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Temperature Dependence of Microwave Surface Impedance
in High-TV Single Crystals: Experimental and
Theoretical Aspects
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A systematic description of recent measurements of the real Rs and imaginary Xs parts of the
microwave surface impedance Rs+ iXs in high-quality high-71,, superconducting single crystals,
namely YBa2Cu3O6.95, Ba^Ko-iBiC^, TIzBajCaCujOg-a, Tl2Ba2CuO6+;>, and Bi2Sr2Ca
Q^Og, is given. Electrodynamic principles of experimental techniques and uncontrollable
factors that affect the accuracy of RS(T) and X,(T) measurements are analyzed. Common
and distinctive features in the temperature dependences of the surface impedance and complex
conductivity in various high-7"c crystals are discussed. The experimental data are interpreted in
terms of the two-fluid model taking into account scattering of quasiparticles and characteristic
changes in the density of superconducting carriers as a function of temperature. The existing
microscopic models of the microwave response of high-Tc superconductors are considered
and prospects for further research are outlined.

1. INTRODUCTION

Measurements of the surface impedance of high-
Tc superconductors (HTS) as a function of tempera-
ture, Zs(T) = Rs(T) + iXs(T), yield information
about the nature of quasiparticles in the supercon-
ducting state, their scattering, density of states, and,
if a more sophisticated analysis is undertaken, about
the superconducting pairing mechanism in these
materials.

The real part of the surface impedance, i.e., the
surface resistance Rs, is proportional to the loss of
the microwave power and is caused by the presence
of normal carriers. In the centimeter band of electro-
magnetic waves, typical values of the surface resist-
ance of high-rc single crystals in the normal state
near the critical temperature Tc range between 0.1 and
0.4 Q. At the point of the superconducting transition,
the surface resistance abruptly drops, but it never
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turns to zero even when r->0. The residual surface
resistance, Rres = Rs(T-+Q), is due to the presence of
various defects in the superconductor surface layer.
Given this fact, which was derived from experiments
with conventional superconductors, it is generally
accepted that the lower the RTes, the higher the sample
quality. In this review we will consider measurements
of stoichiometrically perfect single crystals of
YBa2Cu3O6.95 (YBCO), Bi2Sr2CaCu2O8 (BSCCO),
TlzBazCaCuzOg-,? (TBCCO), Tl2Ba2CuO6+5
(TBCO), and Bao.6Ko.4BiO3 (BKBO) whose doping
level corresponds to the highest Tc, the superconduct-
ing transition width AT1 derived from measurements
of RS(T) is small, A7<1 K, and Rres at frequency
/~ 10 GHz is within several milliohms. There is every
reason to suppose that the electrodynamic parameters
of these samples adequately characterize the intrinsic
microscopic properties of superconductors.

The imaginary part of the surface impedance,
i.e., the surface reactance Xs, is largely determined by
the response of superconducting carriers and char-
acterizes the nondissipating energy stored in the

381
0896-)10?/98/0800-0381$l5.00/0 © 1998 Plenum Publishing Corporation

KEY WORDS: Microwave response; surface impedance; complex conductivity; high-rc. single crystals;
phenomenological models; microscopic theory.



382 Trunin

superconductor surface layer. In the International
System of Units SI, Xs(T)^o)^(T) for T<TC,
where co = 2rtf, jU0 = 4;r • l(T7H/m, and A(r) is the
magnetic field penetration depth.

One can derive a superconductor's complex con-
ductivity as = CTI — i&2 from measurements of Rs and
Xs. The functional relationship between Zs and <js
depends on the relation among three characteristic
lengths, namely the mean free path /, the coherence
length £0 = #t>F/7rA(0), where UF is the Fermi velocity
and A(0) is the superconducting gap at T=0, and A.
According to Abrikosov's concept [1], superconduc-
tors are classified as pure (/><|o) and dirty (/<^o)
on the one hand, and London (|«A) and Pippard
(<H»A) on the other. As r->0, <^ = ^0«A = A£s(w/
H0ne2)l/2 in pure London superconductors and
^(/)~(^o/)1/2«A(/)~Ai(|0//)1/2 in dirty supercon-
ductors. In pure Pippard superconductors £ =
£o»A~AL(£0/Az,)1/3, and in dirty superconductors
£ (/)» A (/). The relationship between the current and
electric field in London superconductors is local (the
London limit), whereas in Pippard superconductors
this relation is essentially nonlocal (the Pippard limit).
In accordance with these concepts, high-T^ materials
should be classified with London superconductors,
pure rather than dirty. In the case where the gap width
is an anisotropic function of the electron quasimo-
mentum, A(/5), and has a line node on the Fermi
surface of a pure superconductor, % (p) > A/, in a nar-
row region about this line in the quasimomentum
space. The contribution of this region to ZS(T) or
CTS(T') should be expressed in terms of nonlocal elec-
trodynamics, but theoretical estimates [2] indicate
that nonlocal effects in this region are significant only
at very low temperatures T< 3 K. Therefore, experi-
mental data obtained at T>4.2 K, which will be dis-
cussed in this review, can be interpreted using the
simple local formula

relating the surface impedance to the conductivity of
HTS single crystals. Equation (1) allows us to express
the real and imaginary parts of the conductivity in
terms of the measurable quantities Rs and Xs:

Above the superconducting transition tempera-
ture, the mean free path / of current carriers is shorter
than the skin depth, /<«S, which corresponds to the

conditions of the normal skin effect. Equations (1)
and (2) also apply to the normal state of HTS (at
T>TC), when Rs(T)=Xs(T) = ̂ /o)^i0/2an(T) and
an = crl(T>Tc),a2 = Q.

An analysis of temperature dependences ZS(T)
and as(T) allows one to check out whether this or
that theoretical model provides an adequate descrip-
tion of electromagnetic properties of a super-
conductor.

In the low-frequency limit, nw « A, the Bardeen-
Cooper-SchrierTer (BCS) theory [3] predicts two dis-
tinctive features in the T-dependence of the supercon-
ductor microwave response [3-5], namely an
exponential drop in a\(T) and ^(r)ocexp(-A(0)/
kT) in the range r<0.5rc, and an increase in the
conductivity al (T) for 0.7< T/TC< 1 with respect to
its value an at T=TC. These features are due to the
thermally activated generation of normal quasipart-
icles above the gap A(T) and the singularity in the
density of states at a quasiparticle energy equal to
A(T), respectively. The exponential section of RS(T)
in conventional superconductors has been studied in
detail (see, for example, [6] and references therein).
On the other hand, the peak in at (T) in the region
r~0.85rc (the so-called coherent peak) was detected
not so long ago in Nb and Pb at a frequency of
60 GHz [7] and in Nb at 10 GHz [8], when highly
accurate concurrent measurements of RS(T) and
Xs(T) had become possible. Figure 1 shows as an
example measurements of RS(T) and XS(T) of a nio-
bium sample, whose critical temperature is Tc = 9.2 K.
These measurements were obtained using the "hot
finger" technique, which is convenient for studies of
HTS crystals, whose surface area is usually small
(~1 mm2). The symbols • plot the function ai(T)/
<jn derived from measurements of RS(T) and XS(T)
using Eq. (2). These data are in agreement with calcu-
lations (solid curve) based on the BCS model.

The first measurements of functions ZS(T) and
us(T) in HTS crystals did not show the behavior
predicted by the BCS theory. In particular, instead of
a broad coherent maximum in a\(T) described by
the BCS theory, a narrow peak (shown by the dashed
line in Fig. 2) with a width close to that of the super-
conducting transition, which can be seen in the curve
of RS(T), was observed. This observation indicated
that strong-coupling (SC) effects should have been
taken into account.

A generalized version of the BCS theory for the
case of strong electron-phonon coupling was devel-
oped by Eliashberg [9]. It follows from this theory
that, in the case of a strong enough coupling, the
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Fig. 1. Plots of RS(T) and X,(T) in Nb. The inset shows the real part of the conductivity, a,/an, and the
London field penetration depth, A.L, vs. temperature derived from measurements of RS(T) and X,(T) using Eq.
(2). The solid curves show calculations based on the BCS model.

singularity in the density of states at fi(a = &(T) is
broadened due to inelastic scattering of electrons by
thermally excited phonons. As a result, the coherence
peak amplitude decreases with an increase in the elec-
tron-phonon coupling constant and vanishes at fre-
quencies around 10 GHz [10] if this constant is larger

than 2. The inset to Fig. 2 shows curves of a\(T)/
<r\(Tc) calculated on the base of the isotropic BCS
and SC models. The narrow peak in Fig. 2, which is
detected in microwave measurements of conductivity
CT! (7") in HTS crystals around Tc, might be caused by
inhomogeneous broadening of the superconducting
transition [11,12] or fluctuation effects [13,14].
Another consequence of the SC model is the nonexpo-
nential behavior of RS(T) [15] and A (T) [16]. Power-
law temperature dependences were also predicted by
the well-known two-fluid Gorter-Casimir (GC)
model [17], and near Tc they proved to be quite close
to calculations by the SC model [18]. However,
whereas the agreement between experimental curves
on the one hand and calculations by the SC and GC
models [18-20] on the other, in the neighborhood of
Tc, could be deemed satisfactory, deviations in the
low-temperature range were enormous. As an
example, measurements of AAai(T) in the ab-plane of
YBCO given in [21] are compared with BCS and SC
curves [22] in Fig. 3. A curve predicted by the GC
phenomenological theory would be an almost hori-
zontal straight line in this graph.

The first high-quality YBCO crystals were manu-
factured at the University of British Columbia (UBC
group) by Liang et al. [23]. A broad peak in the sur-
face resistance vs. temperature, RS(T), centered at
Tx 35 K in those crystals was first reported by Bonn

Fig. 2. Comparison between measurements (dashed line, YBCO
crystal) of <r, /an and calculations based on the SC model taking
into account inhomogeneous broadening of the superconducting
transition (solid line). The inset shows <r,/crn as a function of
temperature calculated using the BCS and SC models [12].
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et al. [24], and a linear dependence AA.ab(T)cc Tin the
range 4< T<25 K by Hardy et al. [25].

These results, which seemed very unusual from
the viewpoint of traditional models of the microwave
response of superconductors, generated an intense
discussion of the symmetry of the order parameter
in HTS and the role of quasiparticle scattering, and
stimulated development of theoretical models of the
high-frequency response. By the present time, the first
experimental data concerning YBCO single crystals
[24,25] have been confirmed by experimenters from
other laboratories. When high-quality BSCCO,
BKBO, TBCCO, and TBCO single crystals had
become available, it was possible to discuss common
and distinctive features in the impedance and conduc-
tivity as functions of temperature of various HTS
crystals.

