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INTRODUCTION

Despite a certain progress in elucidating the physi-
cal properties of high-temperature superconductors
(HTSC), no consistent microscopic theory has been
developed to date that would be capable of explaining
the totality of available and firmly established experi-
mental data even for a relatively narrow region of the
phase diagram corresponding to optimum-doped HTSC
materials and maximum critical temperatures 

 

T

 

c

 

. A fun-
damental problem of type of superconducting interac-
tion in HTSC also remains to be solved. There is much
controversy over the symmetry of the order parameter,
the mechanisms of quasiparticle relaxation, and the
role of impurities and anisotropy in HTSC materials.
Among the experimental methods of studying these
problems are measurements of the linear microwave
response of HTSC single crystals, i.e., studies of the
temperature dependences of the surface impedance
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s
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) = 
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) and complex conductivity 

 

σ
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) =
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''(
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) at microwave (MW) frequencies and low
(<0.1 Oe) amplitudes of ac field. It is known that the
precise measurements of 

 

Z

 

s

 

(

 

T

 

) in classical supercon-
ductors proved to be quite informative: the gap 

 

∆

 

 was
derived from the temperature dependence of surface

resistance 

 

R

 

s
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∝

 

  at 
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 < 

 

T
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/2, the field penetra-
tion depth 

 

λ

 

(
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) into a superconductor was derived from
the reactance 

 

X

 

s
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) = 

 

ωµ

 

0

 

λ
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) at 

 

T

 

 < 

 

T
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, and the elec-
tron mean free path was determined by measuring

 

R

 

s

 

(

 

T

 

) and 

 

X

 

s

 

(
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) in the normal state (

 

T

 

 

 

≥

 

 

 

T

 

c

 

). The appli-
cability of the Bardeen–Cooper–Schrieffer (BCS) the-
ory [1] to classical superconductors was clearly demon-
strated by the nonmonotonic behavior (coherence peak)
of the microwave conductivity 

 

σ

 

'(

 

T

 

) at 0.8 < 

 

T

 

/

 

T

 

c

 

 

 

≤

 

 1.
However, even the early studies of the impedance and
conductivity of HTSC materials did not fit into the BCS

e
∆/kBT–

 

theory: there was no coherence peak in 

 

σ

 

'(

 

T

 

) and, instead
of exponential behavior at low temperatures, 

 

Z

 

s

 

(

 

T

 

) exhib-
ited power law temperature dependence. A linear depen-
dence of the penetration depth 

 

∆λ

 

ab

 

(

 

T

 

) 

 

∝

 

 

 

T

 

 at 

 

T

 

 < 25 K,
first observed in 1993 in [2] for the 

 

ab

 

 plane of
YBa

 

2

 

Cu

 

3

 

O

 

6.95

 

 single crystals, has initiated wide specu-
lation on the symmetry of the order parameter in HTSC
materials.

In this work, I will focus on the fundamentals of the
method for measuring impedance and the general prop-
erties and features of the 

 

Z

 

s

 

(

 

T

 

) and (

 

T

 

) curves in the
normal and superconducting states of different HTSC
crystals and discuss the phenomenological model for
the description of their microwave response. Emphasis
will be on the problems of residual surface resistance,
unusually large change 

 

∆

 

X

 

s

 

(

 

T

 

) > 

 

∆

 

R

 

s

 

(

 

T

 

) in some HTSC
crystals, and conductivity anisotropy.

MEASURED QUANTITIES AND SAMPLES

In the centimeter and millimeter wavelength ranges,
the surface impedance of small-sized HTSC samples
with a surface area of ~1 mm

 

2

 

 is measured by the so-
called hot-finger method. A sample mounted on a sap-
phire rod was placed in the center of a cylindrical cavity
made from Nb and operating at frequency 

 

f

 

 = 9.42 GHz
in the 

 

H

 

011

 

 mode; i.e., the sample was placed in the
maximum of a uniform microwave magnetic field 

 

H

 

ω

 

[3]. The temperature of the rod and the sample was var-
ied from helium to room temperature without heating
of the cavity, which was washed from outside by liquid
helium and was always in the superconducting state. At
some steady-state temperature 

 

T

 

, the microwave power
passed through the cavity was recorded as a function of
frequency (resonance curve), from which was derived,
in the first run, the 

 

Q

 

 factor 

 

Q

 

s

 

(

 

T

 

) and the frequency
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f

 

s

 

(

 

T

 

) of the cavity with the sample inside and, in the
second run, 

 

Q

 

e

 

(

 

T

 

) and 

 

f

 

e

 

(

 

T

 

) of the cavity without the
sample. The accuracy of measuring the 

 

Q

 

 factor
~107 was no worse than 1%, and the accuracy of deter-
mining the resonance frequency was ~10 Hz. The tem-
perature dependences of the surface resistance Rs and
reactance Xs of the sample are found from the relation-
ships

