is obtained from measurements ofRs(Tc) andXs(0),

ωτ(Tc) =
X2

s (0)
2R2

s(Tc)
=

σ1(Tc)
σ2(0)

. (3.48)

At frequencies∼ 10 GHz, the value ofωτ for the best HTS crystals is of the
order of10−3 at T = Tc and remains less than unity at all temperaturesT < Tc,
as is discussed in what follows. In the two-fluid model, therefore, the expressions
of the conductivity components in (3.8) turn into the simple form (3.9). At fixed
ns(t)/n, hencenn(t)/n = 1−ns(t)/n, the only function we lack for determination
of conductivityσ1(t) in (3.9) and impedanceZs(t) in (3.11) isτ(t).

3.5.1.1 Temperature Dependence of the Relaxation Time

First let us try to describe measurements ofRs(T )/Rs(Tc) in YBCO single crystals
using (3.15) by substituting values ofσ2(T )/σ2(0) = λ2(0)/λ2(T ) = ns(T )/n
measured in the same experiments andσ1(T )/σ1(Tc) obtained using (3.9); the latter
function, in its turn, being derived fromnn(T )/n = 1 − σ2(T )/σ2(0), which is
obtained using experimental data and properly selectedτ(T ).
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In selecting the form of functionτ(T ), let us rely on the analogy between
the ‘normal fluid’ component in the superconducting state and charge carriers in
a normal metal. According to Mathissen’s rule, the reciprocal relaxation time at
temperatures below the Debye temperatureΘ is

1
τ

=
1

τimp
+

1
τe−ph

. (3.49)

The first term on the right-hand side is due to impurity scattering and is indepen-
dent of temperature, and the second is due to the electron–phonon scattering and is
proportional toT 5.

From (3.49), we expressτ(T ) as

1
τ(t)

=
1

τ(0)

[
1 +

t5

β

]
, (3.50)

whereβ is a numerical parameter, which equals, as it follows from (3.50),

β =
τ(Tc)

τ(0)− τ(Tc)
. (3.51)

Following the formal analogy with metals, one can say that the parameterβ
is characteristic of the ‘HTS purity’:β ≈ τ(Tc)/τ(0) � 1 if τ(0) � τ(Tc). The
value ofτ(0) is found from the slopesdRs/ dT and dXs/ dT of the experimental
data ofRs(T ) andXs(T ) asT → 0 (ωτ(0) < 1),

ωτ(0) =
dRs

dXs

∣∣∣∣
T→0

. (3.52)

With (3.48) and (3.52), the parameterβ is determined from the surface impe-
dance data [197].

Expression (3.50) corresponds to the low-temperature limit of the Bloch–Grü-
neisen formula, which includes the impurity scattering and can be presented in a
wide temperature range in the form

1
τ

=
1

τ(0)

[
1 +

t5J5(κ/t)/J5(κ)
β

]
, J5(κ/t) =

κ/t∫
0

z5ez dz

(ez − 1)2
, (3.53)

whereκ = Θ/Tc. The parameter of HTS corresponding toΘ can be estimated as
several hundreds of degrees. AtT < Θ/10 (κ > 10t) the second summand in the
brackets on the right of (3.53) is proportional toT 5; in the regionT > Θ/5 (κ < 5t)
it is proportional toT . Thus, ifβ < 1 the reciprocal relaxation time (the electron
relaxation rate) is constant and equal to1/τ(0) over the interval0 < T < Tc/3, and
at higher temperatures it increases gradually, starting as the power function∝ T 5

in the regionT < Tc/2 and switching to∝ T aroundTc, and atT > Tc we have
a linear dependence∆ρab(T ) ∝ 1/τ(T ) ∝ T . Examples of1/τ(t) for different
parameters ofβ, κ, andτ(Tc) are shown in Figure 3.24.
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Figure 3.24Scattering rate of quasi-particles calculated from (3.50), dotted line:β = 0.005, and (3.53),
solid line: β = 0.005, κ = 9; dashed line:β = 0.02, κ = 4. The triangles are calculated from
1/τ = [1−λ2(0)/λ2(T )]/[µoσ1(T )λ2(0)], with σ1(T ) andλ(T ) at 1.14 GHz andλ(0) = 1600 Å in
theab-plane, with the currents parallel to thea-direction of the YBCO crystal [91]. The inset shows the
low-temperature parts of the curves. The circles are from Figure 3.8 of [91].

Even though the chosen form of the functionτ(T ) for HTS materials with
complex electronic spectra was over-simplified, it turned out that all experimental
curves ofRs(T ) in high-quality YBCO single crystals for bothT < Tc andT > Tc

can be described by the modified two-fluid model withτ(T ) given by (3.50) without
any fitting parameters or by (3.53) with only one parameterκ. This is demonstrated
by Figure 3.25, which contains measurements labeled by A, B, and C taken from
[32, 193, 185] and transformed to a single frequency of 10 GHz. Graph B corre-
sponds to the curve ofRs(T ) in Figure 3.10 and graph C to curve 1 in the inset to
Figure 3.18. At this frequency, according to (3.48),ωτ(Tc) ≈ 4 × 10−3, i.e., in
these experiments [32, 193, 185]1/τ(Tc) ≈ 2 × 1013 s−1. The solid lines in Fig-
ure 3.25 show calculations ofRs(T )/Rs(Tc) by (3.9) and (3.15) withσ2(T )/σ2(0)
derived from the same experimental data [32, 193, 185] and plotted in Figure 3.33
(curves A–C) represented below. Curve A in Figure 3.25 was plotted using (3.50)
with β = 0.01 in (3.51), estimated from (3.48) and (3.52). For curve Bβ = 0.1 in
(3.50), and for curve Cβ = 0.02 andκ = 4 in (3.53).

Settingβ = 0.005 andκ = 9 in (3.53) and taking the experimental values
σ2(T )/σ2(0) from Figure 3.31 (see below) andωτ(Tc) = 7.5× 10−4 at 1.14 GHz,
we find from (3.9) and (3.12) theT -dependence ofRs(T ), shown by the solid lines
in Figure 3.26. These curves match the data of [91] over the entire temperature
range. The same result is obtained using (3.50) instead of (3.53), withβ = 0.005.
Forκ � 1 andT . Tc, (3.50) and (3.53) are identical.

It follows from (3.17) and (3.9) that forαt � 1 (see (3.47)), a rough estimate
of the temperaturetm at whichRs(T ) is maximum is obtained from the relation
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Figure 3.25Comparison between calculations (solid lines) and measurements (open squares) of surface
resistance versus temperature,Rs(T )/Rs(Tc), in YBCO single crystals. Experimental data are taken
from [32] (A, 4.13 GHz), [193] (B, 9.42 GHz), [185] (C, 10 GHz) and transformed (∝ ω3/2) to one
frequency 10 GHz.
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Figure 3.26ExperimentalRs(T ) data of YBCO single crystal [91] at 1.14 GHz (circles) and 2.25 GHz
(squares). Solid curves are calculations using (3.12), (3.9), and (3.50). The dashed curves are calculated
at 1.14 GHz with the termt5 replaced byt4 in the numerator of (3.50), the dotted curves witht6. The
inset shows a linear plot ofRs(T ) at low temperatures at 1.14 GHz.

β ' 4t5m [197]. Asβ increases, the maximum and minimum ofRs(T ) change into
an inflection point with a horizontal tangent; for largerβ, the maximum ofRs(T )
disappears completely [56].

The linear growth ofRs(T ) with T at low temperatures (inset in Figure 3.26) is
a direct consequence of the linear change ofλ(T ) nearT = 0, which is proportional
to the coefficientα in (3.47), and is the result of a constant scattering rate at low
temperatures, as shown in Figure 3.24.

The dashed and dotted curves shown in Figure 3.26 are the calculatedRs(T )
values at 1.14 GHz, witht5 replaced byt4 (dashed curve) and byt6 (dotted curve)
in (3.50). The best fit of the experimental data is1/τ(t) ∝ t5.