The next section of the review is dedicated to the
analysis of measurements that can be performed using
the "hot finger" technique and its limitations, since
this method is used in high-precision measurements
of the HTS surface impedance vs. temperature in the
microwave band more frequently than others. Section
3 describes systematized measurements obtained by
means of this technique. Section 4 compares experi-
mental curves of ZS(T) and as(T) to calculations
based on the modified two-fluid model. In Section 5
we will discuss microscopic models that have been
developed to this day and are based on possible sym-
metry types of the other parameter and mechanisms
of quasiparticle relaxation. The concluding section
describes prospects of further research in the micro-
wave response of HTS single crystals.

2. EXPERIMENTAL PROCEDURE

2.1. Principles of the "Hot Finger" Technique

The most convenient technique for measure-
ments of the surface impedance of small HTS samples
is the so-called "hot finger" method. Measurements
using this method in the centimeter wavelength band
have been conducted at Northeastern University
(NEU) [26], UBC, Maryland University [27], Univer-
sity of Tokyo [28], Cambridge University, University
of California [29], and at the Institute of Solid State
Physics (ISSP) [30]. The underlying idea of the
method is that a sample is set on a sapphire rod at
the center of a superconducting cylindrical cavity
resonating at the Hon mode, i.e., at the antinode of a
quasihomogeneous microwave magnetic field (Fig. 4).
By varying the rod temperature, measuring the Q-fac-
tor and frequency shift A/ of the cylindrical cavity,
and comparing them with the parameters of the empty
cavity, Qo and A/0, one can determine the sample
surface resistance Rs and reactance X, as functions of
temperature.

Electromagnetic modes driven by an external
source are characterized in a lossy cavity by a complex
frequency [31]

where a>i = 2nf, and Q,L are the inherent frequency
and Q of the loaded cavity. For a cavity operated in

Fig. 4. Diagram of the microwave cavity used in the "hot-finger"
technique.

Fig. 3. Curves of &hab(T) in the low-temperature range. The
squares plot the data from [21]. The solid line shows calculations
by the two-band model [22] (see Section 5). The dotted line is a
calculation by the BCS model, the dashed line by the isotropic SC
model.
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the transmission mode

Here Q, is the inherent Q of the unloaded cavity, and
Q\ and Q2 are the input and output Q's, which charac-
terize the coupling between the cavity and external
microwave circuits. In Eqs. (3) and (4) Q/L = QL, Q/~
Q, and/=/if there is a sample in the cavity; QiL =
QOL, Qi=Qo, and /(=/o for the cavity without a
sample but with a sapphire rod inside.

The difference between the averaged microwave
powers absorbed in the cavity with a sample and the
empty cavity is the power P directly absorbed in the
sample:

where Hs is the tangential component of the micro-
wave magnetic field on the sample surface, and inte-
gration is performed over the area 5 of the entire
sample surface. The energy stored in the cavity is

where V is the inside volume of the cavity, and H2 is
the magnetic field squared generated in the cavity with
the sample inside. The difference between the recipro-
cal Q-factors of the cavity is determined by the
relation

where

is the sample geometrical factor.
Let the complex resonant frequency of the loaded

cavity be a> and the frequency of the cavity without
a sample be d)o. The frequency difference a> — ta0 is
the frequency shift caused by the sample, cos. Provided
that the coupling Q-factors Q\ and Q2 are constant,
we derive from Eqs. (3), (4), and (7) the value of a>s:

A change in the sample temperature leading to a
change in its impedance, &ZS(T) = &RS(T) +
iAXs(T), can be treated as a small perturbation result-
ing in the shift A.(as(T) in the complex frequency

On the other hand, as follows from Eq. (9),

hence, by comparing this to Eq. (10), we obtain the
change in the sample surface reactance

where Ts is the sample geometrical factor given by
Eq. (8) and X0 is an additive constant.

As follows from Eq. (13), measurements of two
quantities are needed to determine RS(T) and XS(T)
in absolute units, namely A'o and Ts. In measuring
these quantities, one should take into account the
strong anisotropy of layered HTS single crystals,
which manifests in the notable difference between
transport parameters in the a6-plane and along the c-
axis. Therefore values of Ts and X0, and the technique
of their determination, depend on the crystal align-
ment (Fig. 5) with respect to the microwave magnetic
field Hm, which points along the cavity axis.

2.2. Samples, Their Geometrical Factors and
Anisotropy

Let us start with the case of transverse orienta-
tion (Fig. 5a), when a sample, which usually has the
shape of a plate with dimensions a~6~lmm,
c~0.1 mm, is set on an end of a sapphire rod so
that the crystal c-axis is aligned with the microwave
magnetic field, Ha,, Ha \\ c. In this case, high-
frequency currents, which determine the sample
microwave response in both normal and supercon-
ducting states, circulate in the afc-planes. At T<Q.9TC

the field Hm penetrates into the sample to a depth
AQf,~10~4mm, and at T>TC to the skin depth
8ab = j2pab/caiio, which is Sak~5 • l(T3mm at a fre-
quency of ~10GHz and the resistivity

where Ao)s(T) = Aco(T)-Acoo(T).
Thus, measurements of the real RS(T) and imagi-

nary XS(T) parts of the surface impedance are derived
from experimental curves of Qt(T) and Af,(T) using
the relations
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the simulator, one can use the relation

Fig. 5. (a) Transverse orientation of a sample with respect to
microwave magnetic field, Ha\\c; arrows on the surfaces show
directions of microwave currents; (b) transverse orientation,
/Lie .

pflA(rc)~100//Q 'Cm typical of HTS crystals. Since
Xab«c and 8ab«c, then, neglecting the anisotropy in
the flZ>-plane, it is possible

(1) to treat the impedance Z"b as a parameter
defined similarly to the case of a semi-infinite isotropic
sample at all temperatures;

(2) to consider the distribution of the field Hs,
hence the parameter I", in Eq. (8), to be approximately
constant with temperature.

For all HTS single crystals the inequality S»l,
which is equivalent to the criterion of the normal skin
effect, holds. For this reason, the constant X0 in Eq.
(13) for HO,\\C is derived from the condition of
equality between the real and imaginary parts of the
normal state impedance, and the identity of the tem-
perature dependences R?(T) and Xf(T) in the range
T> Tc provides a simple test of the measuring
technique.

Statements (1) and (2) give a clue to how the
sample geometrical factor T°h can be determined in
the transverse orientation. Firstly, one can use a met-
allic simulator of the tested sample of the same shape
and dimensions, provided that the conditions of the
normal skin effect hold. Given the simulator resistivity
as a function of temperature, p(T), and having
measured Qi(T) and &ft(T) of the cavity containing

and derive from Eq. (13) the value of T,, assuming
that it equals the geometrical factor F"fc of the HTS
crystal. Secondly, having measured Q,(T) and A/-(T)
of the empty cavity and of the cavity loaded with the
HTS crystal, one can directly measure pab(T) of the
sample and derive F£* using Eqs. (13) and (14). This
procedure, however, leads to degradation of a sample,
because electric contacts should be attached to its sur-
face. Nonetheless, we employed this technique in the
determination of Ff of two TBCCO and YBCO
single crystals grown at ISSP using the techniques
described in [32] and [33], respectively. Their dimen-
sions were a x £ x c = l x l x 0 . 1 mm3 (TBCCO) and
1.5 x 1.5x0.1 mm3 (YBCO). In particular, the geo-
metrical factor of the YBCO crystal proved to be
Ff =1.76-104Q.

We attempted to develop a method for estimating
numerically the geometrical factor based on Eq. (8),
assuming that a sample has the shape of a square plate
with dimensions a x a x c, c«a, and the magnetic field
amplitude at the center of the unperturbed cavity is
H0. The calculation procedure in which a flattened
ellipsoid of revolution with semi-axes c/2 and a/2, on
whose surface the field distribution is well known [34-
36], was substituted for a square plate with the aim
of determining rs proved to be inadequate because
the field amplitude on the ellipsoid edge, Hedgf =
2naH0/c, is considerably higher than the real value.
A more realistic model considers the sample as a thin
plate with slightly rounded edges [37]. This approach
yields the well-known geometrical barrier to penetra-
tion of flux lines from the sample edges [37-39]. In
this case, the field distribution on the edges of a plate
in the Meissner state is given by the formula [37]
H,(x) = HoX/^/(a/2)2-j, -a/2 + c/4<x<a/2~c/
4, with the exception of a very narrow region («c/4)
near the edge, where the integral Js til dS is logarith-
mically divergent. On the edges of the sample, the
field is assumed to be homogeneous and equal to
7/edge«//oVa/c- As a result, we have at c«a

By substituting Eq. (15) in (8), we obtain the
geometrical factor of HTS crystals for the case of their
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where A is the area of the a^-face of the crystal, and
y0 is a constant determined by the known [40] field
configuration of the resonant mode Hon. In the cavity
used in our experiments, whose diameter and height
were 42 mm (/=9.4 GHz), this constant ?0 = 5.3. The
calculations of F, by Eq. (16) for YBCO and TBCCO
crystals were in satisfactory agreement with experi-
mental data. Figure 6 shows as an example measure-
ments of RS(T) and XS(T) in a YBCO sample (F,=
1.76 • 104 Q), which demonstrate the behavior typical
of the HTS single crystal impedance for Ha, \\ c. The
uncertainty 8RS in measurements of the surface resist-
ance, SRs = rs8(Q~l-Qol) = rsSQ/Q2, is deter-
mined by the uncertainty SQ/Q, which was within
1% at g~107 in the reported experiments. Thus, we
have £.R,«20juQ. As the temperature drops several
degrees below Tc, the increment &XS(T) =
c0;UoAA(r), and, given XS(T) expressed in absolute
units, one can determine the magnetic field penetra-
tion depth A (T) =Xs(T)/(on0. The uncertainty in the
relative value of the penetration depth AA(T),
<5(AA) = (2F.,/fi>/Jo)' (5(A«)/eu), which equals sev-
eral angstroms, and the error in A(T) can be up to
10% of A (0) and is largely determined by the accuracy
ofXa.