(1)

(2)

where Γs is the geometric factor of the sample and δf is
the frequency difference between the cavity with the
sample and the cavity with an ideal conductor, identical
in shape and size, into which the magnetic field does
not penetrate. The δf value differs from the difference
between the measured resonance frequency shifts
∆fs − ∆fe = ∆f by a constant f0, which accounts both for
frequency drift caused by the ideal conductor and for
irreproducible changes in the cavity reference fre-
quency upon putting in and taking out the sample. It
follows from Eqs. (1) and (2) that, to determine the
Rs(T) and Xs(T) values from the measured Q(T) and
∆f(T) values, two quantities need to be known: Γs and
f0. The geometric factor Γs depends on the shape and
size of the crystal and on its orientation about the field
Hω in the cavity. The experimental and theoretical
methods of determining Γs are known [3]; by order of

Rs T( ) Γ s∆ 1/Q( ) Γ s Qs
1– T( ) Qe

1– T( )–[ ] ,= =

Xs T( ) 2Γ s
δf
f

-----–
2Γ s

f
-------- ∆ f s T( ) ∆ f e T( )– f 0–[ ] ,–= =

magnitude, it is equal to tens of kiloohms at frequencies
~10 GHz. The f0 constant can be determined from the
measurements of the microwave response in the normal
state (see below).

This work will consider the results of measuring the
temperature-dependent impedance and conductivity of
HTSC copper oxide crystals as platelets with transverse
dimensions a ~ b ~ 1 mm and thickness c ~ 0.1 mm:
YBa2Cu3O6.95 (YBCO, Tc ≈ 93 K), Bi2Sr2CaCu2O8 + δ
(BSCCO no. 1, Tc ≈ 83 K and BSCCO no. 2, Tc ≈ 92 K),
Tl2Ba2CaCu2O8 – δ (TBCCO, Tc ≈ 112 K), and
Tl2Ba2CuO6 + δ (TBCO, Tc ≈ 90 K). Except for slightly
overdoped BSCCO crystal no. 1, whose experimental
dependences Rs(T) and ∆λab(T) = ∆Xs(T)/ωµ0 in the
ab plane are shown in Fig. 1, the compositions of all
other crystals corresponded to the optimum doping.

Problem 1. The residual surface resistance Rres =
Rs(T  0) deserves attention because it determines
the quality of a crystal. Whereas the Rres value in clas-
sical superconductors is clearly defined as a level of the
plateau in the Rs(T) curve at T < Tc/4, no such plateau
occurs in the HTSC crystals, so that by Rres is meant the
Rs(T = 0) value obtained by extrapolating the linear por-
tion of the Rs(T) curve at T ! Tc to zero temperature
(inset in Fig. 1). It was experimentally established for
classical superconductors that Rres ∝  ω2 and is deter-
mined by various defects in the surface layer of the
sample [4, 5]; based on this fact, it is usually agreed that
the smaller Rres the higher the sample quality. In HTSC
materials, the residual resistance also varies quadrati-
cally with frequency, but it exceeds the Rres value in
usual superconductors by a factor of several tens even
in the best crystals. When it is considered that the Rres

value has failed to be noticeably reduced over the last
5–7 years of developing the methods of growing HTSC
crystals and, in addition (see below), that the tempera-
ture behavior of conductivity σ'(T) in the samples of
identical chemical composition changes radically with
changing Rres, then it becomes clear that elucidation of
the nature of residual losses in HTSC materials is a
highly topical problem.

At T > 4 K, the relation between the electric field
and the current density in the normal and superconduct-
ing states of the HTSC materials has a local character:
j = E, where  is the conductivity tensor which has
only two components in a tetragonal crystal, i.e., the
conductivity σab in the CuO2 ab plane and σc across the
cuprate planes. In the hot-finger method, the compo-
nents of the  tensor can be found by measuring the
microwave response for two crystal orientations about
the direction of the Hω field: the transverse (T) Hω || c
(Fig. 2a) and the longitudinal (L) Hω ⊥  c (Fig. 2b) ori-
entations.