The calculated curves in Figures 3.25 and 3.26 are very close to the experimen-
tal data and display the common and unique features ofRs(T ) for T < Tc andωτ <
1 of high-quality YBCO single crystals fabricated by different methods, namely: (i)
the linear temperature dependence of the surface resistance,∆Rs(T ) ∝ T , caused
by the linear variation of∆Xs(T ) ∝ ∆λab(T ) ∝ T at temperaturesT � Tc, and
by the limit τ(T ) → const at low temperatures; (ii) the broad peak ofRs(T ) in
the intermediate temperature range due to the rapid decrease of the relaxation time
τ(T ) ∝ T−5 with increasing temperature; and (iii) the increase inRs(T ) in the
rangeTc/2 < T < Tc (Figure 3.25, curve C) caused by the crossover fromT−5

to T−1 of τ(T ) in (3.53), which occurs in this sample (C) at a lower temperature
than in samples A and B (Figure 3.25). The behaviour of1/τ(T ) for two YBCO
crystals corresponding to curve C in Figure 3.25 and to plots in Figure 3.26 is shown
in Figure 3.24.
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Figure 3.27Comparison between the calculated (solid lines) and measured surface impedance (symbols)
of BSCCO single crystal (see Figure 3.11). A constantRres = 0.5 mΩ is added to the values ofRs(T )
obtained from (3.12).

3.5.1.2 Inclusion of Residual Surface Resistance

Up to this point, our analysis has not taken the residual surface resistanceRres of
the samples into account. At frequencies about 10 GHz, in theab-plane of YBCO
single crystals the resistanceRres ∼ 100 µΩ. The ratioRres/R(Tc) < 10−3 in the
samples whose data are plotted in Figures 3.25, 3.26 is so small thatRres can be
neglected even atT � Tc. In most HTS crystals that were investigated, however,
Rres/R(Tc) > 10−3 and the contributionRres to the calculated functionRs(T )
is essential. Figure 3.27 compares measurements ofXs(T ) andRs(T ) plotted in
Figure 3.11 with calculations by (3.12) and (3.13). In this case, we have added to
Rs(T ) from (3.12) the constantRres = 0.5 mΩ. The calculation usingωτ(Tc) =
0.9 · 10−2, β = 2 andκ = 3 in (3.53) is based on measurements ofσ2(T ) obtained
in the same experiment and plotted in Figure 3.34 (see below). It is clear that the
agreement between the calculated and experimental curves is fairly good throughout
the temperature interval5 ≤ T ≤ 120 K.

Another reason for includingRres is the increase in the ratioRres/R(Tc) ∝
ω3/2 with the frequencyω. The plots in Figure 3.28 are based on the experimen-
tal data of BSCCO single crystal measured in [122] at three frequencies: 14.4 GHz
(ωτ(Tc) = 0.7 × 10−2), 24.6 GHz, and 34.7 GHz. The solid curves are the calcu-
lations at these frequencies obtained from (3.9) and (3.12) usingτ(T ) from (3.53)
with β = 0.1 andκ = 4. The comparison procedure is different from that discussed
above for YBCO crystals becauseRres ∝ ω2 is added to the calculatedRs(T ) val-
ues. The inset of Figure 3.28 shows a linear plot of the measured and calculated
surface resistance at low temperatures. We emphasize that at temperatures below
Tc/2, the value of∆Rs(T ) is proportional toT .
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Figure 3.28 Experimental data of the BSCCO single crystal [122] at various frequencies: 14.4 GHz
(circles), 24.6 GHz (triangles), and 34.7 GHz (squares). The solid curves are the calculated [Rs(T ) +
Rres]–functions, with the respectiveRres values of 0.29, 0.85 and 1.7 mΩ. The inset shows the linear
temperature dependences of the surface resistance at low temperatures.

Figure 3.29Comparison between the calculated (lines) and measured [91] (symbols) surface resistance
Rs(T ) of the YBCO single crystal at 13.4, 22.7, and 75.3 GHz (see Figure 3.16). We assumedRres =
0.3 mΩ for 75.3 GHz, zero for the other frequencies.
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Figure 3.30Surface resistanceRs(T ) of a TBCO single crystal at 24.8 GHz taken from [35] Solid curve
is the calculated (Rs(T ) + Rres)-function with Rres = 0.8 mΩ. The inset shows the measured [35]
(circles) and calculated results ofσ2(T )/σ2(0) (solid line), using (3.54) withα = 0.9.

In the millimeter and shorter wavelength bands, the conditionωτ < 1 may not
be satisfied in the superconducting state of the purest HTS single crystals because of
the fast growth ofτ(T ) with decreasingT < Tc. In this case, it is natural not only
to takeRres into account but also use more general (3.8) of the two-fluid model to
replace (3.9). TheRs(T ) data of [91] plotted in Figure 3.16 at the frequencies of
13.4, 22.7, and 75.3 GHz are compared to calculations ofRs(T ) in Figure 3.29. We
usedτ(Tc)/τ(0) ≈ β = 5×10−3 in (3.50, 3.51) for all curves shown in Figure 3.29
(the same as previously used in Figure 3.26) and addedRres = 0.3 mΩ to Rs(T )
(3.12) at 75.3 GHz only. The conductivity componentsσ1(T ) andσ2(T ) involved
in (3.12) are obtained from the experimental data ofσ2(T )/σ2(0) at 1.14 GHz [91]
(shown in Figure 3.31) and from (3.8).

Figure 3.30 shows another example. The experimentalRs(T ) data (squares)
of a TBCO single crystal (Tc = 78.5 K) [35] are compared with the results of cal-
culations based on (3.12), (3.8), and (3.53). The curve representing the theoretical
valuesRs(T ) + Rres is plotted usingβ = 0.1, κ = 5.5, ωτ(Tc) = 1.7 × 10−2,
Rres = 0.8 mΩ, and withσ2(T )/σ2(0) shown in the inset (circles) of Figure 3.30.

3.5.2 Temperature Dependence of the Superconducting Electron Density

In the previous section, we emphasised that the modified two-fluid model describes
well all features of the surface resistanceRs(T ) of different HTS’s over a wide fre-
quency range with only one parameter,κ. This was done using the measured (known
from the same experiment)T -dependences of the superconducting electron density
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Figure 3.31Plots of (3.54) (dashed line,α = 0.42) and (3.55) (solid line,α = 0.47), showing the fit to
the empiricalσ2(T )/σ2(0). The experimental data (circles) are from [91] at 1.14 GHz. The inset shows
the temperature dependences ofσ2(T )/σ2(0) at various frequencies, calculated from (3.8), (3.55) and
(3.50).

λ−2
ab (T ). However, we think that this phenomenological model would be incomplete

unless simple formulas are available that correctly describe the measurements of
∆λab(T ). Figures 3.30 (the inset), 3.31, 3.32, and 3.33A showσ2(T )/σ2(0) =
λ2(0)/λ2(T ) = ns(T )/n in the ab-plane of different HTS single crystals from
[35, 91, 122] and [32], respectively. All of these quantities change linearly with
temperature at low temperatures and can be approximated by the function [194]

ns

n
= (1− t)α, (3.54)

whereα is a numerical parameter. Fort � 1, (3.47) follows from (3.54). For the
cited experiments, the values ofα fall into the range0.4 < α ≤ 0.9. NearTc, we
obtainλ(t) ∝ ns(t)−1/2 ∝ (1−t)−α/2, which is also in reasonably good agreement
with the experimental data. However, (3.54) yields an infinite value of the derivative
dσ2(t)/ dt ∝ (1− t)α−1 at t = 1 for α < 1.

An approximation forns(t)/n proposed in [58] is close to (3.54),

ns

n
= 1− αt− (1− α)t6, (3.55)

and is shown by solid lines in Figures 3.31 and 3.32. Equation (3.55) ensures that
the slope ofλ2(0)/λ2(t)|Tc = (5α− 6) atTc is finite and negative forα < 1.2.