Now let us consider an alternative crystal orien-
tation with respect to the field Hm in the cavity,
namely HO, L c (Fig. 5b). Measurements of the surface
impedance Z""^C(T) in this orientation, dubbed lon-
gitudinal, are interesting primarily because they yield

information about anisotropic properties of HTS cry-
stals. Given that Ha 1 c, the tangential field compo-
nent Hs on the edges of the sample can be considered
to be approximately equal to H0(HsxH0~). In the
superconducting state, currents running in the ab-
planes decay over a depth Aafc, whereas those flowing
in the direction of the c-axis have a penetration depth
Ac, and at T< 0.9 Tc these two lengths are smaller than
characteristic sample dimensions, which allows us to
treat the impedance Zf°)lc in its conventional sense
assuming a conductor occupying a half-space. At
r>0.9Tc, however, the size effect may play an essen-
tial role [36]. Indeed, whereas the ratio dc/Sab~ 10 in
YBCO single crystals, and in the frequency band
about 10 GHz 5c.~0.05mm is comparable to the
sample thickness c but less than a and b, in BSCCO,
for example, this ratio can be up to 300, so that
8c~a~b. As a result, statements (1) and (2), which
hold at all temperatures in the case of transverse ori-
entation, no longer apply to the H01 c configuration
at 7">0.9rc. Owing to the size effect, the functional
dependence &R^/e(T) deviates from &X^ffLl(T) at
T> Tc, which makes impossible determination of con-
stant A'o in Eq. (13) using the method described above,
and the experimental measurement of the sample geo-
metrical factor entails formidable difficulties.

There are no such difficulties at T<Q.9TC. If we
neglect the anisotropy in the aft-plane (which is pos-
sible, for example, in the case of twinned YBCO crys-
tals) and the contribution from ftc-faces (Fig. 5b),
which is a factor ~c/a smaller than that of the ab-
surfaces, the impedance Zf"lc is expressed in terms
of Zsb = Z"(atc and Zcs averaged over the surface area
[41-43]:

where the superscripts (ab or c) of Zs denote the
direction of the screening current. The sample geomet-
rical factor for Ha±c is easily derived from Eq. (8),
and the constant X0 in Eq. (13) is determined by the
condition Arj(0) = fi)^0Ac(0) with Ac(0) derived
independently from alternative experimental data.
Given measurements of Z"b(T) in the transverse ori-
entation and Z"a±C(T) with the sample plane aligned
with the field, one can obtain RCS(T) and
Xc(T)=Xcs(T)/(ono from Eq. (17).

There is an alternative technique for determina-
tion of RCS(T) if one of the sample dimensions in the
oft-plane, for example a, is notably larger than
another: a>b>c. By measuring first the power

transverse alignment with respect to the microwave
field HO, in the cavity:

Fig. 6. Surface resistance R, and reactance Xs of a YBCO single
crystal as functions of temperature.
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pHa\\a airbed jn tne sample whose a-axis is aligned
with the field Hm, then PH^b, we obtain

In deducing Eq. (18), we have assumed that
/?"«/?*. Zhang et al. [44] measured the aZ>-plane ani-
sotropy of the microwave surface impedance of
untwinned YBCO single crystals by performing
measurements in configurations Hm || a and Hm \\ b
under the assumption that

A rough estimate of Rcs in [44] yielded
~R" (~/?*), which allowed the researchers to neglect
the second terms on the right-hand sides in Eq. (19),
as compared with the first terms, in the case of very
thin crystals, a~b»c, and determine R"S(T) and
Rbs(T). In order to increase the c-axis contribution,
an HTS crystal was cleaved [43,45], for example, into
four bars along the a-axis, and the four samples
obtained in this manner were tested in the configura-
tion //ffl||a. By taking the difference between the
curves of p^"(T) recorded before and after cleaving
the sample, the experimenters derived
RCS(T), Rbs(T), and R"(T) in accordance with Eq.
(19).

The feasibility proof of these techniques for mea-
suring the anisotropy of HTS crystals in the longitudi-
nal orientation, H^Lc, described above requires, in
our opinion, a more substantial electrodynamic ana-
lysis. In particular, the field distribution on the sample
surface and its geometrical factor can change consid-
erably as a result of the transition to the supercon-
ducting state, which should affect measurements of
Z^"^l(T) around Tc. In deriving Eqs. (17)-(19) the
contribution Pbc of the fee-faces of the crystal (Fig.
5b) to the total power absorbed by the sample,
PH"Li = Pab + Pac + Pbc, has not been taken into
account. This contribution is really small in compari-
son with Pab, Pbc/Pab~c/a«\, but may be compar-
able to Pac. For example, assuming a field distribution
over the fee-face of the simplest form, Hx = 2H0x/c,
Hy = 2H0y/b (~c/2<x<c/2, -b/2<y<b/2), we
obtain directly an estimate of the ratio Pbc/Pac~b/
a ~ 1 for Ha || a. Now, if the contribution Pbc is
included in Eq. (19), it is clear that the comparison
between p"^\T) and p"^(T) in the initial sample,
on the one hand, and p"^s(T) of its fragments pro-
duced by cleaving the crystal along the a-axis, on the

other, yields, in the long run, the same result for Rcs,
but the quantities Rbs(T) and Ras(T), previously deter-
mined neglecting Pbc, should change. The real field
distribution over the sample surface in the longitudi-
nal orientation can be calculated numerically. Finally,
the sample alignment with respect to the microwave
field, Ha, -L c, should be controlled carefully in per-
forming measurements in this configuration. Devia-
tions from the initial configuration, which may occur
when the sample is replaced by its cleaved fragments
or rotated around the c-axis, can give rise to uncon-
trolled errors in measurements. This or another cir-
cumstance may be the cause of contradictions among
different measurements of Zcs in YBCO single crystals
that have been published by this time [41,42,45]. For
this reason, most of the material given in this review
is dedicated to measurements of the microwave
response of HTS crystals in the transverse orientation.

Let us also discuss impedance measurements of
BKBO crystals, which are almost isotropic, absolutely
copper-free, and have a cubic perovskite structure.
They were manufactured by the electrochemical crys-
tallization technique [46,47]. The studied BKBO
samples had an approximately cubic shape and vol-
umes in the range 0.2 < F<1.5 mm3. The procedure
for determining the geometrical factor was the follow-
ing. The niobium sample simulator had approxi-
mately the same shape and dimensions as the tested
sample. If the samples were of an elliptic shape, their
geometrical factors FBKBO or FNb could be calculated
exactly. For example, the geometrical factor of a
sample shaped as a sphere with radius r at the center
of a cavity excited at the //on mode is rs = (on0V/
127ry0r2 [29]. Therefore our first step was estimating
F]jNb and F^BKBO based on the assumption that the
samples were spheroids with volumes equal to those
of measured Nb and BKBO samples. The second step
was based on the experimental technique used in
determining FNb. We measured the resistivity pNb

(10 K) of a thin Nb stripe cut from the same block as
the niobium sample simulator, calculated the surface
resistance Rs (10 K) using Eq. (14), and substituted
the result in Eq. (13) alongside the measurements of
Qi,Nb(T). The resulting FNb proved to be only 24%
smaller than r,iNl, calculated on the first step. Given
that the shapes of the Nb and BKBO samples were
almost identical, we decided that the geometrical fac-
tor of BKBO samples FBIcBo = 0.76 'F^BKBo- An
example of experimental RS(T) and XS(T) curves of
the BKBO crystal with geometrical factor Ts =
3.3-104Q is given in Fig. 7.
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Fig. 7. Surface resistance Rs and reactance Xs of a BKBO single
crystal vs. temperature.

2.3. Thermal Expansion of Crystals

There is a set of factors that affect the accuracy
of measurements of Q and resonant frequency shift,
hence absolute measurements of RS(T) and XS(T).
They include:

—vacuum tightness of the microwave cavity;
—changes in the pressure applied to the cavity;
—reproducibility of positions of the sapphire rod

and external coupling loops in the cavity with
and without a sample;

—constancy of the liquid helium level in the
cryostat in all experiments;

—stability of electronic circuits.

These factors are monitored in the course of the
experiment; thus measurement uncertainties that may
be caused by these factors can be minimized, if the
necessary conditions are satisfied strictly.

The uncontrolled source of possible errors in
measurements of A(T) is thermal expansion of the
sample. Changes A/, (Aa and Ac) in the sample dimen-
sions a x a * c, where c«a, due to the thermocycling
lead to a change in its volume by Ac • a2 + 2Aa • ac and
an additional shift of the cavity resonant frequency

where W is given by Eq. (6), Strictly speaking, the
quantity A/, (T), alongside A/0(r), should be included
in Eq. (13) for XS(T). Let us estimate this con-
tribution by comparing expression (20) with the
resonant frequency shift due to the change in the field

If the ab-pl&ne of the crystal is perpendicular to
the magnetic field Hm (transverse orientation, Fig. Sa)
in measurements of AAafc(r), then, using Eqs (15),
(20), and (21), one can easily show that

In YBCO and BSCCO single crystals with
rc=:90 K, Kab increases by about 1000 A as the tem-
perature grows from 4.2 to 80 K, and at T> 80 K the
growth rate is considerably higher. Experimental data
indicate that at T< 30 K the relative change in dimen-
sions of YBCO [48-50] and BSCCO [51,52] crystals,
e = A/,//,, is very small, e,< 10~5. In the temperature
range 30<T<100K the thermal expansion
coefficient a^dei/dTis an almost linear function of
temperature T; moreover, in the a6-plane of YBCO
crystals afl*«0.3 • 10~7r, and in the direction of the
c-axis ac«10"7r. Hence we have e^alO"4 and
£c«3-10~4, and for typical crystal dimensions
axb&lmm and c«0.1 mm they increase by
Aa«A6«1000 A and Ac w 300 A when the tempera-
ture grows from 30 to 100 K. In BSCCO single crys-
tals eab is twice as large, and ec is approximately the
same as in YBCO. Relative changes in dimensions of
BKBO crystals in the temperature interval 0 < T<2TC

are very small, e < 10~5 [53]. To the best of our knowl-
edge, no data on thermal expansion of TBCO and
TBCCO for T< Tc are available.

Thus, the contribution of A/,(r) to the total fre-
quency shift of a cavity loaded with a sample is negli-
gible in the range of low temperatures. In the
intermediate range, however, it can be quite consider-
able, although smaller than Af>.(T), as follows from
the estimate by Eq. (22). This circumstance should
be taken into account when using Eq. (13) in the
determination of AoA(r). Since the thermal expansion
of samples is not measured in microwave experiments,
the only criterion of the authenticity of experimental
curves of Aa6(r) is their reproducibility for crystals of
different sizes. For example, let us compare curves of
AA«XnocA/e;v(n = [A/<T)-A/o(r)] measured in
YBCO crystals of dimensions axbxlAmm,
cxQA mm [54] and axbxl.Smm, cxO.l mm [33]
with curves of M(T)x[Afexp(T) + Af,(T)] plotted

penetration depth AA(r):
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taking into account Af/(T). In Fig. 8 the lower solid
line 1 and dashed line 2 show the numerator on the
right of Eq. (22) as a function of temperature for two
YBCO crystals with dimensions a and c given in the
caption. The measurements of Ac(T) = c J ac (T) dT
and Aa(r) = a/2 j [aa(T) + a*(r>] JTare taken from
[50]. The full symbols (A.exp) in Fig. 8 plot experi-
mental data quoted in [54] (1) and [33] (2), and the
open symbols (A) show the data processed using Eq.
(22) and taking into account thermal expansion of
the crystals. At 7X50K the curves of kexp(T) and
A(T) coincide, whereas in the region of higher tem-
peratures there is a difference between them.