σ̂ σ̂

σ̂

Fig. 1. Surface resistance Rs(T) in the ab plane of BSCCO
crystal no. 1 at a frequency of 9.4 GHz. Inset: ∆λab(T) and
Rs(T) dependences at low T. The residual surface resistance
Rres ≈ 120 µΩ is indicated.
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ANALYSIS OF EXPERIMENTS
WITH TRANSVERSE ORIENTATION

Surface impedance. Let us first consider the T ori-
entation, for which the high-frequency currents circu-
late in the ab plane (Fig. 2a). At frequencies ~10 GHz,
the field penetrates into the HTSC sample to a skin
depth δab ~ 5 × 10–3 mm at T ≥ Tc and to a depth of
λab ~ 10–4 mm at T < Tc. Since both values are much
smaller than the crystal thickness c, one can consider

the crystal impedance  in the T orientation as a
coefficient in the Leontovich boundary condition [6] at
any temperature and use the local relationship

(3)

for the relation between the impedance and the conduc-
tivity σab. If the microwave conductivity of HTSC is
real at T ≥ Tc, then the f0 constant [see Eq. (2)] for the T
orientation can be found, according to Eq. (3), from the
condition that the imaginary and real parts of imped-
ance are equal in the normal state, i.e., by fitting the
temperature dependence Rs(T) to ∆Xs(T) at T ≥ Tc. This
expedient was used to determine the Xs(T) values for
BSCCO crystal no. 2 over the entire temperature range
(Fig. 3). It should be taken into account that the temper-
ature behavior of the reactance in the T orientation may
be noticeably affected by the thermal expansion of the
crystal. Since the resonance frequency is determined by
the volume occupied by the field, the crystal expansion
is equivalent to a decrease in the penetration depth and,
thus, leads to an additional frequency shift ∆ft in the
square brackets in Eq. (2). It is shown in [3] that,
although the contribution of ∆ft to the total frequency
shift of the cavity is negligible at low temperatures, it
becomes noticeable at T > 0.9Tc, especially for the
strongly anisotropic HTSC crystals. The Xs(T) depen-
dence in Fig. 3 is constructed with allowance made for

Zs
ab

Zs
ab Rs iXs+ iωµ0/σab( )1/2= =

the thermal expansion of BSCCO crystal no. 2. Other-
wise, i.e., without the ∆ft term in Eq. (2), the reactance
curve coincides with the curve in Fig. 3 only up to T ≈
Tc, while its slope at T > Tc becomes smaller and at T =
150 K the discrepancy is as large as 25 mΩ .

The condition Rs(T) = Xs(T) for the normal skin
effect was experimentally proved for the BSCCO
[7−9], YBCO [7, 10–12], TBCCO [13], LaSrCuO [14],
and BaKBiO [15] crystals at T ≥ Tc in the T orientation.
All temperature dependences Rs(T) of the HTSC crys-

tals at T ≥ Tc fit the formula 2 (T)/ωµ0 = ρab(T) =Rs
2

Fig. 2. (a) Transverse (T) crystal orientation, Hω || c. Arrows indicate the direction of high-frequency currents. (b) Longitudinal (L)
orientation, Hω ⊥  c.

Fig. 3. Rs(T) and Xs(T) for T-oriented BSCCO crystal no. 2
at a frequency of 9.4 GHz. Inset: λab(T) and Rs(T) depen-
dences at low temperatures.
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ρab(0) + bT well. For instance, ρab(0) ≈ 13 µΩ cm and
b ≈ 0.3 µΩ cm/K for BSCCO crystal no. 2.

Problem 2. The behavior of Zs(T) for the TBCO
[16, 17] and HgBaCuO crystals is also under debate.1

Even if one achieves coincidence between the Rs(T)
and ∆Xs(T) curves at T ≥ Tc, i.e., Rs(T) = Xs(T), the vari-
ation ∆Xs(T) of the reactance in the superconducting
state T < Tc proves to be so much larger than ∆Rs(T) that
Xs(0) becomes negative. In addition, the problem is
complicated by the lack of literature data for the ther-
mal expansion coefficients of the TBCO and HgBaCuO
crystals. If one assumes that at T > Tc the corresponding
coefficient for the cuprate planes of TBCO is the same
as in the BSCCO [18] or TBCCO [19] crystal and takes
account of the ∆ft(T) shift in Eq. (2), then the Rs(T) and
Xs(T) curves in the normal state of TBCO become
mutually parallel. However, an attempt at achieving
coincidence through satisfying the condition for the
normal skin effect leads to the Xs(0) = ωµ0λab(0) < 0
value. Therefore, the problem amounts to revealing
either the cause for the appearance of a negative incre-
ment dXs < 0 at T < Tc that must be subtracted from the
measured ∆Xs(T) curve in order to obtain the true value
Xs(T) > 0 for the reactance coinciding with Rs(T) at T >
Tc or the cause explaining the positive difference
Xs(T) – Rs(T) in the normal state of TBCO and provid-
ing a reasonable value Xs(0) > 0. In this respect, the fol-
lowing two growth and structural features of the TBCO
crystals distinguish them from BSCCO. It is known
that the so-called cleavage planes may crop out at the
surface of the TBCO crystal, whereas the surface of the
BSCCO crystal is smooth. If the traces of these planes
form ridges (valleys) in the form of extended channels
at the surface and if the sizes (height, width, spacing) of
these roughnesses exceed the penetration depth for the
field normal to the surface, then, as shown in [5], field
screening by such roughnesses gives rise to a negative
addition dXs < 0 to the measured reactance Xs(T). With
a rise in temperature, the penetration depth increases
and, at a certain T* < Tc, reaches the roughness size. For
this reason, the addition dXs to the reactance can be
ignored at T > T*. Another possible reason why the
measured Xs(T) value is larger than Rs(T) in the normal
state of TBCO is the size effect in the T orientation. The
unit cell of BSCCO contains two conducting CuO2