However, taking the above functions forns(t) in their simplest forms (3.54)
and (3.55) does not account for all features inλ2(0)/λ2(T ) detected recently in
YBCO crystals (see Table 3.1) in the intermediate temperature range [193, 185, 217,
186]. Moreover, the slope of these curves atT � Tc requires thatα > 1 in (3.54),
which would lead to zero slope of theσ2(T )/σ2(0) curve atT = Tc. Therefore,
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Figure 3.32 Comparison between the calculated (solid curve: (3.55),α = 0.74; dotted line: (3.54),
α = 0.7) and measured [122] (symbols) of theσ2(T )/σ2(0) values of BSCCO single crystal [58].

we have added an additional empirical term to the right-hand side of (3.54) without
violating the particle conservation conditionns + nn = n,

ns

n
= (1− t)α(1− δ) + δ(1− t4/δ), (3.56)

where0 < δ < 1 is the weight factor. Forδ � 1 andα > 1, the dominant contribu-
tion to σ2(T ) throughout the relevant temperature range is still due to the first term
on the right-hand side of (3.56), while the second is responsible for the finite slope
of σ2(T )/σ2(0) atT = Tc, which is equal to−4 in accordance with the GC model.
As δ increases, the second term on the right-hand side of (3.56) becomes more es-
sential. The experimental curve ofσ2(T )/σ2(0) in Figure 3.33B derived from the
Rs(T ) and Xs(T ) measurements plotted in Figure 3.10 is properly described by
(3.56) withδ = 0.5 andα = 5.5. This calculation reflects the characteristic features
of the experimental data, namely, the linear section ofns and the positive second
derivative (α > 1) in the low-temperature range, the plateau in the intermediate tem-
perature range, and the correct value of the slope nearTc. The whole set ofσ2(T )
curves measured in theab-plane of YBCO crystals grown at ISSP using the same
technique is described by (3.56), whereα was almost constant,α ≈ 5.5, andδ was
varied between 0.1 and 0.5 [190].

Using the same relationship (3.56) atα = 2 andδ = 0.2, we can describe the
dependenceσ2(T ) in the BSCCO crystal (Figure 3.22), plotted in Figure 3.34.

The third curve in Figure 3.33C [185], which corresponds to the curve ofλ(T )
in Figure 3.18(1), is different from typical curves of Figures 3.18(2, 3) and 3.30–
3.32, since a linear section ofσ2(T ) is observed only in a narrow range of temper-
atures,0 < T � Tc, and it switches to a quadratic dependence as the temperature
increases. This crossover can be described [193] by introducing additional factor
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Figure 3.33 Comparison between calculations (solid lines) and measurements (circles) of
σ2(T )/σ2(0) = λ2(0)/λ2(T ) of YBCO single crystals. Experimental data are taken from Refs. [32]
(A), [193] (B), and [185] (C).
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Figure 3.34 Imaginary part of conductivity in BSCCO single crystal (open squares) derived from the
surface impedance measurements of Figure 3.11. Solid line corresponds to (3.56).

(1 + ηt) to the first summand on the right of (3.56) forns(t); thus we can obtain the
solid curve of Figure 3.33C atα = 2.2, η = 2, andδ = 0.04.

3.5.3 Real Part of Conductivity

It naturally follows from the fact that the measurements and calculations ofRs(T ),
Xs(T ), andσ2(T ) are in good agreement that the curves ofσ1(T ) in the range
T < Tc can be described in terms of the modified two-fluid model by using the
first formula of (3.14). Here we have to consider two points that are important in
calculations ofσ1(T ).

Firstly, in comparing the calculations based on the modified two-fluid model
to the measurements of the surface resistance we added to the functionRs(T ) deter-
mined by the general formula (12) the valueRres, which was determined in the same
experiment and is independent of the temperature. For this reason, the curves of
σ1(T ) in Figures 3.35–3.37, which were calculated by (3.14) and (3.57) represented
below, do not tend to zero asT → 0, even though the normal carrier densitynn = 0
at T = 0, according to the two-fluid model, and, as it follows from (3.8) or (3.9),
the conductivity should tend toσ(0) = 0. The parameterRres was not included in
(3.14) when we compared the data of Figure 3.38 with calculations because in that
case the ratioRres/Rs(Tc) was very small, less than 10−3 (see the lower curve in
Figure 3.16).

The second point that has not been discussed as yet is the behaviour ofRs(T )
andσ1(T ) in the temperature range aboutTc. The most spectacular manifestation
of this behaviour is the peak in the real part of the conductivity (see Figures 3.4,
3.19–3.23). This peak can be described by an effective medium model [192, 71,
197] that takes the inhomogeneous broadening of the superconducting transition into
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Figure 3.35Comparison of the plot in Figure 3.22 and calculation based on the modified two-fluid model
taking into account the inhomogeneous broadening of the superconducting transition (δTc = 4.5 K).

Figure 3.36Comparison of the experimentalT -dependence ofσ1(T ) (open circles) of the TBCO single
crystal at 24.8 GHz [35] with the one calculated using the modified two-fluid model (solid line) and taking
the inhomogeneous broadening of the superconducting transition into account (δTc = 2.5 K in (3.57)).

account. We assume that different regions of a given specimen experience transitions
to the superconducting state at different temperatures within theT -rangeδTc. If the
dimension of each of these regions is smaller than the magnetic field penetration
depth (microscopic-scale disorder), the distribution of the microwave currents over
the sample is uniform and the calculation of the effective impedanceZeff of the
sample reduces to two operations: first, adding the impedancesZs of all regions in
the specimen (with differentTc) that are connected in series along a current path,
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Figure 3.37Comparison ofσ1(T ) calculated with help of (3.50), (3.12), (3.57,δTc = 2 K), and (3.8)
with the data at 14.4 and 34.7 GHz (Figure 3.23) from [122].

Figure 3.38Comparison of the experimental dependenceσ1(T ) (open squares in Figure 3.20) of YBCO
single crystal at 1.14 GHz [91] and that calculated with modified two-fluid model (solid line) taking into
account the inhomogeneous broadening of the superconducting transition (δTc = 0.4 K in (3.57)).

and second, averaging over the sample volume. As a result, we obtain

Zeff
s (T ) = Reff

s (T ) + iXeff
s (T ) =

∫
δTc

Zs(T, Tc)f(Tc) dTc , (3.57)

where the distribution functionf(Tc) is such that the fraction of the sample volume
with critical temperatures in the rangeTc < T < Tc + dTc equalsf(Tc) dTc. In
the simplest case,f(Tc) is a Gaussian function. For instance, in the experiments
of [91], the width of the superconducting transition on the lower curve ofRs(T ) in
Figure 3.16 was approximately 0.4 K, which we equate to the width of the Gaussian
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distributionf(Tc). Using general relations (3.14) with the effective impedance com-
ponents obtained from (3.57), we calculateσeff

1 (T ) nearTc at 1.14 GHz and plot it
together with the experimental data in Figure 3.38.

In the framework of the discussed approach,σeff
1 (T ) displays a narrow peak at

T ∗ = Tc − δTc. It is easy to check that the relative peak amplitude is approximately
equal to

σ1(T ∗)− σ(Tc)
σ(Tc)

≈
{

γ if γ > 1,
γ2 if γ < 0.1,

(3.58)

whereγ = δTc/[Tcωτ(Tc)], implying that the peak decreases with the decrease of
the superconducting resistive transition width. Usually, experiments yieldγ > 1
(e.g., the data of [91] giveγ ' 7 at 1.14 GHz) and, therefore, the peak amplitude
should be inversely proportional to the frequency. This assertion is supported by
the comparison between the curves ofσ1(T ) (the lines in Figure 3.37) from [122]
obtained at two different frequencies on the same BSCCO crystal as was used in
Figures 3.28 and 3.32.

In calculating theσ1(T ) curves for other specimens, we also applied the above
procedure to incorporate corrections caused by the inhomogeneous broadening of
the superconducting transition. We adjusted the calculations ofRs(T ) (Figures 3.27,
3.30) andσ2(T ) (Figure 3.34 and the inset to Figure 3.30) by substituting the result-
ing Zeff

s (T ) into the general equation (3.14) for the conductivityσ1. The resulting
curves for BSCCO and TBCO are shown in Figures 3.35, 3.36.

3.5.4 Summary

To sum up, one can describe characteristic features ofZs(T ) andσs(T ) = σ1(T )−
iσ2(T ) = iωµ0/Z

2
s (T ) in theab-plane of high-quality HTS crystals by generalizing

the well-known GC two-fluid model as follows.