Let us also estimate the factor A//(T) in the case
if the aft-plane is parallel to the microwave field HO,
(longitudinal orientation, Fig. 5b). In this case the
experiment measures the effective parameter Keff(T} =
X^^W/cono, related to /U(2") and AC(T) by Eq.
(17). For c/a«l we derive from Eqs. (20) and (21)

It follows from Eq. (23) that thermal expansion
of crystals can lead to variations ~Ac in A^(71)
measured in the configuration H^Lc.

3. MEASUREMENTS OF SURFACE
IMPEDANCE AND COMPLEX
CONDUCTIVITY OF YBCO, BSCCO, TBCCO,
TBCO, AND BKBO CRYSTALS: THEIR
COMMON AND DISTINCTIVE FEATURES

First measurements of the surface impedance of
HTS materials in the microwave band date back to

Fig. 8. Effect of sample thermal expansion on the penetration
depth Aa(, plotted against temperature for two YBCO single
crystals.

the time of their discovery in 1986-1987. The first
microwave experiments with ceramic samples, as well
as thin films and single crystals, which were fabricated
soon after the discovery of HTS, were rare and pro-
duced only rough estimates of HTS parameters since
the quality of those samples left much to be desired.
In particular, the residual surface resistance Rres =
RS(T-*Q) was several orders of magnitude higher than
in conventional superconductors like Nb or Pb, and
it was clear to everyone that high-frequency properties
of HTS materials were largely determined by irregul-
arities in their structures, namely their inhomogeneity
and the presence of weak-coupling sites, twins, and
other defects in their surface layers.

The situation changed radically in 1992-1993,
when first high-quality YBCO single crystals [23-25]
and thin films [55] with considerably smaller Rres were
fabricated. Measurements of those samples revealed
a temperature dependence of the surface impedance,
ZS(T), which could not have been detected in earlier
experiments against the background of high residual
losses. The UBC group detected for the first time

(a) linear dependences Aa6(r) and RS(T) in the
range 4<T<,25K, and

(b) a broad peak in RS(T) centered at about
40 K.

These features of Zs( T) in YBCO single crystals
were confirmed by experiments performed by other
groups [33,41,42,56] and have been generally recog-
nized by this time. We stress once again that features
(a) and (b) can be observed only in YBCO crystals of
the highest quality. Doping of initially perfect single
crystals with Zn [57-59] changes the linear function
hab(T) to quadratic and spreads the peak in RS(T).
The dependence Ahab(T) oc T2 is typical of YBCO thin
films [60-62], in which impurities and weak coupling
sites occur more frequently than in single crystals.
Therefore it is generally accepted that the quadratic
dependence A(T) is largely due to the presence of
defects in samples (extrinsic origin), unlike features
(a) and (b), which are due to intrinsic microscopic
properties of HTS materials. This conjecture was later
confirmed by systematic research of YBCO thin films
[63]: As their quality improved, the quadratic depend-
ence A(T) in the low-temperature range was replaced
by a linear function. A detailed analysis of the results
mentioned above and concerning microwave studies
of YBCO crystals and films before 1996 is given in
the review by Bonn and Hardy [64].

Given the apparent difference between the tem-
perature dependences in YBCO and conventional
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Fig. 9. Components of the surface impedance Z,= R, + iXs in the
normal and superconducting states of a BSCCO single crystal vs.
temperature [43]. The inset shows the low-temperature section of
the RS(T) curve.

superconductors, the natural question arose about the
applicability of properties (a) and (b) to other HTS
materials which, unlike YBCO, have a tetragonal
structure and contain no Cu-O chains or are copper-
free. The progress in the fabrication technology of
HTS samples in the past two to three years has been
considerable, which has allowed researchers to investi-
gate microwave properties of BSCCO [43,65,66],
BKBO [47], TBCCO [54], and TBCO [67] single crys-
tals of high quality. In addition, the notable reduction
in the homogenization time of growth solutions and
in the time of crystal growth by the conventional tech-
nique [23] of YBCO manufacture in standard zircon-
ium dioxide (ZrO2) crucibles stabilized with yttrium,
alongside the utilization of BaZrO3 crucibles [68], has
allowed technologists to manufacture high-purity
YBCO crystals with resistivities p(Tc)<40/id-cm,
i.e., lower than in previously reported experiments.
Microwave measurements of such crystals produced
using the accelerated growth technique in ZrO2 and
BaZrO3 crucibles have been performed recently by the
ISSP [33,54] and NEU [69,70] groups. These
measurements have demonstrated features (a) and (b)
in the curves of Aofc(r) and RS(T), as well as new
features ofZs(T) in the range of higher temperatures.

Examples of experimental curves RS(T) and
XS(T) recorded in the transverse orientation, HO,\\C
(Fig. 5a), are given in Fig. 6 for a YBCO single crys-
tal, in Fig. 7 for a BKBO crystal, and in Fig. 9 for a
BSCCO crystal. In all these graphs, RS(T)=XS(T)
for T>TC, which indicates that the experiments were
performed under the normal skin-effect conditions.
The values of XS(T) were obtained using Eq. (13), in
which the additive constant X0 was determined by
fitting measurements of &XS(T) to &RS(T) in the

For example, in the BSCCO crystal (Fig. 9)
po~H ;uQ -cm and 6«1.4/jQ -cm/K [43].

It is more convenient to compare the surface
impedance vs. temperature, ZS(T), in the supercon-
ducting state in different HTS single crystals by divid-
ing the entire temperature interval into three sections,
namely the ranges of low (T<Tc/3), intermediate
(T~Tc/2), and subcritical (T~TC) temperatures.

3.1. Low Temperatures, T<TJ3

Figure 10 shows a set of typical R,(T) and A (T)
curves in the range T< 0.7'Tc measured in YBCO [33],
TBCCO [54], and BKBO [47] single crystals manu-
factured at ISSP. The curves for YBCO and BKBO
correspond to the low-temperature sections of the
graphs in Figs. 6 and 7 with the ordinate plotted using
a linear scale. The experimental points of A (T) for
YBCO are the same as those shown by open circles
about curve 2 in Fig. 8.

In the low-temperature range, changes in the sur-
face resistance, ARS(T) are proportional to Tfor all
the crystals whose data are plotted in Fig. 10. Similar
linear dependences ARS(T) are observed in BSCCO
(inset to Fig. 9) and TBCO (Fig. 11) crystals.

The functions Ak(T) = &Xs(T)/cono in the
YBCO (Figs. 8 and 10), BSCCO (Figs. 9 and 12),
and TBCO (Fig. 13) crystals in the range T<Tc/3
are also linear. The curves of A (7) for TBCCO at
T> 12 K and for BKBO at T> 5 K shown in Fig. 10
have clearly rectilinear shapes.

The extrapolation of low-temperature sections of
A (T) curves to T=0 in Fig. 10 and of X,(T) =
co^oA(r) in Fig. 9 yields the following estimates of
Aai(0) in several single crystals of different materials:
1400 A (YBCO), 3700 A (TBCCO), 3000 A (BKBO),
and 2600 A (BSCCO).

3.2. Intermediate Temperatures, T~Tc/2

At frequencies about 10 GHz, the linear depend-
ence A^(r)ocT in BSCCO (Fig. 9), TBCCO (Fig.

in the YBCO single crystal (Fig. 6), we derive
p(Tc) w38 //Q • cm [33]. All the functions of tempera-
ture RS(T)=XS(T) plotted in Figs. 6, 7, and 9 in the
region T> Tc are adequately described by the formula

range T> Tc. The quantity X,(T) expressed in abso-
lute units, in its turn, determines A(0)=ArJ(0)/w/i0.
From the measurement of
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Fig. 11. Surface resistance R, of a TBCO single crystal (rc*78 K)
vs. temperature [67] at several frequencies: circles correspond to
14.4 GHz, black squares to 24.8 GHz, open squares to 35.9 GHz.

Fig. 12. Linear section of the curve of penetration depth vs. tem-
perature, AA (T), in a BSCCO single crystal in the low-temperature
range [66]. The inset shows the curve of AA(r) over a wider
temperature range.Fig. 10. Surface resistance R, and penetration depth A in YBCO,

TBCCO, and BKBO single crystals as functions of temperature for
T<0.7TC.

10), BKBO (Fig. 10), and TBCO (Fig. 11) single crys-
tals extends to temperatures ~Tc/2. The magnetic
field penetration depth A (T) monotonically increases
with the temperature.

This property of the surface impedance, common
for all HTS single crystals with the tetragonal struc-
ture, is not characteristic of YBCO. As was noted
previously, all microwave measurements of high-qual-
ity YBCO crystals show a broad peak in the RS(T)
curve centered at about 40 K (Figs. 6 and 10). The
underlying cause of this YBCO feature, which dis-
tinguishes it from other HTS materials, has remained

unclear. It is unlikely that the absence of this peak in
crystals with the tetragonal structure could be caused
by their poor quality, as is the case of YBCO doped
with Zn [57-59]. Firstly, there is a sufficiently large
set of experimental data indicating that RS(T) is a
linear function in BSCCO, TBCO, TBCCO, and
BKBO; secondly, the peak in RS(T) was also detected
in such YBCO crystals [41,54,56] whose parameters
Rres and p(Tc), which characterize their quality, were
inferior to those of, for example, BSCCO [66] or
TBCCO [54]. The more probable cause of the peak
is the presence of an additional component in the
YBCO orthorhombic structure, namely Cu-O chains,
whose electrons form an additional electronic band
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and contribute to the function ZS(T). It seems that
this contribution generates another distinctive feature
of YBCO, namely the plateau (Figs. 8 and 10) or
bump (Fig. 14) on the curve of Kab(T).

This feature has been yet observed only in the
purest YBCO single crystals [33,54,69,70] and films

[55,71]. Curve 1 in Fig. 14 refers to a YBCO crystal
with notably smaller values of p(Tc) and Rres than in
samples 2 and 3, whose Akab(T) curves have a stan-
dard shape. In Figs. 6, 8, and 10 the quantities X, and
Aaft are almost constant with the temperature in the
intermediate range.