planes, while the unit cell of TBCO, though being of
approximately the same size, contains only one such
plane. If the high-frequency currents mainly decay in
these planes, then the screening thickness c* of the
TBCO crystal will be less than its actual thickness c and
might be comparable with the skin depth. One can
expect from the solution of the electrodynamic problem
of field distribution in a T-oriented thin plate that,

1 S. Sridhar, private communication.

owing to the size effect, the measured effective (T)

value is greater than the effective (T) at T ≥ Tc.

The conductivity σab in the superconducting state is
a complex value, and, according to Eq. (3), the real Rs
and imaginary Xs parts of the impedance are not equal
to each other:

(4)

where ϕ = 1 + (σ'/σ'' )2. Evidently, Rs(T) < Xs(T) at T <
Tc. For σ' ! σ'', which is the case in the temperature
range not too close to Tc, one has from Eq. (4)

(5)

The linear dependence of the reactance ∆Xs(T ) ∝
∆λab(T ) ∝  T and the linear dependence of the surface
resistance ∆Rs(T) ∝  T at frequencies ~10 GHz and
below are the regularities common to all HTSC crystals
at T ! Tc (see Figs. 1, 3 and reviews [3, 20–22] and ref-
erences therein). The slopes of the ∆λab(T) straight
lines at T ! Tc are different. For example, in the YBCO
crystals prepared by different methods, the slopes for
∆λab(T) may diverge by approximately an order of
magnitude [12, 23, 24]. The Zs(T) curves for the
BSCCO, TBCCO, and TBCO crystals with tetragonal
lattice also differ from those for the orthorhombic
YBCO crystals. Whereas the linear dependence
∆Rs(T) ∝  T at frequencies ~10 GHz for the first of them
may extend up to Tc/2 (Figs. 1, 3), in YBCO it termi-
nates at T < Tc/3 and gives way to a broad peak in Rs(T)
(Fig. 4). With an increase in frequency, the peak shifts
to higher temperatures and its amplitude decreases. It is
also known that the higher the quality of the YBCO
crystal the larger the peak amplitude and the lower the
temperature of its occurrence [25]. Finally, the λab(T)
[12, 23] and Rs(T) [23] curves for single crystal YBCO
show some features in the intermediate temperature
range T ~ Tc/2.

Complex conductivity. The σ'(T) and σ''(T) com-
ponents are not determined directly from the experi-
ment but can be found from Eq. (4) after measuring,
according to Eqs. (1) and (2), the Rs(T) and Xs(T) val-
ues:

(6)

Xs
eff

Rs
eff

Rs T( )
ωµ0 ϕ1/2 1–( )

2σ''ϕ
---------------------------------,=

Xs T( )
ωµ0 ϕ1/2 1+( )
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It should be emphasized that, to determine the con-
ductivity components, it is necessary to know the Rs(T)
and Xs(T) values in absolute units. At temperatures not
too close to Tc, Rs(T) ! Xs(T) for the HTSC crystals.
Consequently, the σ''(T) curves are determined solely
by the Xs(T) = ωµ0λ(T ) function and reflect the main
features of the temperature behavior of the penetration
depth, namely, its linear temperature dependence at low
temperatures for all high-quality HTSC crystals and the
features observed for YBCO in the intermediate tem-
perature range. The shape of the (T ) curve depends
on the residual surface resistance Rres. It follows from

Eq. (6) that (T ) has a maximum at T < Tc if [22]

(7)

As Rres increases, the peak in the (T ) curve shifts to
lower temperatures and disappears when Rres reaches
the value equal to the right-hand side of Eq. (7). If the
Rres value for the crystal is such that inequality (7)

breaks, the conductivity (T ) becomes a monotoni-
cally decreasing function of temperature at T < Tc. Fig-

ure 5 demonstrates both possible shapes of the (T )
curves at a frequency of 9.4 GHz, namely, the peak for
BSCCO crystal no. 1 (Fig. 5a, Rres ≈ 120 µΩ) and its
absence for BSCCO crystal no. 2 (Fig. 5b, Rres ≈
500 µΩ). The higher the crystal quality, the more pro-
nounced the conductivity peak at T < Tc. The (T )
curve in Fig. 6 corresponds to the Rs(T) dependence
obtained for the YBCO crystal at a frequency of
1.14 GHz (Fig. 4, Rres ~ 1 µΩ). Beginning with a steep

linear portion, the (T ) curve rapidly reaches its
maximum value, which always markedly exceeds the
conductivity σ'(Tc) in the normal state. As the fre-

quency increases, the peak in (T ) shifts to higher
temperatures and its amplitude decreases. At tempera-
tures close to Tc, the σ'(T) curve for the HTSC materials
is shaped like a narrow peak with width virtually coin-
ciding with the width of the superconducting transition
in the Rs(T) curve.