(i) We introduce a temperature dependence of the relaxation time of the quasipar-
ticles in accordance with the Bloch–Grüneisen law. We find that theRs(T )
curves in different HTS crystals are well described using (3.50) or (3.53) for
1/τ(T ). In the latter equation, there is only one fitting parameter,κ = Θ/Tc,
while the other parameterβ from (3.51) can be estimated directly from the
experimental data with the help of (3.48) and (3.52). The absence of the
broad peak ofRs(T ) in tetragonal HTS single crystals is due to a less rapid
increase ofτ(T ) with decreasing the temperature. In other words, the value
of β is smaller for YBCO crystals than for BSCCO, TBCO, or TBCCO. For
the latter crystals, the residual lossesRres are usually large and they have to
be taken into account.

(ii) We replace the well-known temperature dependence of the density of super-
conducting carriers in the GC model,ns = n(1− t4), by one of the functions
in (3.54), (3.55) or (3.56). All of these functions change linearly with the
temperature fort � 1 (see (3.47)). This permits one to extract the common
and distinctive features ofXs(T ) andσ2(T ) from different HTS crystals.
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It also follows from the equations of the modified two-fluid model that at low
temperatures(t � 1) and low frequencies (ωτ(0) < 1), all curves ofZs(T ) and
σs(T ) have linear regions:σ1 ∝ αt/β, sincenn/n ≈ αt andτ ≈ τ(0) ≈ τ(Tc)/β.
Furthermore,∆σ2 ∝ −αt. In accordance with (3.17), we then haveRs ∝ αt/β
and∆Xs ∝ ∆λ ∝ αt/2. As the temperature increases, the curve ofσ1(t) passes
through a maximum att . 0.5 if the inequality (3.46) is valid. This peak is due
to the superposition of two competing effects, namely, the decrease in the number
of normal carriers as the temperature decreases, fort < 1, and the increase in the
relaxation time, which saturates att ∼ β1/5, where the impurity scattering starts
to dominate. If inequality (3.46) fails, the functionσ1(t) changes monotonically
with the temperature. The model also accounts for the peculiarities of the surface
impedance and complex conductivity at higher temperatures in HTS single crystals
manufactured using different techniques. In particular, the features in theXs(T )
andσ2(T ) curves for YBCO single crystals in the intermediate temperature range
(plateau [193] or bump [185]) can be described within the framework of the modified
two-fluid model if we take into account the modification ofns(t) described by (3.56)
with 0 < δ ≤ 0.5.

In HTS single crystals, the narrow peak in the real part of the conductivity
σ1(T ) occurring nearTc can be explained in terms of an effective medium model,
where the strong electron–phonon coupling of the quasiparticles and the inhomoge-
neous broadening of the superconducting transition are taken into account.

3.6 ON THE WAY TO A MICROSCOPIC THEORY

In spite of progress on the materials aspects of the phenomenon of high temper-
ature superconductivity, there are widely different views as to the pairing mecha-
nism responsible for this effect. In addition to conventional electron–phonon inter-
action, many other explanations were proposed some of them being of quite exotic
nature.

The normal state properties of HTS’s are quite unusual as well. Strong anisot-
ropies are observed mainly caused by the nearly two-dimensional nature of electronic
properties of these materials. Besides the normal-superconducting phase transition,
the new copper oxides show an unusually complex phase diagram. For example,
the YBCO compounds display a wide range of behaviour, including the metallic
superconductor-to-magnetic insulator change due to variation of the oxygen content.
Single crystal measurements of resistivity as a function of temperature in the CuO2

planes carried out for several different compounds have shown a linear behaviour
over the measured temperature range, in some cases from 7 K to 700 K. This be-
haviour takes place only near the optimal chemical doping, i.e. that corresponding
to highest critical temperatures.

Other anomalous normal state properties have been observed: optical conduc-
tivity and Raman scattering data suggest a peculiar temperature dependent charge
carrier scattering rate, the Hall coefficient in YBCO exhibits a strong temperature
dependence, in contrast to that of ordinary Fermi liquid metals. It is widely believed
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that understanding the normal state properties of HTS’s will also shed light on the
superconducting mechanism.

Another important property of these superconductors is that they are related
to antiferromagnetic insulators. A typicalT–x (temperature–carrier concentration)
phase diagram of the electronic properties of HTS’s consists of several regions [23].
Near half filling (no holes in CuO2 layers) the materials are antiferromagnetic in-
sulators. With the increase of hole doping, the long range magnetic order fades
away and superconductivity begins to prevail at low temperature at appropriate dop-
ing levels. The superconducting transition temperature increases with doping un-
til it reaches a maximum and then decreases with further doping and the mate-
rial eventually becomes a paramagnetic metal. Short range antiferromagnetic or-
der still persists into the doping region where the superconducting ground state pre-
vails.

The Fermi liquid picture is the underlying foundation of the traditional BCS
theory. The unusual normal state properties raise the question about applicability of
the Fermi liquid description to HTS’s. The basic concept of the Landau theory of
the Fermi liquid is that the properties of a system of fermion particles are not dra-
matically modified by the particle interactions, no matter how strong the interaction
may be. This concept assumes a one-to-one mapping between ‘quasi-particles’ of
an interacting fermion system and free particles of a non-interacting fermion system.
Almost all metals are typically regarded as Fermi liquids. In the HTS’s the conduct-
ing carriers are composed of oxygen2p electrons (holes) and strongly interacting
copper3delectrons (holes), the on-site Coulomb repulsion between the3delectrons
being very strong (strong correlation effects).

Given the controversy over the applicability of the Landau Fermi liquid model,
much experimental and theoretical work has been carried out to test the validity of
the Fermi liquid concept in the HTS’s. Very important tool to study the electronic
structure is high-resolution angle-resolved photoemission spectroscopy (ARPES)
[177]. Despite the evidence of correlation effects, angle-resolved photoemission
clearly demonstrated the existence of Fermi surfaces. Furthermore, the measured
Fermi surfaces have similarities to those calculated theoretically by band theory
[99, 15, 158, 39]. The key features in the electronic structure are very flat bands
in CuO2 band structure which have saddle point behaviour and significant Fermi
surface nesting. These features will have a significant impact on the physical prop-
erties, including the temperature dependence of the resistivity, the isotope effect, the
Hall effect and the symmetry of the superconducting gap.

The superconducting properties of cuprates are in many ways similar to those
of conventional BCS superconductors. First, electron pairs in the superconducting
state of the highTc-oxides have been firmly established by flux quantization and
Josephson tunneling experiments. The Cooper pairs in HTS’s are spin singlet. The
cuprates are strongly type II superconductors and magnetic field penetrates them in
the form of vortices like in conventional superconductors. The existence of the en-
ergy gap has been established by a number of advanced experimental techniques like
ARPES, electron tunneling and infrared reflectivity. It was shown that the maximum
value of the gap exceeds the BCS value of3.5kBTc.
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At the same time, the ARPES measurements on the highest quality samples
showed significant gap anisotropy with the gap minimum close to zero near some
points of the Brillouin zone [177]. The nature of orbital structure of the Cooper pairs
in HTS’s remains one of the central questions in the field. The issue of symmetry
of the order parameter is discussed by Scalapino [172]. Many different types of ex-
periments have been carried out aimed at probing the symmetry of the gap function,
including tunneling, absorption of microwaves, Raman spectroscopy and Josephson
junction measurements (see reviews by Dynes [48], Van Harlingen [79], and Goss
Levi [74]). Most of them are consistent with thed-wave pairing. In order to distin-
guish between a very anisotropics-wave gap function and ad-wave gap function the
phase-sensitivemeasurements are necessary which is the case only for the Joseph-
son junction experiments directly probing a phase difference. The outcome of the
Josephson measurements in YBCO is that the gap function indeed changes its sign
within a Brillouin zone (the so-calledπ-shift in a Josephson effect) which is consis-
tent with thed-wave pairing (see review [172] and references therein).

In general, the fact of the sign reversal of the gap function does not necessarily
prove a pured-wave symmetry and may be a manifestation of a more complicated
anisotropy related to repulsive interactions at some regions of a Fermi surface [5].
That means that the electron–electron interactions in the cuprates within the Brillouin
zone are of alternative sign and have the symmetry of the lattice, but the key question
about an origin of these interactions is not answered yet. The most important ingre-
dients of the BCS theory are the superconducting electron pair formation (Cooper
pairs) and the interaction responsible for the electron pairing. Whereas the existence
of spin-singlet Cooper pairs in HTS’s is firmly established, the question concerning
the interaction is still open at present. The lack of consensus is due to inability of
any simple theory, like the conventional BCS theory, to explain simultaneously many
unusual properties of cuprates.