In discussing features of the imaginary part
XS(T) of the surface impedance in the intermediate
temperature range, one should be careful to take into
account the possibility of crystal thermal expansion
distorting the curves of A(T). As was shown in the
previous section, this process has little effect on the
shapes of the A(T) curves in Fig. 8. The plateaus on
the kab(T) curves have approximately the same width
of about 20 K, but their positions with respect to Tf/
1 vary in several YBCO single crystals manufactured
by the same technique [33]. Measurements on one of
these crystals were performed at the laboratory under
Sridhar's direction (NEU), and they confirmed the
existence of a plateau. Hence, we can assert that the
plateaus on the curves of A(T) [33,54] are real
features of the surface reactance XS(T) characteristic
of YBCO single crystals in the intermediate tempera-
ture range. On the other hand, the curves of surface
resistance RS(T) obtained in the same experiments
have the usual shape (Fig. 6).

Finally, another feature in the impedance of
high-quality YBCO crystals, namely a notable

Fig. 14, Magnetic field penetration depth d/l
as a function of temperature for YBCO single
crystals [69] manufactured using different
techniques: (1) in BaZrO3 crucibles; (2) in
ZrO2 yttrium-stabilized crucibles; (3) data
from [25]. The inset shows curves of surface
resistance R,(T/TC.) for samples 1 and 2.

Fig. 13. Linear section of the curve of field penetration depth A vs.
temperature in a TBCO single crystal [67]. The inset shows the
curve of AA(7") over a wider temperature range.
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increase in RS(T) with temperature beyond the peak
at r~40K, was detected in recent experiments
[69,70], The corresponding curve of RS(T) [69] is
shown in the inset to Fig. 14 (curve 1). The surface
resistance as a function of temperature is easily
derived from measurements of the cavity Q using Eq.
(13). This function is not affected by the sample ther-
mal expansion. The gradual increase in RS(T) in the
interval TC/2<T< Tc can hardly be attributed to the
coexistence of different phases in the sample. The
emergence of a superconducting phase with a certain
Tc is indicated in microwave experiments by a jump
(an abrupt drop) in RS(T) at the critical temperature,
which was observed, for example, in a TBCCO crystal
(Fig. 15), which has two superconducting phases [72],
namely 2212 (Tcl^ll2K) and 1212 (rc2^81 K).
YBCO single crystals grown using BaZrO3 crucibles
and measured at a frequency of 10 GHz [69,70] are
samples of record purity (Rres~ 10 /jQ.), and curve 1
in the inset to Fig. 14 proved to be reproducible [70].

3.3. Temperatures Close to Tc, T^TC

In all HTS single crystals, the surface resistance
RS(T) drops abruptly at the point of transition from
the normal to the superconducting state. At frequen-
cies about 10 GHz, R,(T) of high-quality YBCO crys-
tals falls off by a factor of 100 or more as the
temperature drops to one degree below Tc. The quan-
tity XS(T) also jumps at the transition point, but by
a smaller factor. Opinions differ on the temperature
dependence of the magnetic field penetration depth
A-ab(T) around the critical point, which has been inves-
tigated only in YBCO crystals of high quality fab-
ricated by different techniques. Some authors [14,73]

measured the function Aafc(r)oc(l - T/TC) °33, corre-
sponding to the so-called 3D XY fluctuation model
[74-76]. Others [70] detected in the neighborhood of
Tc the dependence Aa6(r)oc(l - T/TC)~°'5, in agree-
ment with the BCS theory. The exponent measured
in the crystals fabricated at ISSP proved to have an
intermediate value between -0.33 and -0.5.

3.4. Complex Conductivity

Now let us discuss the temperature dependence
of the complex conductivity us=a{-ia2. The com-
ponents a\(T) and cr2(T) are not measured directly
but derived from measurements of RS(T) and XS(T)
using Eq. (2).

At temperatures not very close to Tc and in HTS
crystals of high quality RS(T)«XS(T), and Eq. (2)
can be simplified:

It follows from Eq. (24) that in the ranges of low
and intermediate temperatures a\/c2 = 2RS/Xs«1.
The increments Acr^T) and Acr2(r) depend on
relative changes ARS(T) and AXS(T):

Hence, the curves of a2(T) are determined only by
the function Xs(T) = a>n0k(T) and reflect the basic
properties of the field penetration depth vs. tempera-
ture, namely its rectilinear shape at low temperatures
in all high-quality HTS crystals and the features
detected in YBCO in the intermediate temperature
range. The behavior of the real part a\ (T) of the
conductivity, as follows from Eq. (25), is determined
by the competition between relative increments ARS /
Rs and AXS/XS. In conventional superconductors like
Nb, XS(T) (»RS) is a very weak function of tempera-
ture in the temperature range T< Tc/2 (AA^wO), and
RS(T) drops exponentially with decreasing tempera-
ture and tends to Rres as r-»0. By subtracting Rres

from measurements of RS(T), we derive using Eqs.
(24) and (25) the temperature dependence cr, (7") pre-
dicted by the BCS model: cr, = 0 at T~Q and shows
an exponentially slow growth with temperature for
T< Tc/2 (Fig. 1). In HTS materials curves of cr, (T)
are radically different from those predicted by conven-
tional theories (BCS, SC, GC) of the microwave
response of superconductors. In the range T<TC the
increments ARS(T) and AXS(T) in HTS are not small,

Fig. 15. Surface resistance Rs and reactance X, of a TBCCO single
crystal vs. temperature.
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Fig. 16. Real part of the conductivity a,(T)/a(Tc) of a YBCO
single crystal calculated by Eq. (27). Values of KS(T) substituted
in this equation were derived from curves of Fig. 6 (or 10) by
subtracting the residual resistance Rrfs^230^Q.

besides, &XS(T)»&RS(T). Therefore, although
R,(T)<XS(T), the increment Aff,(r) in Eq. (25)
changes its sign from plus to minus as the temperature
increases from r=0, i.e., the curve of a{(T) should
have a peak. Its position and amplitude depend on
what value has been attributed to Rrfs. For this rea-
son, the shapes of a\ (T) curves are not determined
unambiguously for T<Tc/2, unlike the functions
RS(T) and X.,(T), which are directly measured in
experiments. If we linearly extrapolate RS(T) to the
region T« Tc down to T= 0 and attribute the resulting
RS(Q) to the residual surface resistance, Rs(0) = Rres,
and then substitute the temperature-dependent
difference Rs(T)-Rres (the function due to intrinsic
behavior) in the numerator of the first formula in Eq.
(24), all resulting ai(T) curves for HTS materials
have shapes of broad peaks. Starting with a steep
linear section in the neighborhood of cri(0) = 0, the
curve of CTI (T) rapidly arrives at its peak value a\max,
which is always essentially higher than the normal
state conductivity (J\(Tc):a\max»cF\(Tc). In tetra-
gonal HTS crystals the conductivity has its peak value
a i max at temperature Tmx Tc/3, and in YBCO Tm is
very close to the peak position of the R,(T) curve.
Moreover, the features of the YBCO surface imped-
ance ZS(T) in the intermediate temperature range
[33,54,69,70] are also manifested in the conductivity
ai (T) of these samples. As an example, the curve of
a\(T) for the YBCO crystal characterized by the
curves of RS(T) and XS(T) shown in Fig. 6 is given
in Fig. 16.

Let us also discuss the behavior of as(T) near
Tc, where Eqs. (24) and (25) do not apply. In this

temperature range, it is advisable to use local relation-
ships (1) and (2) or their analogues for normalized
quantities, relating the real and imaginary parts of the
impedance to the components of complex conductiv-
ity and vice versa:

Here Rs(Te)=Xs(Tc) and a(Tc) = (?i(Tc) are the
impedance and conductivity at T=TC, Xs(0) and
<r2(0) are the values at T=0; A=(l/a>//0CT2)1/2 and
<p= 1 + (<71/o-2)2. The conductivity c2(T) in the ab-
plane of HTS crystals abruptly drops to zero in the
normal state. The derivative (Tc/a2(0)) da2(T)/dT
at T= Tc varies in different crystals between —2 and
-4. The real part of the conductivity, &i(T), does not
show a coherent peak (Fig. 2) about 0.85rc predicted
by BCS. Usually the curve of cr,(r) of HTS single
crystals within 1 K below Tc has the shape of a very
narrow peak and transforms to a broad maximum
peaking at T< Tc/2. The causes of the narrow peak in
the close neighborhood of Tc are the inhomogeneous
broadening of the superconducting transition [11,12]
and fluctuation effects [13], and this peak was investi-
gated in detail by Anlage et al. [14]. In very pure
YBCO crystals, however, the curve of CTI (T) deviates
from its usual shape in the range T> Tc/2 (Fig. 16)
because of features in the impedance ZS(T) at these
temperatures.

4. MODIFIED TWO-FLUID MODEL

Macroscopic properties of conventional super-
conductors have been successfully described by the
London simple phenomenological model [77] and the
related two-fluid model [17] developed by Gorter and
Casimir (GC). The underlying principle of both these
models is a local relation between the current density
and vector potential of magnetic field. As concerns
the analysis of superconductors in an electromagnetic
field of frequency a>, the essence of the GC model can
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be described as follows. It assumes that a supercon-
ductor contains a fraction ns of superconducting cur-
rent carriers, whereas the second fraction nn is normal
carriers (both have the same charge e and effective
mass m), and at all temperatures T< Tc the total car-
rier concentration is n = ns + nn. The equation of
motion for the superconducting carriers is London's
first equation. The normal current carriers are acted
upon by an ac electric field and an averaged "force
of friction," which depends on the relaxation time T
of normal carriers, and their motion is controlled by
Newton's second law. By solving the equations of
motion, we obtain expressions for the components of
complex conductivity crs = <?i - i&2 '•

The relaxation time i in the GC model is
independent of temperature. This is quite natural if
we assume that the behavior of normal carriers in
superconductors is similar to that of normal carriers
in normal metals. Scattering of electrons at low tem-
peratures (in conventional superconductors
Tc< 10 K) is due to impurities and independent of
the temperature. Therefore the temperature depend-
ence of the conductivity components (28) in the
Gorter-Casimir model is determined by the functions
«„(T) and ns(T) = n-nn(T) only. The best agreement
with experimental data is achieved if the function ns (?)
is selected in the form ns(t) = n(\~f), where t=T/
Tc, which leads to the well-known formula A(<) =
Az.(l-f4)"1/2, where Az. = (m///0m>2)1/2. As a result,
we derive from Eq. (28) a\ (T) and cr2(r), then from
Eqs (1) or (26) the components of the surface imped-
ance RS(T) and XS(T). In the band of centimeter
and longer waves, the shapes of these curves weakly
depend on the parameter ca i < 1. When the tempera-
ture T< Tc decreases and <r\«G2, so that, according
to Eqs. (26) and (27),

the functions XS(T)/XS(TC) and a2(T)/a(Tc) rap-
idly saturate as the temperature drops and achieve
their limits (2<yr)1/2 and (tor)"1, corresponding to
zero temperature, whereas a\(T) and RS(T) tend to
zero following a power law. In the other limiting case

(o-i»CT2) of the temperature approaching Tc,
cr,-KT(71c), <r2->0, and the quantities

become equal at T=TC (t= 1); furthermore, there is
a narrow peak of Xs (T) at tm = (1 - co T /fi)'/4, whose
amplitude Xs(tm)<^l.l4Xs(l). Such a peak has been
observed in conventional superconductors tantalum
and niobium [78,79].