Modified two-fluid model (MTM). A simple way

of describing all the observed (T) and σab(T)
dependences was suggested in [15, 26] and further
developed in [3, 21, 22, 27, 28]. The idea consists in the
extension of a Gorter–Casimir (GC) two-fluid model
[29] to the HTSC materials, which are characterized by
high Tc values. In metals, the quasiparticle inelastic
scattering at such temperatures becomes essential and,
hence, the GC model should be naturally modified by
incorporating the temperature-dependent relaxation
time τ for the quasiparticles of a “normal fluid.”
Assuming that the scattering processes in this fluid are

σab'

σab'

Rres

Xs 0( )
3

-------------
dRs T( )
dXs T( )
------------------

T 0→
< .

σab'

σab'

σab'

σab'

σab'

σab'

Zs
ab

similar to those occurring in normal metals, we used
the Bloch–Grüneisen formula (electron–phonon scat-
tering) for the function τ(T) in the normal and super-
conducting states of HTSC and retained the tempera-
ture-independent impurity relaxation time τ(0), which
is present in the standard GC model:

(8)

where t ≡ T/Tc; κ = Θ/Tc (Θ is the Debye temperature);
and β is a numerical parameter equal, according to
Eq. (8), to τ(Tc)/[τ(0) – τ(Tc)]. Following the formal
analogy to metals, one can state that β characterizes the
“degree of purity” of HTSC material: β ≈ τ(Tc)/τ(0) ! 1
if τ(0) @ τ(Tc). It is shown in [22] that the parameter β
can be derived from the measured Rs(T) and Xs(0) val-
ues and the dRs/dT and dXs/dT slopes at T ! Tc. The Θ
temperature for HTSC is estimated at several hundred
degrees. At T < Θ/10 (κ > 10t), the second term in the
square brackets in Eq. (8) is proportional to T5 and at
T > Θ/5 (κ < 5t), it is proportional to T. Therefore, at
β < 1, the inverse relaxation time (coefficient of quasi-
particle decay) equals 1/τ(0) in the range T ! Tc and
monotonically increases with temperature following a
power law from ∝ T5 to ∝ T near Tc, thereby providing the
linear temperature dependence ∆ρab(T) ∝  1/τ(T) ∝  T at
T > Tc.

1
τ
---

1
τ 0( )
---------- 1

t5(5 κ /t( )/(5 κ( )
β

----------------------------------------+ ,=

(5 κ /t( ) z5ez zd

ez 1–( )2
--------------------,

0

κ /t

∫=

Fig. 4. Symbols correspond to the Rs(T) values measured in
the ab plane of YBCO crystal at different frequencies [25].
Solid lines correspond to the calculations by Eqs. (4), (8),
and (9) with κ = 9 and experimentally determined τ(Tc) =

10–13 s, β = 0.005, and ns(T)/n = σ''(T )/σ''(0). To the Rs(T)
value calculated for the upper curve (75.3 GHz) Rres =
0.3 mΩ was added.

R
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Despite the fairly simplified form of τ(T) chosen for
HTSC materials with a complex band structure, it turns
out that all common and specific features of the Rs(T)

and (T ) curves are adequately described by the
MTM with only one fitting parameter κ in Eq. (8).
Indeed, the conductivity components are

(9)

where nn(T) and ns(T) are the densities of the normal
and superconducting carriers, respectively (both have
the same charge e and mass m); the total concentration
n = nn + ns is equal to the concentration of charge carri-
ers in the normal state and is independent of T. Making
use of the measured dependence ns(T)/n = σ''(T )/σ''(0) =
λ2(0)/λ2(T) and, hence, determining the function
nn(T)/n = 1 – ns(T)/n, one can chose the κ parameter for
the sample of interest using Eqs. (8) and (9) to describe,
first by Eq. (4), all the above-mentioned experimental
Rs(T) curves and, next by Eq. (6), the real part (T )
of the conductivity for the T-oriented HTSC crystal.
The solid lines in Figs. 4–6 are examples of a compari-
son between the experimental and MTM curves.