A variety of physical mechanisms of high temperature superconductivity have
been discussed in literature, ranging from a purely phonon mechanism to a pair-
ing due to repulsive interactions. As far as none of these mechanisms have been
firmly identified yet, we just give a number of selected references, where a more
specific information can be found. The phonon mechanism of pairing in applica-
tion to cuprates with account of complicated band structure has been discussed by
many authors. An early review was given by Pickett [157]. Application of the many-
band generalization of the phonon pairing mechanism to cuprates was first done by
Kresin and Wolf [119]. An important signature of the phonon mechanism of pair-
ing in conventional superconductors is the existence of the isotope effect with the
isotope exponentα = 1/2. This exponent was found to be quite small in most of
the cuprates, but this fact does not exclude the phonon mechanism since it can be
attributed to anharmonic effects. There are several reasons why electron-phonon in-
teraction in the cuprates may be strong enough to cause highTc values (see reviews
[66, 131] and references therein). First, strong hybridization ofd-electron states of
copper andp-electron states of oxygen leads to strong contribution of high-frequency
oxygen phonon modes to the electron-phonon interaction. Second, the low dimen-
sionally tends to increase the electronic density of states in the Cu–O planes. Both
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these effects are favourable for highTc values as given by the BCS theory. Finally,
the layered structure favours an enhancement of electron–phonon interaction due to
weaker screening of Coulomb potentials.

It is generally argued that the phonon mechanism itself is not fully responsible
for highTc values, and additional nonphonon attractive interactions contribute to the
Cooper pairing. Among nonphonon mechanisms, the pairing due to exchange by
acoustic plasmons and excitons was considered. Soft acoustic plasmons are present
in the cuprates due to their layered structure, whereas exciton modes may originate
from nonmetallic interlayers existing between the Cu–O planes. The exciton pair-
ing mechanisms was first proposed by Littl [126] and Ginzburg [65] (see also the
reviews by Carbotte [37], Ginzburg and Maksimov [66], and references therein).
The model based on the extended saddle point singularities in the electron spectrum
of the cuprates, weak screening of the Coulomb interaction and phonon-mediated
interaction between electrons was proposed by Abrikosov [5]. The pairing mecha-
nism based on the bipolaron formation due to strong phonon or spin interactions was
discussed by Micnaset al. [146] and Alexandrovet al. [10]. A number of unconven-
tional pairing mechanisms not involving electron–phonon interaction were proposed
for the cuprates. Most of them employ the idea that the magnetic correlations which
manifest themselves in the aforementionedT–x phase diagrams play the key role
in the Cooper pairing. Several phenomenological and microscopic approaches have
been developed quite recently in the context of purely electronic Hubbard type mod-
els which focus on the role of antiferromagnetic spin fluctuations. The minimal
model describing hole motion in Cu–O plane is thet–J model [13]. The spin fluctu-
ation exchange is then considered as a pairing mechanism. The physical assumptions
and the outcomes of the spin-fluctuation model are described in [172, 42, 105].

To summarize, at present there is no general consensus on the proper theory of
HTS, which must account for the results of the phase sensitive experiments [79, 198,
74] indicating a dominatingd-wave order parameter component and possibly a non
phonon mechanism. Further theoretical and experimental work is needed to identify
the mechanism of superconductivity in HTS’s. For the most recent update on the
present status of HTS theory see the review of Maksimov [131].

Let us set aside feasible mechanisms of superconducting pairing in HTS and
briefly analyze the existing microscopic theories of the high-frequency response of
HTS materials. Given the phenomenological model formulated in the previous sec-
tion, which is in fairly good agreement with measurements ofZs(T ) in HTS crystals,
it is natural to compare the tenets of this model with results of the microscopic the-
ory. In this way, some progress to clear understanding of a universal microscopic
approach to microwave properties of HTS may be possible.

3.6.1 Isotropic SC Model and Relaxation Time in the Superconducting State

Eliashberg’s equations, which take into account effects of delay and damping of
quasiparticles, apply to superconductors with an arbitrarily strong interaction in the
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Fermi liquid. In the case of electron–phonon interaction in an isotropic one-band su-
perconductor with singlets-wave paring and Debye spectrum of phonons, the elec-
tron relaxation rateΓ(T ) = 1/2τ(T ) is proportional toT 3 for T < Tc [66, 131, 116]
if Eliashberg’s equations are solved by neglecting the phonon corrections to the elec-
tromagnetic vertex. If these corrections are taken into account [52], thenΓ(T ) ∝ T 5,
which is in agreement with (3.50). Using this result, the authors of [45] proved that
peaks on curves ofRs(T ) andσ1(T ), which are characteristic features of YBCO,
can be obtained on the base of the conventional isotropic SC model, although quan-
titative agreement between this model and experimental data is out of question. The
theory suggested by Eliashberget al. [52] is the first model applied to the HTS mi-
crowave response taking into account vertex corrections. However, it is not clear
whether these results would apply to microscopic models more adequate for descrip-
tion of HTS.

Roddink and Stroud [169] have described a simple model to estimate the effect
of order parameter phase fluctuations on the penetration depth of HTS’s, without
taking into account the line nodes of the order parameter on the Fermi surface (d-
wave symmetry). They have shown that, when treated classically, such fluctuations
are found to produce a linear temperature dependence of the penetration depth, which
may be comparable to the experimentally observed magnitude.

Very recently the role of vertex corrections and Fermi liquid corrections in a
low temperature electrical conductivity of ad-wave superconductor with impurities
was discussed by Durst and Lee [47]. The weak coupling regime was considered. It
was shown that the universal scattering-independent behaviour of conductivity at low
frequencyω → 0 and low temperatureT → 0 (see (3.59) below) breaks down. It
might be interesting to find out how these results modify the temperature dependence
of conductivity at finiteT and ω, in particular when a realistic electron–electron
interaction is taken into account.

3.6.2 Model of Almost Antiferromagnetic Fermi Liquid

In this model [145, 147, 148], low-frequency excitations in the medium are not
phonons, but weakly damped spin waves, and superconducting pairing is mediated
by spin fluctuations. The paramagnon mechanism leads to ad-wave symmetry of
the order parameter, when the Fermi surface contains lines on which the gap width
turns to zero. This means that there are quasiparticles in the superconductor even at
T = 0, hence the finite conductivity [121]

σmin =
ne2

mπ∆0
=

2Γ(Tc)σ(Tc)
π∆0

. (3.59)

Here2Γ(Tc) = 1/τ(Tc), and∆0 is the maximum gap width on the Fermi surface,
∆0 = 2.14Tc (hereafter~ = kB = 1) if strong coupling effects are neglected. Recall
that2Γ(Tc) = 2× 1013 s−1 ' 0.8Tc for YBCO single crystals [32, 193, 185], then
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we derive from (3.59)σmin ' 0.1σ(Tc), and substitution of this parameter in (3.17)
yields the minimum surface resistanceRs min of a d-wave superconductor. At a
frequency of 10 GHz in YBCORs min ∼ 1 µΩ, i.e., one-two order of magnitude
lower than the best experimental data reported to date.

These manifestations of thed-wave symmetry, which are unusual from the
viewpoint of the conventional approach, stimulated theoretical studies of various
HTS properties on the base of the model of almost antiferromagnetic Fermi liquid.

Hirschfeldet al. [88, 89] calculated the conductivityσs(T ) and surface resis-
tanceRs(T ) as functions of temperature and compared them to experimental data
by Bonnet al. [32]. Let us discuss these results in detail.

First let us consider the case of relatively low temperaturesT < 0.4Tc, when
the quasiparticle damping is due to their impurity scattering. In this range, as was
indicated in [88, 89],

1. the integral expressions for the superconductor microwave response allow one
to present the conductivity in the form of (3.8) withτ(T ) ≈ τ(0) ≡ 1/2Γ,
whereΓ is the rate of elastic relaxation;Γ is always smaller thanΓ(Tc), for
example, in the experiment by Bonnet al. [32], Γ/Γ(Tc) ' τ(Tc)/τ(5 K) '
β ≈ 0.01;

2. versions with weak (Born approximation) and strong (unitary limit)
scattering characterized by phase shiftsδ = 0 andδ = π/2, respectively,
are considered.