Before proceeding with our analysis, it is advis-
able to compare the temperature dependences of sur-
face impedance and complex conductivity predicted
by the two-fluid GC model with those given by the
microscopic BCS (Fermi liquid with weak electron
phonon coupling) and SC (strong coupling) models.
General electrodynamic formulas for superconduc-
tors deriving from the BCS and SC models are given
in the review [80]. One can easily derive from these
formulas analytical expressions for the conductivity
components in the two limiting cases of the BCS
theory, which apply to dirty London and pure
Pippard superconductors at frequencies o>«A//i
[81,82]:

By comparing Eqs (31) with (28), one can easily
find out that, unlike the GC model, the functions
as(T) and ZS(T) given by the BCS models have the
following features:

(1) in the range T< Tc/2 the exponential depen-
dence (RS(T) and at(T)ccexp(-A(Q)/kT))
is predominant;

(2) the slope of the o-2(r) curve at T^TC is
about twice as small;

(3) owing to the logarithmic factor in Eq. (31),
cri(T) grows in the temperature range
0.85<T/rc<l (the coherent peak). The
standard GC two-fluid model cannot
account for the increase in CT, (T) beyond
a(Tc), since this growth would require a
number «„ of normal carriers larger than
their total number n.
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Nonetheless, the BCS theory allows a two-fluid
interpretation in the London limit if, following
Abrikosov [1], we take

By substituting these functions ns(T) and nn(T) in
Eq. (28), we can obtain properties (1) and (2) typical
of the BCS model. The peak in CT, (T)/a(Tc) can be
obtained in the two-fluid model only by introducing
an energy dependence of the relaxation time r [83].

In the BCS there is a gap A, which depends only
on the temperature, in the excitation spectrum at all
temperatures T< Tc. At T=0 there are no quasipart-
icles in BCS superconductors, and the onset of the
electromagnetic absorption takes place in the band
of optical frequencies on > 2A(0)/#. The energy 2A is
necessary to break a Cooper pair and generate two
excitations in a superconductor. The gap width drops
with the temperature, and a lower energy ti(o is
sufficient for generating quasiparticles through excita-
tion across the gap. These quasiparticles are treated
as a "normal liquid" in the BCS model, although they
are not full analogues of current carriers in normal
metals because of coherence effects related to wave
functions of pairs. A more natural two-fluid descrip-
tion of the high-frequency response in superconduc-
tors was obtained under conditions of the SC model,
as was shown in the review [84]. The distinctive
feature of superconductors with strong coupling is
that the gap in the spectrum of electronic excitations
is smeared. Strictly speaking, there is no gap whatever
at 7VO [85,86]. This leads to breaking of Cooper
pairs, smearing of the peak in the density of states,
and suppression of coherence effects. If the coupling
constant is sufficiently large (more than two), there is
no coherent peak in the conductivity CTI (T), and the
mechanism of quasiparticle generation is radically
different from that of the BCS model [87]. They are
generated without jumps across the energy gap and
can be in states with all energies down to fico = 0.
These states can be classified as gapless, and the quasi-
particles can be treated as normal current carriers in
the two-fluid model. Curves of A2(0)/A2(T) numeri-
cally calculated by the SC model [18-20,88] proved
to be fairly close to the function ns(t)/n= 1 -«„(/)/
n = 1 - f4 in the GC model. The slopes of these curves
at T=TC are in agreement with those measured in
different YBCO single crystals and equal to -3 [59]
or -4 [33,42,54]. In combination with the experi-
mental fact that there is no BCS coherent peak in

the conductivity of HTS crystals, this indicates the
necessity of taking into account effects of strong cou-
pling near Tc and feasibility of a description of HTS
properties in the high-frequency band in terms of the
two-fluid model.

4.1. Temperature Dependence of the Relaxation
Time

As was noted in the Introduction, none of the
models briefly described in the previous sections (GC,
BCS, and SC) can account for the impedance ZS(T)
and conductivity &S(T) as functions of temperature
in the ranges of low and intermediate temperatures.
There is, however, a very simple description of
features detected in experiments in their entirety based
on the conventional two-fluid model modified by
including distinctive features of HTS materials. One
of these features is the very high Tc. In normal metals,
processes of inelastic scattering of quasiparticles are
essential at such high temperatures, hence, one natural
modification of the two-fluid model is inclusion of the
temperature dependence r(T).

The first attempts to determine this dependence
by comparing measurements of <J\(T) and ai(T)
with calculations by Eq. (28) were undertaken in stud-
ying HTS crystals in which the real part of conductiv-
ity has a peak at T~ Tc/2 [24,89,90]. The conclusion
from this comparison was that T should increase with
decreasing temperature in the range T<TC, but for
some reasons (poor quality of crystals, utilization of
curves measured in different experiments, etc.) the
resulting functions r(T) were rather peculiar: I/
tocexp(r/r0), r0~10K [90] or l/Tx(AT6+B)
[89]. A more detailed analysis taking into account
both common properties and specific features of the
impedance and conductivity of high-quality HTS cry-
stals was required (see the previous section), and this
analysis was given in our publications [30,33,47,
54,91].

The parameter (or(Tc) is derived from measure-
ments of conductivity: (ot(Tc) = G\(Tc)/a2(Q). In
the band of centimeter waves, e»r(rr)~10~~3 in the
best HTS crystals. There is no feasible mechanism
that could lead to an increase in the relaxation time
by three orders of magnitude with decreasing tem-
perature below Tc. Therefore COT«\ at all tempera-
tures, and the expressions for the conductivity
components in Eq. (28) in the two-fluid model trans-
form to a very simple form:
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At fixed ns(i)/n, hence nn(i)/n = \-ns(t)/n, the
only function we lack for determination of conductiv-
ity as(i) in Eq. (32) and impedance Zs(t) in Eq. (1)
is r(t).

First let us try to describe measurements of
RS(T)/RS(TC) using Eq. (26) by substituting values
of ff2(7T)/<72(0) = A2(0)/A2(7') = H,(7')//i measured
in the same experiments and a\(T)/a\(Tc) obtained
using Eq. (32), the latter function, in its turn, being
derived from nn(T}/n=\-a2(T)/a2(Q), which is
obtained using experimental data and properly
selected T(T).

In selecting the form of function r(T), let us rely
on the simple analogy between the "normal liquid"
and charge carriers in normal metals. According to
Mathissen's rule, the reciprocal relaxation time at
temperatures below the Debye temperature, T«&, is

The first summand on the right (due to impurity
scattering) is constant with temperature, the second
(electron-phonon scattering) is proportional to T5,
and the third (electron-electron scattering) is propor-
tional to T2. By adding the first and second summands
on the right of Eq. (33), we express r(T) as

where /3«T(rc)/r(0)«l is a numerical parameter.
Expression (34) corresponds to the low-temperature
limit of the Bloch-Grunesen formula, which includes
the impurity scattering and can be presented in a wide
temperature range in the form

where K = ®/TC. For 7X0/10 (K>100 Eq. (34)
derives from Eq. (35); for T> ®/5 (K < 50 we deduce
from Eq. (35) the linear dependence l/r(t)cct.

All experimental curves of Rs(t) in high-quality
YBCO single crystals can be described by the two-
fluid model with r(T) given by Eqs. (34) or (35). This
is demonstrated by Fig. 17, which contains measure-
ments labeled by A, B, and C taken from [59,33,69]
and transformed to a single frequency of 10 GHz.
Graph B corresponds to the curve of RS(T) in Fig. 6

Fig. 17. Comparison between calculations (solid lines) and
measurements (open squares) of surface resistance vs. temperature,
R,(T)/RS(TC), in YBCO single crystals. Experimental data are
taken from [59] (A, 4.13 GHz), [33] (B, 9.42 GHz), and [69] (C,
10 GHz) and transformed (oco>3/2) to one frequency 10 GHz.

and graph C to curve 1 in the inset to Fig. 14. At
this frequency 0r(7;) = [p(T;)cr2(0)]~' proved to be
approximately 4 • 10~3, i.e., in these experiments
[33,59,69] l/T(rc)«2 • 1013 s~'. The solid lines in Fig.
17 show calculations of RS(T)/RS(TC) by Eqs (26)
and (32) with oz(T)/a2(G) derived from the same
experimental data [59,33,69] and plotted in Fig. 20
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(curves A-C). Curve A in Fig. 17 was plotted using
only one fitting parameter j3 = 0.01 in Eq. (34). For
curve B £ = 0.2 in Eq. (34), and for curve C y3 = 0.02
and K = 4 in Eq. (35). The calculated curves are very
close to experimental data and display both common
and specific features of RS(T) of YBCO crystals fab-
ricated by different methods, namely, the broad peak
in the intermediate temperature range due to the fast
growth of the relaxation time, T(T)acT~5, with
decreasing temperature and the increase in RS(T) in
the range TC/2<T< Tc (curve C) [69] caused by the
crossover from 7^5 to T* in Eq. (35) for r(T), which
occurs in this sample (C) at temperatures lower than
in samples A and B. Hence follows the conclusion
that the shape of the RS(T) curve in YBCO single
crystals is controlled mostly by the phonon scattering
of quasiparticles.

Figure 18 shows an experimental curve of RS(T)
plotted in linear coordinates [59], which was
measured in the same sample as curve A in Fig. 17,
but at a higher frequency, where the value
®T(rc)«1.5 • 1(T2 was used in calculations (solid
curve). The dashed and dash-dotted curves in Fig. 18
also plot RS(T)/RS(TC), but these data were calcula-
ted by replacing the temperature dependence of I/
r(0 in Eq. (34) proportional to ts with t2 for the
former, whereas in the latter case r was assumed to
be constant with temperature. We stress once again
that the peak in RS(T) typical of YBCO at T~OATC
can be described only using the dependence I/
r(t)cct5. In addition, only this function leads to a

Fig. 18. Open squares plot experimental data for a YBCO single
crystal [59] at a frequency of 34.8 GHz; lines are calculations by
Eq. (26). The dashed line was calculated with summand f replaced
by f in the numerator of Eq. (34), the dash-dotted line with the
temperature dependence eliminated from Eq. (34).