Here, I should enlarge upon two important points
that have not yet been discussed but were implicitly
used in the calculations. First, account was taken of the

σab'

σ'
nne2τ

m
------------- 1

1 ωτ( )2+
-----------------------,=

σ''
nse

2

mω
--------- 1

nn

ns

----- ωτ( )2

1 ωτ( )2+
-----------------------+ ,=

σab'

inhomogeneous broadening δTc of superconducting
transition near Tc. This was done using the approach
that was suggested in [21, 22] and gave rise to a maxi-
mum of the effective conductivity σ'(T) at temperature
Tm = Tc – δTc close to the critical temperature. The rel-
ative amplitude of this peak [σ'(Tm) – σ(Tc)]/σ(Tc) is
inversely proportional to the frequency and decreases
with decreasing width (δTc) of the superconducting
transition [22].

Second, when comparing with the experimentally
measured surface resistance, the temperature-indepen-
dent Rres value was taken from the same experiment and
added to the Rs(T) value calculated using general

Eq. (4). That is why the (T ) curves calculated by
Eq. (6) do not turn to zero at T  0 in Fig. 5, although
the two-fluid model assumes that the density nn = 0 at
T = 0 and, according to Eq. (9), the conductivity σ'(0) =
0. The Rres value was not taken into account when com-
paring with the data in Figs. 4 (except for the upper
curve) and 6 because the corresponding Rres/Rs(T)
ratios are very small (less than 10–3). In most HTSC
crystals, Rres/Rs(Tc) > 10–3, so that the effect of the resid-
ual surface resistance becomes noticeable at T ! Tc.
One more reason for the inclusion of Rres is that the
ratio Rres/Rs(Tc) ∝  ω3/2 increases with frequency and
becomes appreciable for the upper curve in Fig. 4.

Problem 1 (continued). The question of the nature
of the residual losses remains open for HTSC materials.
In some works (see, e.g., [30]), the origin of these
losses was explained by the presence of a certain

σab'

Fig. 5. Symbols correspond to (T ) and (inset) (T) determined for BSCCO crystal nos. 1 and 2 by Eq. (6) using the measured

Rs(T) and Xs(T) values. Solid lines correspond to the calculations by Eqs. (8) and (9) with κ = 2 for BSCCO crystal no. 1 and κ = 3

for no. 2 and experimental values Tc = 83 K, δTc = 2.5 K, ωτ(Tc) = 7 × 10–3, β = 0.3, α = 1, and Rres = 120 µΩ for BSCCO no. 1 and

Tc = 92 K, δTc = 4.5 K, ωτ(Tc) = 9 × 10–3, β = 2, α = 2, and Rres = 500 µΩ for BSCCO no. 2.
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amount n0 of unpaired carriers in the sample at T = 0.
The Rres value was estimated by using Eq. (5) with non-
zero conductivity σ'(0) = n0e2τ(0)/m [Eq. (9) at (ωτ)2 ! 1].
However, it can easily be shown that the Rres values thus
determined must satisfy inequality (7); otherwise, as it
may occur for the HTSC crystals (see Fig. 5b), the n0
value would exceed the total carrier concentration n. In
many works developing the traditional approach
assigning the residual resistance to various surface
imperfections, the losses were explained by the pres-
ence of weak links [31–33], twin boundaries [33, 34],
normally conducting clusters [35], etc. However, esti-
mates show that the contribution from such losses is
small compared to the Rres values measured in the
HTSC materials. In addition, the residual surface resis-
tance is approximately the same in perfect HTSC cop-
per oxide crystals prepared by different methods or
having different chemical compositions, containing
twins or not, and with a freshly cleaved surface or
as-grown surface: Rres ~ 100 µΩ at a frequency of
10 GHz. This fact indicates that the origin of residual
losses has an “intrinsic” character and is inherent in all
high-quality HTSC crystals. It is most likely associated
with the structural features of these materials, namely,
with the pronounced layered structure of these com-
pounds. In other words, the current in the surface layer
of HTSC crystals may flow in a nonsuperconducting
part of the layer possessing a finite resistivity ρn. In the
model under discussion, this additional contribution
can be taken into account as a circuit element ρ con-
nected in parallel to the two-fluid circuit characterized
by Eq. (9), i.e., as a resistance ρ = 1/σ' shunted by a
kinetic inductance l = 1/ωσ'' (parallel connection of ρ
and l corresponds to the coupling adopted between cur-
rent and field in the two-fluid model). Evidently, the
complex circuit impedance consists of the imaginary
part iXs = iωµ0λ at T < Tc and the sum of two real terms:

Rs from Eq. (5) and R0 = ω2 λ3/2ρn. At T = 0, when
Rs(0) = 0, the latter can play the role of a residual sur-
face resistance Rres proportional to ω2, as it follows
from the experiments. At a frequency of 10 GHz and for
the Rres ≈ 100 µΩ and λ(0) ≈ 0.2 µm values typical of
HTSC crystals, one obtains a typical metallic value
ρn(0) ≈ 25 µΩ cm. According to the above-mentioned
procedure of comparison with the experimental Rs(T)
curves, one must also require that R0 be independent of
temperature at T ! Tc. This is possible if ρn(T ) ∝  λ3(T );
i.e., ρn(T ) should vary linearly with temperature at T !
Tc: ρn(t) = ρn(0)(1 + 1.5αt), where α is the slope of the
σ''(t) curve at t ! 1 in this sample:

(10)

The coefficients ρn(0) and 1.5αρn(0)/Tc in BSCCO
crystal no. 2 are approximately equal to the coefficients
ρab(0) and b in the expression ρab(T ) = ρab(0) + bT for
the resistivity of this sample in the normal state; i.e.,

µ0
2

σ'' t( )/σ'' 0( ) λ2 0( )/λ2 t( ) . 1 α t–( )= .

ρn(T ) ≈ 2R2(T )/ωµ0, where R(T) is the continuation of
the Rs(T) line at T > Tc (Fig. 3) to the superconducting
region T < Tc (down to T = 0).

It would be appropriate to close the discussion of the
MTM by writing formulas describing the experimental
data ns(T )/n = σ''(T)/σ''(0), which were used for calculat-

ing Rs(T) and (T ) in the T orientation. There are sev-
eral variants of such empirical formulas [3, 21, 22, 26, 27].
All of them have the form of Eq. (10) at T ! Tc, because

all (T) curves for HTSC single crystals are character-
ized by the linear dependence at low temperatures.

Thus, the model based on Eqs. (8)–(10) adequately
describes the general properties of the Zs(T) and σab(T)
curves for high-quality HTSC crystals. It follows from
these formulas that all curves have a linear portion at
t ! 1: σ' ∝  αt/β, because nn/n ≈ αt and τ ≈ τ(0) ≈
τ(Tc)/β; ∆σ'' ∝  –αt; Rs ∝  αt/β according to Eq. (5); and
∆Xs ∝  ∆λ ∝  αt/2. As the temperature increases, the
σ'(t) function passes through a maximum at t < 0.5 if
the residual surface resistance Rres is so small that ine-
quality (7) is fulfilled. This peak arises from the super-
position of two opposite effects: a decrease in the num-
ber of normal carriers with decreasing temperature at
t < 1 and an increase (terminating at t ~ β1/5) in the
relaxation time. If Eq. (7) is not fulfilled, σ'(t) mono-
tonically decreases with temperature elevation. This
model also describes the temperature dependences of
the surface impedance and the complex conductivity of
YBCO single crystals grown by different methods. The
postulates and consequences of the MTM are analyzed
in recent works [21, 22] from the viewpoint of modern
microscopic theories of the microwave response of
HTSC materials.

σab'

σab''

Fig. 6. (Circles) (T ) for YBCO crystal at a frequency of
1.14 GHz [25] and (solid line) the calculation by Eqs. (8)
and (9) with κ = 9, τ(Tc) = 10–13 s, β = 0.005, and δTc =
0.4 K.
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CONDUCTIVITY OF HTSC CRYSTALS
ALONG THE c AXIS

Problem 3. Let us now consider the L orientation of
a crystal with respect to the Hω field in the cavity, Hω ⊥  c
(Fig. 2b). In the superconducting state, the high-fre-
quency currents flowing in the ab planes decay at a
depth of λab, while the c-directed currents decay at a
depth of λc. At T < 0.9Tc, these values are small com-
pared to the characteristic sizes of the crystal, allowing

one to introduce the effective impedance  for the
L orientation, defined as a surface-averaged value

 . (b  + c )/(b + c), where the superscripts
on Zs indicate the directions of screening currents. By

Zs
ab c+

Zs
ab c+ Zs

ab Zs
c

measuring (T) in the T orientation and  in the

L orientation, one can determine the losses (T ) and

a change ∆λc(T ) = ∆ (T )/ωµ0 [8, 10, 14, 36–39]. To
determine λc(T), one is forced to invoke the results of
independent measurements of λc(0). The literature data
on the low-temperature behavior of ∆λc(T) are contro-
versial. Both linear dependence ∆λc(T) ∝  T at T < Tc/3
[36, 39] and quadratic dependence [40] were observed
even for the most extensively studied YBCO single
crystals. In BSCCO crystals, the behavior of ∆λc(T)
depends on the level of doping with oxygen: in the
crystals with maximal Tc . 90 K the linear dependence
∆λc(T) [8, 9, 38] converts into quadratic [38] as the
oxygen content increases.