3. there is a crossover temperatureT ∗ defining the boundary between the ‘gap-
less’ (T < T ∗ � Tc) and ‘pure’ (T ∗ < T � Tc) regimes of supercon-
ductivity; in the unitary limit, whose conditions are closer to those of real
experiments,T ∗ ≈ 0.8(Γ∆0)1/2 ≈ 0.1Tc ' 9 K in the best YBCO crystals
with optimal doping level; introduction of impurities (such as Zn [32]) leads
to higherΓ and crossover temperatureT ∗.

In the ‘pure’ regime of superconductivity the field penetration depth is a linear
function of reduced temperaturet = T/Tc:

λ(t)
λ(0)

= 1 + c1t, c1 =
Tcln2
∆0

. (3.60)

This formula is in agreement with (3.47), (3.54–3.56), from which follows

λ(t)
λ(0)

= 1 +
αt

2
, t � 1. (3.61)

By takingα = 0.5 (for the curve in Figure 3.33A) and2c1 given in (3.60), we
obtain∆0 ' 2.7Tc in the experiment reported by Bonnet al. [32]. At frequencies
of 4 GHz (ω/Tc ' 0.002) and 35 GHz (ω/Tc ' 0.019) the parameterω/Γ in [32]
equals0.2Tc and1.9Tc, respectively, which corresponds to an intermediate region
between the hydrodynamic (ω/Γ � 1) and collisionless (ω/Γ � 1) limits. Accord-
ing to numerical calculations [88, 89] for this intermediate region (measurements
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at 35 GHz in [32] are well within this region), the conductivityσ1(T ) is a linear
function of T . Figure 9 in [89] clearly shows that the slope of the line describing
σ1(T )/σ(Tc) at T � Tc is close toα/β, which is given by the phenomenological
model.

As the concentration of impurities increases, the ‘pure’ regime at low tempera-
tures is replaced by the ‘gapless’ one, and from the intermediate region the system is
shifted to the hydrodynamic one, as a result, we have∆λ(T ) ∝ T 2 andσ1(T ) ∝ T 2.
This conclusion was confirmed by measurements [32] of samples with Cu atoms sub-
stituted by Zn impurities.

In the temperature rangeT > 0.4Tc processes of inelastic scattering are es-
sential. The quasiparticle damping factor due to scattering by spin fluctuations ver-
sus temperature was calculated neglecting vertex corrections [165], and the result
was proportional toT 3: 1/τ(T ) ∝ T 3. With due account of this formula, calcu-
lations in the range of intermediate temperatures and in the neighbourhood ofTc

produced maxima on curves ofσ1(T ) andRs(T ) [88, 89]. Unfortunately, the pa-
rameterΓ/Tc = 0.0008 used in those calculations was undervalued, therefore it was
useless to compare these calculations with accurate experimental data. One remark-
able fact revealed by this comparison was that the peak in the calculatedRs(T ) was
shifted to lower temperatures with respect to the measured position, which might be
caused by the insufficiently strong temperature dependence of1/τ in the calculations
(compare with Figure 3.26).

Thus, thed-wave model of the microwave response [88, 89] is in qualitative
agreement with measurements of surface impedance in YBCO at low temperatures
[32] and is consistent from the formal viewpoint with the phenomenological model
considered above atT � Tc. A significant advantage of these calculations [88, 89]
is the visual demonstration of nontrivial consequences of thed-wave order parameter
applied to investigations of microwave response of high-quality YBCO single crys-
tals using the minimal number of fitting parameters. It seems that curves ofσ2(T )
measured in tetragonal HTS crystals, like those shown in Figure 3.33A, can be also
described by this model. On the other hand, this model cannot account for the linear
section of theRs(T ) curves extending toTc/2 (at a frequency of 10 GHz), observa-
tion of radically different values of theσ2(T ) slope forT � Tc (which corresponds
to α > 1 in (3.56) and, in accordance with (3.60), to∆0 < Tc) in experiments with
YBCO crystals [180, 193, 185, 217, 186], not to mention features in the range of
intermediate temperatures, and, finally, the large slopes ofRs(T ) andσ2(T ) curves
asT → Tc.

This approach was further developed in the work by Hensenet al. [84], who
compared in detail calculations and measurements ofZs(T ) at a frequency of
87 GHz in two different YBCO films. They investigated theoretically the evolu-
tion of functionsσs(T ) andRs(T ) as a result of a transition from the unitary to
Born limit and demonstrated that the minimal conductivity in (3.59) is not a uni-
versal parameter, and the experimental curves are best described at an intermediate
scattering phase shiftδ ≈ 0.4π. They matched their calculations to the experi-
mental data using a combination of six (or even nine) fitting parameters. Three
parameters were contained in a phenomenologically introduced temperature depen-



218 Spectroscopy of High-Tc Superconductors

dence of the inelastic relaxation timeτ(1)/τ(t) = at3 +(1− a)eb1(t−1)[1+b2(t−1)2],
wheret = T/Tc. In the case of film B with higher characteristics [84], the pa-
rametera = 0, and the remaining terms are well approximated by the function
1/τ(T ) ∝ T 5. It is desirable to apply this calculation technique [84] and its ver-
sion generalized to the case of strong coupling [29] to measurements of HTS crys-
tals in the centimetre wavelength band. The analysis of optical conductivity within
the spin-fluctuation model was also performed recently, see [176] and references
therein.

The issue of the low-temperature behaviour of surface resistance was discussed
recently in [85, 27]. The authors of [85, 27] argue that the experimental observation
of σ1 ∝ T could be explained by the generalized Drude formulaσ1 ∝ nqp(T )τ(T )
if the quasiparticle density varies asnqp(T ) ∝ T (as indeed happens ford-wave pair-
ing) and if theeffective quasiparticle scattering timeτ(T ) saturates at lowT . How-
ever, the pair correlations in the usual impurity scattering models lead to strongT -
dependence of the scattering time (neglecting vertex corrections), namelyτ(T ) ∝ T
in unitary limit orτ(T ) ∝ 1/T in the Born limit. As claimed in [85, 27], the attempts
to resolve this problem in [84] by choosing intermediate scattering rate have not yet
provided satisfactory results. Therefore various possible physical mechanisms of
the temperature and energy dependence ofτ are discussed in [85, 27]: scattering
from the ‘holes’ of the order parameter at impurity cites and scattering from ex-
tended defects. These mechanisms may provide the required saturation ofτ(T ) at
low T . As in [47] the vertex corrections can also modify the low temperature con-
ductivity (3.59), however the temperature dependence has not yet been established.
The temperature-dependent quasiparticle–quasiparticle scattering ind-wave super-
conductors was discussed recently by Walker and Smith [208]. It was claimed that
this process gives an explanation of the rapid variation with temperature of the elec-
trical transport relaxation rate in YBCO.

To conclude our discussion of the consequences of thed-wave order parame-
ter symmetry, which is due to the interaction intensity described by an alternating
function in the reciprocal space, consider two important points. Firstly, the presence
of quasi-one-dimensional sections of the electronic spectrum in HTS and the result-
ing square-root van-Hove singularities in the density of states [3] lead tod-wave
pairing caused by anisotropic electron–phonon coupling. Alternative models of the
d-wave order parameter based on the electron–phonon coupling were discussed in
[171, 100]. Secondly, the third principle of thermodynamics rules out the linear de-
pendence∆λ(T ) ∝ T in the region of very low temperatures,T → 0 [173]. In the
case of a superconductor with ad-wave order parameter, this means that there always
exists a physical mechanism that gives rise to a crossover temperatureT ∗ � Tc be-
low which ∆λ(T ) must deviate from a linear function. Up to now, two such mech-
anisms have been identified, namely impurity scattering [87] and, in pured-wave
superconductors, nonlocal effects [118]. Really, in some microwave experiments the
onset of the linear section of the∆λ(T ) curve in the rangeT � Tc was not at4.2 K,
but at slightly higher temperatures (see, for example, curves ofλ(T ) in TBCCO
shown by Figure 3.13), but no systematic measurements of∆λ(T ) for T < 5 K are
presently available.
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3.6.3 Two-Band Model and Mixed Symmetry of the Order Parameter

An interpretation of the features inZs(T ) andσs(T ) curves observed recently in
YBCO single crystals [193, 185, 217, 186] can be based on the two-band model
and/or the assumption about the mixed symmetry of the order parameter. Even the
shapes of experimental curves in Figure 3.33B and C, and function (3.56), which de-
scribes these curves and contains two summands, provide evidence in favour of this
interpretation. Moreover, the mixed(s + d)-wave order parameter has the symme-
try of the orthorhombic lattice and seems to be more natural for YBCO than a pure
d-wave order parameter, which has the symmetry of the tetragonal lattice.