Fig. 19. Experimental data for a BSCCO single crystal [66]
obtained at different frequencies: circles plot measurements at
14.4 GHz, triangles at 24.6 GHz, and squares at 34.7 GHz. Solid
lines are calculations of RS(T)/R,(TC) at the frequencies given
above.

notable elevation of RS(T) curves in a wide tempera-
ture range, which is a common feature of all HTS
materials.

The inclusion of the third summand on the right
of Eq. (33), i.e., a term quadratic in temperature in
the numerator in Eq. (34), leads to spreading of the
peak. This proves essential in comparing model curves
with measurements of tetragonal HTS crystals, which,
unlike YBCO, do not show a peak in RS(T). In Fig.
19 the symbols plot experimental data obtained by
Lee et al. [66] in a BSCCO crystal at three frequen-
cies: 14.4GHz (<wr(rc) = 0.8 • 1(T2), 24.6 GHz, and
34.7 GHz. The solid lines shows calculations at these
frequencies by Eqs. (26) and (32) using measurements
of ai(T)/a2(ty = ns(T)/n in the same experiments
[66] and the function

where )3 = 0.1 and 7 = 0.9.
Graphs of Figs. 17-19, which plot measurements

of different crystals at different frequencies, demon-
strate excellent agreement between experimental data
on RS(T) and calculations based on the two-fluid
model.

4.2. Temperature Dependence of the Superconducting
Electron Density

Now let us try to analyze directly measurements
of cr2(r)/cr2(0). Figure 20A shows a curve of A2(0)/
A2(0 = ns(t)/n in the ai-plane of a YBCO crystal [59].
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Fig. 20. Comparison between calculations (solid lines) and
measurements (circles) of o-2(r)/cr2(0) = A2(0)/A2(r) for YBCO
single crystals. Experimental data are taken from [59] (A), [33]
(B), and [69] (C).

Similar curves with small variations in their slopes at
low temperatures and in the neighborhood of Tc were
obtained in other experiments with both YBCO
[42,56], and tetragonal BSCCO [43,66] and TBCO
[67] crystals. All of them are characterized by linear
sections in the low-temperature range and well
approximated by the function

quoted here 0.5 < a <0.7. The solid lines in Fig. 20A
show function (37) at a = 0.5. Near Tc we obtain
A(0oc«,(0~'/2oc(l-0~a/2, which is also in fairly
good agreement with experimental data. Equation
(37) yields an infinite value of derivative d<j2(t)/
dtac(l-t)a~l at/=! anda<l.

The function n s ( t ) , however, cannot account in
its simplest form (37) for features in the curves of
A2(0)/A2(r) detected recently in YBCO crystals in
the intermediate temperature range [33,54,69,70],
Moreover, the slope of these curves at T« Tc implies
that a > 1 in Eq. (37), which would lead to zero slope
of the o-2(r)/o-2(0) curve at T=TC. Therefore we
have to introduce an additional summand to the right-
hand side of Eq. (37) without breaking the condition
of particle conservation, ns + nn=n, in the two-fluid
model:

where 0 < 8 < 1 is the weight factor. For 8« 1 (<5->0)
and a> 1 the principal contribution to o-2(T)
throughout the temperature range is still due to the
first term on the right of Eq. (38), whereas the second
is responsible for the finite slope of o-2(3r)/o'2(0) at
T= Tc equal to —4, in accordance with the GC model.
As 8 increases, the second term on the right of Eq.
(38) becomes more significant. The experimental
curve of cr2(r)/<T2(0) in Fig. 20B derived from RS(T)
and Xs (T) and plotted in Fig. 6 using formula (27)
is adequately described by function (38) at 8 = 0.5 and
a = 5.5. The curve plotting this function in Fig. 20B
reflects characteristic features of the experimental
data, namely, the linear section and positive second
derivative (a > 1) in the low-temperature range, the
plateau in the intermediate temperature range due to
the equality (5 = 0.5) between the summands in Eq.
(38), and the correct value of the slope near Tc. The
whole set of cr2(T) curves measured in the afc-plane
of YBCO crystals grown at ISSP using the same tech-
nique is described by Eq. (38), where a was almost
constant, aw5.5, and 8 was varied between 0.1 and
0.5.

The third curve in Fig. 20C [69], which corre-
sponds to the curve of A (T) in Fig. 14(1), is different
from typical curves of Figs. 20A and 14 (2), (3), since
a linear section of o~2 (T) is observed only in a narrow
range of temperatures, 0< T«TC, and it switches to
a quadratic curve as the temperature increases. This
crossover can be described [33] by introducing an
additional factor (1 + rjt) to the first summand on the
right of Eq. (38) for ns(t); thus we can obtain the
solid curve of Fig. 20C at a = 2.2, j\ = 2, and 8 = 0.04.

where a is a numerical parameter. For t«1 we have
«J(0/« = cr2(0/o'2(0)^(l — at). In the experiments
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To sum up, one can describe characteristic
features of ZS(T) and os(T) in high-quality HTS cry-
stals in terms of the modified two-fluid model based
on Eqs. (32)-(38). As follows from these equations, at
low temperatures, t«l, all curves have linear sections,
a\acat/P, since nn/nxat and T«r(0)«r(7'c.)/^;
Ao-2oc-af; Rsccat/ft, in accordance with Eq. (29);
A^socAAoca//2. As the temperature increases, the
curve of CTI (r) passes through a maximum at ;<0.5.
This peak is due to superposition of two competing
effects, namely, the drop in the number of normal
carriers as the temperature decreases, t<l, and the
increase in the relaxation time, which stalls at
/~/?1/5. The model also accounts for the temperature
dependence of the surface impedance and complex
conductivity in YBCO single crystals manufactured
using different techniques.

5. ON THE WAY TO A MICROSCOPIC
THEORY

Let us set aside the feasible mechanisms of super-
conducting pairing in HTS and briefly analyze the
existing microscopic theories of the high-frequency
response of HTS materials. Given the phenomenolog-
ical model formulated in the previous section, which
is in fairly good agreement with measurements of
ZS(T) in HTS crystals, it is natural to compare the
tenets of this model with results of the microscopic
theory. Along the way, some progress toward a clear
understanding of a universal microscopic approach to
microwave properties of HTS may be possible.

5.1. Isotropic SC Model and Relaxation Time in the
Superconducting State

Eliashberg's equations, which take into account
effects of delay and damping of quasiparticles, apply
to superconductors with an arbitrarily strong inter-
action in the Fermi liquid. In the case of electron-
phonon interaction in an isotropic one-band super-
conductor with singlet s-wave pairing and Debye
spectrum of phonons, the electron relaxation rate
r(r) = l/2r(r) is proportional to T3 for T< Tc

[16,84] if Eliashberg's equations are solved by neglect-
ing the phonon corrections to the electromagnetic ver-
tex. If these corrections are taken into account [92],
then F(r)ocr5, which is in agreement with Eq. (34).
Using this result, the authors of [15] proved that
peaks on curves of RS(T) and c?i(T), which are
characteristic features of YBCO, can be obtained on
the base of the conventional isotropic SC model,

Here 2F(rc) = l/r(Jc), and A0 is the maximum gap
width on the Fermi surface, A0 = 2.14TC (hereafter ft =
k=\) if strong coupling effects are neglected. Recall
that 2F(rc) = 2 • 1013 s~' ~0.8TC for YBCO single cry-
stals [33,59,69]; then we derive from Eq. (39)
crmin ~0.1 cr(Tc), and substitution of this parameter in
Eq. (29) yields the minimum surface resistance Rsmin

of a d-wave superconductor. At a frequency of
10 GHz in YBCO /? i m i n~l^Q, i.e., one order of
magnitude lower than the best experimental data
reported to date.

These manifestations of the rf-wave symmetry,
which are unusual from the viewpoint of the conven-
tional approach, stimulated theoretical studies of vari-
ous HTS properties based on the model of an almost
antiferromagnetic Fermi liquid.

Hirschfeld et al. [97-99] calculated the conduc-
tivity <rs(T) and surface resistance RS(T) as functions
of temperature and compared them to experimental
data by Bonn et al. [59]. Let us discuss these results
in detail.

First let us consider the case of relatively low
temperatures T<0.4TC, when the quasiparticle damp-
ing is due to their impurity scattering. In this range,
as was indicated by Hirschfeld et al. [97-99],

(1) the integral expressions for the superconduc-
tor microwave response allow one to present the con-
ductivity in the form of Eqs (28) or (32) with

although quantitative agreement between this model
and experimental data is out of the question. To the
best of our knowledge, the theory suggested by Eliash-
berg et al. [92] has remained the only model applied
to the HTS microwave response taking into account
vertex corrections. It might be interesting to find out
whether this result [92] should hold in microscopic
models more adequate for description of HTS.

5.2. Model of Almost Antiferromagnetic Fermi
Liquid

In this model [93-95], low-frequency excitations
in the medium are not phonons, but weakly damped
spin waves, and superconducting pairing is mediated
by spin fluctuations. The paramagnon mechanism
leads to a (/-wave symmetry of the order parameter,
when the Fermi surface contains lines on which the
gap width turns to zero. This means that there are
quasiparticles in the superconductor even at T=0,
hence the finite conductivity [96]
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r(r)«r(0) = l/2F, where F is the rate of elastic
relaxation; F is always smaller than F(rc); for
example, in the experiment by Bonn et al. [59], F/
F(7;)^r(7;)/r(5K)^j3«0.01;

(2) versions with weak (Born approximation)
and strong (unitary limit) scattering characterized by
phase shifts 5 = 0 and 8 = n/2, respectively, are con-
sidered ; in the Born approximation suppression of Tc

is predicted but has not been detected in microwave
experiments;

(3) there is a crossover temperature T* denning
the boundary between the "gapless" (T<T*«TC)
and "pure" (T*< T«TC) regimes of superconductiv-
ity; in the unitary limit, whose conditions are closer
to those of real experiments, r*«0.8(FA0)1/2«
0.17; ^9 K in the best YBCO crystals with optimal
doping level; introduction of impurities (such as Zn
[59]) leads to higher F and crossover temperature T*.