In recent work [40], detailed measurements of the
impedance anisotropy were carried out and the conduc-
tivity components along the crystallographic axes were
found for the optimum-doped untwinned YBCO crys-
tals. In [28], we undertook an attempt at applying the
MTM to the totality of experimental data obtained in
[40]. For the real parts of the conductivity tensor, the
comparison is shown in Fig. 7 [28]. The peak in (T)
is absent because the temperature dependence of the
relaxation time of normal quasiparticles along the
c axis is very weak at T < Tc; i.e., τc(T) ≈ const and
βc @ 1 in Eq. (8). Moreover, since the inductive losses
due to the large λc value markedly exceed the active

losses (small  and  values), it is likely that the
microwave c-response is mainly caused by the tunnel-
ing of Cooper pairs between the CuO2 planes. Note
that, according to the measurements in [40], the surface

resistance (T) < (T ) in the range 10 < T < 65 K.
However, in all previous works, the loss measurements

Zs
ab Zs

ab c+

Rs
c

Xs
c

σc'

Rs
c σc'

Rs
c Rs

ab

Fig. 7. (Symbols) components of the conductivity tensor
 for YBCO at a frequency of 22 GHz [40] at

T < Tc. (Solid lines) calculations [28] by Eqs. (8) and (9).
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for the optimum-doped HTSC crystals gave the reverse

relation (T) @ (T ) at T < Tc.

The aforementioned approach to studying the
impedance anisotropy for HTSC crystals at T < Tc gives
no way of determining the λc(T) value from the mea-
surements of the Q factor and the resonance frequency
shift in the L orientation and, in addition, cannot be
extended to higher temperatures. The point is that the
size effect becomes significant at T > 0.9Tc in the L ori-
entation and is the cause of the divergence between the

temperature behavior of the effective (T) value

measured in the normal state and the ∆ (T) value;
as a result, the f0 constant in Eq. (2) cannot be deter-
mined, as it was done previously. Recently [9], we sug-
gested a new procedure for the determination of the f0
value in the L orientation and, hence, the conductivity
components (T ) and (T) along the c axis. The
procedure is based on the known formulas [41] allow-
ing for the size effect in the field distribution in a long
anisotropic strip with size a @ b, c (Fig. 2b). The (T )

and (T) dependences obtained for BSCCO crystal
nos. 1 and 2 using this procedure are shown in Fig. 8
[42]. The λc(0) value proved to be equal to approxi-
mately 50 µm for sample no. 1 and 150 µm for sample
no. 2, in agreement with the results of our measure-
ments of λc(0) in these crystals by other methods [43,
44]. One can see from Fig. 8 that the conductivity

(T ) in both samples grows with decreasing temper-

ature at T < Tc, despite the fact that the (T ) depen-
dences in these crystals are different (Fig. 5). The for-
mal reason for this growth is clear: the residual losses

 along the c axis of BSCCO crystal nos. 1 and 2 are
large enough so that inequality (7) breaks. At the same
time, the (T ) dependences measured for BSCCO
crystals by other techniques [45, 46] showed semicon-
ductor behavior at T < Tc.

CONCLUSION

The results of measuring the surface impedance and
the complex conductivity of the T-oriented (Hω || c)
optimum-doped samples of different chemical compo-
sition are systematized and described within the frame-
work of the MTM. The common feature of the experi-

mental (T ) and (T ) curves obtained for HTSC
single crystals is that the conductivity components

(T ) and (T ), the reactance ∆Xs(T) ∝  ∆λab(T ) ∝
T, and the surface resistance ∆Rs(T) ∝  T linearly
depend on temperature at T ! Tc. In terms of the MTM,
such behavior of the microwave response of HTSC
materials is caused by the linear decrease in the density

Rs
c Rs

ab

Rs eff,
ab c+

Xs eff,
ab c+

σc' σc''

σc'

σc''

σc'

σab'

Rres
c

σc'

Zs
ab σab

σab' σab''

ns(T ) of superconducting carriers with a rise in temper-

ature at T ! Tc. A broad peak at T < Tc in the (T)
curve is the distinctive feature of the YBCO crystals. In
the MTM, the presence or absence of this peak is gov-
erned by a change in τ(T ) in the temperature range 0 <
T < Tc: whereas the τ(Tc) ≈ 10–13 s value is approxi-
mately the same for all high-quality HTSC crystals at
T = Tc, the τ(0) value in YBCO is greater than τ(0) in
other compounds by a factor of ten and more at T ! Tc.
The reason why the change in the reactance ∆Xs(T)
exceeds the change in the surface resistance ∆Rs(T) of
TBCO crystals remains to be clarified. The origin of
residual losses in HTSC is among the hottest problems
because the behavior of real components (T) of the
conductivity tensor is governed at T < Tc by this quan-
tity. The anisotropy of high-frequency conductivity of
HTSC materials also calls for detailed study.
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