A description of HTS properties based on the two-band model was suggested
by Kresin and Wolf [119]. This model is a generalization of the SC model to the
case of layered HTS, in particular YBCO, which has two subsystems, namely the
band of CuO2 planes (S-band) and the band of CuO chains (N -band). The density
of states in such a system as a function of temperature and impurity concentration
was analyzed by Adrianet al. [8].

Calculations of the microwave response [69, 9, 70] assumed strong electron–
phonon coupling in theS-band and weak superconductivity in theN -band induced
by the proximity effect. A system of coupled Eliashberg equations for thes-wave
order parameter and renormalization functions in each band was solved. The param-
eters in these equations were coupling constantsλij and coefficientsγij andγM

ij of
scattering from thei-th to j-th band due to nonmagnetic and magnetic impurities,
respectively.

In [69, 70] the number and values of parameters were selected using exper-
imental data on YBCO single crystals. For theS-bandλ11 = 3, in the N -band
λ22 = 0, and the nonvanishing gap in CuO chains is induced by the interband
coupling characterized by the parametersλ12 = λ21 = 0.2. This set of coupling
constants yieldsTc ' 92 K. Effects of interband scattering were considered to be
negligible: γ12, γ21 � Tc. Impurity scattering within each band,γ11, γ22, was
taken into account, alongside the scattering by magnetic impurities,γM

22 ≡ γM,
in the N -band only (γM

11 = 0), where oxygen atoms have a higher mobility and,
leaving the chains, they generate magnetic moments in uncompensated copper ions
Cu2+. The parameterγM is proportional to the concentration of magnetic impuri-
ties, whose quantity increases with decreasing oxygen content in the sample. The
constants of elastic relaxation were considered to be equal,γ11 = γ22 ≡ γimp, and
estimated taking the absolute value and anisotropy of YBCO conductivity in the nor-
mal state, namely, the estimate2 ≤ γimp/Tc ≤ 4 derived from the measurement
50 ≤ ρ(100 K)≤ 100 µΩ cm and the resistivity anisotropy factor in theab-plane
equal to 2. Note thatγimp is not equal toΓ = 1/2τ(0) in the one-band models
discussed above. The calculated constants of inelastic scattering were automatically
proportional toT 3 [69, 70], since the Debye phonon spectrum was used and vertex
corrections were neglected. Thus the large set of parameters initially included in
the Eliashberg equations for the two-band model reduced to four numbersλ11, λ12,
γimp, andγM, two of which (λ11 = 3 andλ12 = 0.2) were constant, whereasγimp

andγM varied.
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Figure 3.39Comparison between calculated curves (γM = 0.2Tc) of σ2(T )/σ2(0) and experimental
data from [134] (triangles) and [32] (circles): (1)γimp = 2Tc; (2) γimp = 4Tc; (3) γimp = 8Tc,
(4) γimp = 20Tc. The inset (γimp = 2Tc) demonstrates a cross-over from the exponential (curves 1,
γM = 0, and 2,γM = 0.1Tc) to linear (curve 3,γM = 0.4Tc) curve of∆λab(T ) due to increasing
concentration of magnetic impurities. Squares in the inset plot data from [112].

Figure 3.39 shows calculations and measurements given in [134] and [32] (Fig-
ure 3.33A) of the functionσ2(T )/σ2(0). For all curves (1–4)γM = 0.2Tc = const,
and the only parameter varying from one curve to another isγimp: 2Tc (1), 4Tc (2),
8Tc (3), and20Tc (4). The effect of magnetic impurity scattering (depending on the
content of oxygen in YBCO) is demonstrated by the inset to Figure 3.39 and can be
described as follows. In a sample saturated with oxygen, there are no magnetic scat-
terers in the chains (N -band),γM = 0. In this case, the calculation by the two-band
model (curve 1 in the inset) and the experimental data () obtained using a YBCO
thin film [112] yield an exponential temperature dependence∆λab(T ) for T � Tc,
owing to the small width of the energy gap induced in theN -band.

Note that an exponential dependence∆λ(T ) has been detected in the experi-
ment [112] with well oxygenated epitaxial YBCO films, which degraded very rapidly
[83], and in strained YBCO films on CeO2-buffered sapphire substrates [81]. No
such behaviour has been observed in the best HTS crystals. The thermally activated
behaviour ofσs(T ) andRs(T ) is incompatible with a pured-wave symmetry of the
order parameter.

A light doping with magnetic impurities (γM = 0.1Tc, curve 2 in the inset to
Figure 3.39) leads to a large slope of∆λab(T ), but does not radically change the
curve shape. A further increase inγM (depletion of oxygen) makes the supercon-
ducting state in the chains gapless, and the function∆λab(T ) becomes linear in the
temperature rangeT > 0.05Tc ≈ 5 K. A linear section of the∆λab(T ) curve in the
low temperature range is also shown in Figure 3.6, where the curve calculated on
the base of the model under discussion (γM = 0.3Tc, γimp = 4Tc) is compared to
measurements of a YBCO thin film at a frequency of 87 GHz [154]. At a sufficiently
highγimp, the contribution of theN -band to the field penetration depth vanishes, and
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Figure 3.40Solid line: temperature dependence of the real part of the conductivityσ1/σn calculated by
the two-band model withγs

22 = 0, γ11 = γ22 = 6 meV. Open circles: experimental data from [154].

Figure 3.41Comparison of the temperature dependence of the surface impedance (solid lines) calculated
by the two-band model (γs

22 = 0, γ11 = γ22 = 6 meV) with experimental data from [154]. Open
squares are the real (Rs) and open circles are the imaginary (Xs) parts of the impedance.

the function∆λ(T ) becomes close to that predicted by the SC model:∆λ(T ) ∝ Tn

with the exponentn > 2 [116, 52]. A crossover from a linear∆λ(T ) to a power
function withn = 4 with increasing impurity concentration was observed in [187]
with YBCO crystals with some Y atoms replaced by Pr ions.

The complex conductivityσs = σ1 − iσ2 of a two-band superconductor is a
combination of conductivities in theS-band (σS

s = σS
1 − iσS

2 ) andN -band (σN
s =

σN
1 − iσN

2 ):

σs = σS
s + ζσN

s , ζ =
νSmN

νNmS
, (3.62)
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Figure 3.42 Evolution of σ2(T )/σ2(0) curves due to changes in the interband scattering constantγ.
Calculations are made by the two-band model with ad-wave order parameter in theS-band and ans-
wave order parameter in theN -band [72].

whereνS,N andmS,N are the densities of states and effective masses of carriers
in the respective bands. Numerical calculations ofσ1(T ) andZs(T ) shown in Fig-
ures 3.40 and 3.41 were performed in [70] and are in satisfactory agreement with
measurements of YBCO films [154], although these data have not been carefully an-
alyzed as yet in the range of low temperatures and nearTc. Physically the emergence
of the maximum inσ1(T ) in the present model is due to interplay between strong
T -dependent scattering andT -dependent quasiparticle number in theN -band. An
additional physical mechanism, which contributes to the maximum ofσ1(T ), is the
presence of the coherence factors in theN -band since the electron–phonon interac-
tion in this band is weak.

Even though the two-band model has its uncontested advantages, attempts to
apply it to the microwave response of tetragonal HTS single crystals is problematic
since, unlike YBCO, they contain no chains and, therefore, no magnetic scatterers
like Cu2+ ions in YBCO. Meanwhile, magnetic impurities play an essential role:
scattering by these impurities reduces the gap in theN -band to zero and leads to the
linear temperature dependence of∆λab for T � Tc. There is no such problem with
d-wave superconductors. Moreover, it seems that the experimental curves ofZs(T )
andσs(T ) in YBCO in the intermediate temperature range cannot be interpreted in
terms ofs-pairing in both bands. Therefore, an option with ad-wave order parameter
in one of the bands turns up as a matter of course. An attempt to introduce such an
order parameter was made in [72], and the results of calculations ofσ2(T )/σ2(0)
are plotted in Figure 3.42. The curves were calculated using a two-band model with
a d-wave superconducting gap in theS-band ands-wave symmetry in theN -band.
The model parameters wereλ11 = 3, λ22 = 0.5, ζ = 0.5 in (3.62), and only
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the constants of interband scatteringγ12 = γ21 ≡ γ were included. The solid
line in Figure 3.42 shows a feature atT ≈ 0.6Tc, which vanishes as the disorder
increases. A similar approach was employed by Srikanthet al. [186] in interpreting
their experimental data, in particular, for the phenomenological description of the
curve in Figure 3.33C.

Recently microwave properties of HTS materials have been attracting more
attention of researchers [41, 46, 108, 24, 160, 149, 49, 152] because of intriguing
effects that are tentatively attributed to the mixed(s + d)-wave symmetry of the or-
der parameter. Most studies were concentrated on the low temperature variation of
the London penetration depth in superconductors having a mixed symmetry order
parameter. In particular, it was shown in [149] that the low temperature properties of
λ(T ) can be used to distinguish between a pured-wave order parameter or a(s+id)-
one having a small subdominants-wave contribution in systems with a tetragonal
lattice. Moreover, an addition of impurities suppresses thed-wave symmetric part
to the benefit of thes-wave one. As a result, a variety of low-temperature depen-
dences is possible for various impurity concentration, which allows in principle to
determine whether the order parameter of a superconductor with an orthorhombic
lattice is (s+ id) symmetric or (s+d) symmetric [25]. In [24] the (d+s)-model was
generalized in order to take into account the normal state anisotropy. This is the re-
alistic approach to the high-Tc cuprates with an orthorhombic distortion since recent
microwave conductivity data suggest that substantial portion of theab-anisotropy of
λ(T ) is a normal state effect. It was shown that such an anisotropy reacts not only
on theab-anisotropy in the transport coefficients but also on the density of states and
other thermodynamic quantities. The possible temperature variation of the penetra-
tion depthλ(T ) was analyzed recently in [152] in the framework of the (d+s)-model
of hybrid pairing. The slope of the∆λ(T ) ∝ T for T � Tc and its dependence on
the∆s/∆d admixture in the gap function was analyzed quantitatively taken into ac-
count the impurity scattering, while the quantitative comparison of the model with
the experimental data was not yet performed. More interesting discoveries in this
field of research can be expected in the immediate future.

3.7 CONCLUSION

We have presented a summary of measurements of the surface impedanceZs(T ) =
Rs(T ) + iXs(T ) in the ab-plane of high-quality YBCO, BSCCO, TBCCO, and
TBCO single crystals in the temperature range4.2 ≤ T ≤ 150 K and of their present
theoretical interpretations. For the frequencies. 10 GHz, the common features of
all these materials are the linear temperature dependence of the surface resistance
(∆Rs(T ) ∝ T ) and of the surface reactance(∆Xs(T ) ∝ ∆λab(T ) ∝ T ) at tem-
peraturesT � Tc, their rapid growth asT → Tc, and their behaviour in the normal
state corresponding to a linearT -dependence of∆ρab(T ), with Rs(T ) = Xs(T ) =√

ωµ0ρ(T )/2 (with possible exception of TBCO crystals). There are differences
between theT–dependence ofZs(T ) in BSCCO, TBCCO, or TBCO single crystals
with tetragonal lattices and in YBCO crystals with an orthorhombic lattice. The lin-
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ear resistivity region extends to nearTc/2 for the tetragonal materials and terminates
near or belowT < Tc/3 for YBCO. At higher temperature,Rs(T ) of YBCO has
a broad peak. In addition, theλab(T ) curves of some YBCO single crystals have
unusual features in the intermediate temperature range.

We have also presented an analysis of the existing microscopic theories of the
high-frequency response of HTS materials. We argue that there is no microscopic
theory explaining the temperature dependence ofZs(T ) for different HTS’s, whereas
these data are well described by a phenomenological modified two-fluid model,
which takes into account scattering of quasiparticles and characteristic changes in
the density of superconducting carriers at low temperatures and in the vicinity of the
critical temperature. The underlying ideas of this model may be essential for a future
microscopic model of the microwave response of HTS materials.

Only microwave properties of HTS crystals of the highest quality and with
optimal doping levels have been discussed, because large amount experimental data
concerning these materials has been accumulated by this time. For this reason, we
have set aside three issues, which are, in our opinion, quite important and worth
mentioning at the end of this review.

Firstly, the explanation of the nature of the residual microwave losses, which
determine the behaviour of the real part of conductivityσ1(T ) at T < Tc, has re-
mained a topical problem in the HTS physics.

Some researchers (e.g., Heinet al. [81]) attributed these losses to the presence
of a fractionn0 of carriers that remain unpaired atT = 0. The magnitude ofRres

was estimated by the first formula of (3.17) with the nonzero conductivityσ′(0) =
n0e

2τ(0)/m from (3.9). One can easily prove, however, that this approach requires
that the calculations ofRres should satisfy inequality (3.46). If the latter condition
is not met, which may occur in HTS crystals, as was shown previously (see, e.g.,
Figure 3.35), the numbern0 should be larger than the entire concentrationn of the
carriers.

The effect of the sample surface conditions on theZs(T ) signal has not been
studied experimentally, although there are several phenomenological [77, 163, 207,
138, 140, 96, 204, 82] and microscopic [136, 189, 20, 21, 61, 68] models indicating
the importance of such studies. For example, the theory [68] predicts that in the
case of diffuse scattering on the surface, ans-wave component can be added to the
bulk d-wave order parameter in the region near the sample surface. A comprehen-
sive review of various manifestations of the surface bound states in unconventional
superconductors is given recently by Kashivaya and Tanaka [106]. In developing the
traditional approach to the problem, which attributed the residual surface resistance
to various imperfections of the surface, the researchers took account of the losses
due to weak links [86, 162, 76], twinning planes [76, 205], clusters with normal
conductivity [206], etc. Numerical estimates, however, indicate that the contribu-
tions of these mechanisms to the residual surface resistance are much smaller than
the measuredRres in HTS materials. Moreover, a very remarkable fact is that the
residual surface resistance measured at a frequency of 10 GHz was approximately
the same,Rres ∼ 100 µΩ, in all high-quality copper-oxide HTS crystals of dif-
ferent chemical compositions and fabricated by different methods, irrespective of
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whether they contained twinning planes or not, and whether measurements were
performed on freshly cleaved or as-grown surfaces. This fact, apparently, indicates
that the residual losses are inherent in all high-quality HTS crystals, and their ori-
gin is in the features of their structure, namely, in its conspicuously layered nature
[191].

Secondly, the evolution of the temperature dependenceZs(T ) with changes
in the doping level from the optimal value has not been studied sufficiently. No mi-
crowave measurements of one and the same crystal but with a variable and controlled
carrier concentration are available. At the same time, such data are essential for the-
oretical studies aimed at creating a microscopic theory of HTS, because they would
shed light on such problems as possible changes in the order parameter symme-
try [156, 129], evolution of the pseudogap [95, 155, 211], superconductor-dielectric
transition [63], etc.

Thirdly, measurements of the surface impedance anisotropy, which have been
scarce by now, have not been discussed, although several experiments have provided
evidence in favour of different temperature dependences of the surface impedance
in theab-plane and along thec-axis [134, 97, 179, 175, 30, 110, 181, 110, 31, 188,
92, 191, 109, 62]. The theory [115, 69, 70, 19, 4, 166, 213, 90] predicts different
scenarios for processes in HTS in the microwave band, depending on the mecha-
nism responsible for the anisotropy, and therefore a comparison between theoreti-
cal data and accurate microwave measurements would, undoubtedly, be very help-
ful.

The solutions to the problems listed above will probably determine the devel-
opment of experimental and theoretical research of the microwave response of HTS
materials in the immediate future and that will result in a universal approach to mi-
crowave properties of HTS.
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