In the "pure" regime of superconductivity the
field penetration depth is a linear function of nondi-
mensional temperature t = T/Tc:

By taking a = 0.5 (for the curve in Fig. 20A) and
2ci given in Eq. (40), we obtain A0^2.7rc in the
experiment reported by Bonn et al. [59], At frequen-
cies of 4 GHz ((0/TC^0.002) and 35 GHz (co/
7;~0.019) the parameter co/T in [59] equals 0.2JC

and \.9TC> respectively, which corresponds to an
intermediate region between the hydrodynamic (co/
F«l) and collisionless (ft)/F»l) limits. According
to numerical calculations [98,99] for this intermediate
region (measurements at 35 GHz in [59] are well
within this region), the conductivity CT, (T) is a linear
function of T. Figure 9 in [99] clearly shows that the
slope of the line describing CT, (T)/a(Tc) at T« Tc is
close to a/p, which is given by the phenomenological
model.

As the concentration of impurities increases, the
"pure" regime at low temperatures is replaced by the
"gapless" one, and from the intermediate region the
system is shifted to the hydrodynamic one; as a result,
we have AA (T) oc T2 and en (T) oc T2. This conclusion
was confirmed by measurements [59] of samples with
Cu atoms substituted by Zn impurities.

In the temperature range T> 0.47V processes of
inelastic scattering are significant. The quasiparticle
damping factor due to scattering by spin fluctuations
vs. temperature was calculated neglecting vertex cor-
rections [100], and the result was proportional to T3:
l/r(T) oc T3. With due account of this formula, calcu-
lations in the range of intermediate temperatures and
in the neighborhood of Tc produced maxima on
curves of a,(T) and RS(T) [98,99]. Unfortunately,
the parameter T/TC = 0.0008 used in those calcula-
tions was undervalued; therefore, it was useless to
compare these calculations with accurate experi-
mental data. One remarkable fact revealed by this
comparison was that the peak in the calculated RS(T)
was shifted to lower temperatures with respect to the
measured position, which might be caused by the
insufficiently strong temperature dependence of 1/r
in the calculations (compare with Fig. 18).

Thus, the rf-wave model of the microwave
response [97-99] is in qualitative agreement with
measurements of surface impedance in YBCO at low
temperatures [59] and is consistent from the formal
viewpoint with the phenomenological model consid-
ered above at T« Tc. A significant advantage of these
calculations [97-99] is the visual demonstration of
nontrivial consequences of the d-wave order param-
eter applied to investigations of microwave response
of high-quality YBCO single crystals using the mini-
mal number of fitting parameters. It seems that curves
of (T2(T) measured in tetragonal HTS crystals, like
those shown in Fig. 20A, can also be described by
this model. On the other hand, this model cannot
account for the linear section of the RS(T) curves
extending to Tc/2 (at a frequency of 10 GHz), obser-
vation of radically different values of the <J2(T) slope
for T« Tc (which corresponds to a > 1 in Eq. (38)
and, in accordance with Eq. (40), to A0<rc.) in
experiments with YBCO crystals [33,54,69,70], not to
mention features in the range of intermediate tem-
peratures, and, finally, the large slopes of RS(T) and
<T2 (T) curves as T-> Tc.

This approach was further developed in a recent
work by Hensen et al. [71], who compared in detail
calculations and measurements of ZS(T) at a fre-
quency of 87 GHz in two different YBCO films. They
investigated theoretically the evolution of functions
as(T) and RS(T) as a result of a transition from the
unitary to the Born limit and demonstrated that the
minimal conductivity in Eq. (39) is not a universal
parameter and the experimental curves are best
described at an intermediate scattering phase shift
S&QAn. They matched their calculations to the

This formula is in agreement with Eq. (37), from
which follows
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experimental data using a combination of six (or even
nine) fitting parameters. Three parameters were con-
tained in a phenomenologically introduced tempera-
ture dependence of the inelastic relaxation time
r(l)/r(0 = ^3 + (l-fl)e*'('-1)[1+*2('~l)21, where / =
T/TC. In the case of film B with higher characteristics
[71], the parameter <z=0, and the remaining terms are
well approximated by the function l/r(r)ocr5. It is
desirable to apply this calculation technique [71] and
its version generalized to the case of strong coupling
[101] to measurements of HTS crystals in the centi-
meter wavelength band.

To conclude our discussion of the consequences
of the d-wave order parameter, which is due to the
interaction intensity described by an alternating func-
tion in the reciprocal space, consider two important
points. Firstly, the presence of quasi-one-dimensional
sections of the electronic spectrum in HTS and the
resulting square-root van Hove singularities in the
density of states [102] lead to the rf-wave pairing
caused by anisotropic electron-phonon coupling.
Alternative models of the d-wave order parameter
based on the electron-phonon coupling were dis-
cussed in [103,104]. Secondly, the third principle of
thermodynamics rules out the linear dependence
Ak(T)ocT in the region of very low temperatures,
T-»0 [105]. In the case of a superconductor with a d-
wave order parameter, this means that there always
exists a physical mechanism that gives rise to a cross-
over temperature T*«TC below which AA(T) must
deviate from a linear function. At present two such
mechanisms are known, namely the impurity scatter-
ing [97] and, in pure (/-wave superconductors, non-
local effects [2]. Indeed, in some microwave
experiments the onset of the linear section of the
AA(T) curve in the range T«TC was not at 4.2 K,
but at slightly higher temperatures (see, for example,
curves of A(F) in TBCCO and BKBO shown in Fig.
10), but no systematic measurements of AA(7") for
T< 5 K are presently available.

5.3. Two-Band Model and Mixed Symmetry of the
Order Parameter

An interpretation of the features in ZS(T) and
as(T) curves observed recently in YBCO single crys-
tals [33,54,69,70] can be based on the two-band model
and/or the assumption about the mixed symmetry of
the order parameter. Even the shapes of the experi-
mental curves in Figs. 20B and C, and function (38),
which describes these curves and contains two sum-
mands, provide evidence in favor of this interpreta-
tion. Moreover, the mixed (s + d)-wave order

parameter has the symmetry of the orthorhombic lat-
tice and seems to be more natural for YBCO than a
pure J-wave order parameter, which has the symmetry
of the tetragonal lattice.

A description of HTS properties based on the
two-band model was suggested by Kresin and Wolf
[106]. This model is a generalization of the SC model
to the case of layered HTS, in particular YBCO,
which has two subsystems, namely the band of CuO2

planes (S-band) and the band of CuO chains (N-
band). The density of states in such a system as a
function of temperature and impurity concentration
was analyzed by Adrian et al. [107].

Calculations of the microwave response
[22,108,109] assumed a strong electron-phonon cou-
pling in the S-band and a weak superconductivity in
the TV-band induced by the proximity effect. A system
of coupled Eliashberg equations for the 5-wave order
parameter and renormalization functions in each
band was solved. The parameters in these equations
were coupling constants A/, and coefficients yi} and
•y$ of scattering from the rth to the y'th band due to
nonmagnetic and magnetic impurities, respectively.

In [22,109] the number and values of parameters
were selected using experimental data on YBCO single
crystals. For the S-band AI , = 3, in the N-band A22 =
0, and the nonvanishing gap in the CuO chains is
induced by the interband coupling characterized by
the parameters Ai2 = A2i=0.2. This set of coupling
constants yields Tc ̂ 92 K. Effects of interband scat-
tering were considered to be negligible: y,2, j2\«Tc.
Impurity scattering within each band, yn, y22, was
taken into account, alongside the scattering by mag-
netic impurities, yjf ="/M, in the //-band only
(yt( = 0), where oxygen atoms have a higher mobility
and, leaving the chains, generate magnetic moments
in the uncompensated copper ions Cu2+. The param-
eter yM is proportional to the concentration of the
magnetic impurities, which increases with decreasing
oxygen content in the sample. The constants of elastic
relaxation were considered to be equal, 711 = 722 =
y'mp, and estimated taking the absolute value and ani-
sotropy of YBCO conductivity in the normal state,
namely, the estimate 2< yimp/7;<4 derived from the
measurement 50<p(100 K)< 100/iQ-cm and the
resistivity anisotropy factor in the aft-plane equal to
2. Note that rimp is not equal to F=l/2r(0) in the
one-band models discussed above. The calculated
constants of inelastic scattering were automatically
proportional to T3 [22,109], since the Debye phonon
spectrum was used and vertex corrections were neglec-
ted. Thus the large set of parameters initially included
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Fig. 21. Comparison between calculated curves
(y" = Q.2Tc) of o-2(r)/<T2(0) and experimental
data from [42] (triangles) and [59] (circles): (1)
rimp = 2T,; (2) y'mp = 47;; (3) yimp = 8rc; (4)
7""p = 20r,. The inset (y'mp = 27't.) demonstrates
a crossover from the exponential (curves 1, JM =
0, and 2, yu' = Q.\TC) to linear (curve 3, yM =
0.47,) curve of A/WT) due to increasing concen-
tration of magnetic impurities. Squares in the
inset plot data from [55].

in the Eliashberg equations for the two-band model
reduced to four numbers AM, A,2, y'mp, and yM, two
of which (An = 3 and A)2 = 0.2) were constant, whereas
7imp and JM varied.

Figure 21 shows calculations and measurements
given in [42] and [59] (Fig. 20A) of the function
<T2(r)/cr2(0). For curves (1-4) JM=0.27; = const,
and the only parameter varying from one curve to
another is r'mp: 2TC (1), 4TC (2), &TC (3), and 20r,
(4). The effect of magnetic impurity scattering
(depending on the content of oxygen in YBCO) is
demonstrated by the inset to Fig. 21 and can be
described as follows. In a sample saturated with oxy-
gen, there are no magnetic scatterers in the chains (N-
band), JM = 0. In this case, the calculation by the two-
band model (curve 1 in the inset) and the experimental
data (•) obtained using a YBCO thin film [55] yield
an exponential temperature dependence AAai(r) for
T« Tc, owing to the small width of the energy gap
induced in the W-band.

Note that an exponential dependence AA (T) has
been detected by now in only one experiment [55]
with YBCO films of very high quality, which degraded
very rapidly [110]. No such behavior has been
observed in the best HTS crystals. The thermally acti-
vated behavior of crs(T) and RS(T) is incompatible
with the d-wave symmetry of the order parameter.

Light doping with magnetic impurities (JM=
0.17;, curve 2 in the inset to Fig. 21) leads to a large
slope of AAai(r), but does not radically change the
curve shape. A further increase in JM (depletion of

oxygen) makes the superconducting state in the chains
gapless, and the function AAafc(r) becomes linear in
the temperature range T>Q.05Tcx5 K. A linear sec-
tion of the AAai(r) curve in the low temperature range
is also shown in Fig. 3, where the curve calculated on
the basis of the model under discussion (yM = 0.3Tc,
y'mp = 4Tc) is compared to measurements of a YBCO
thin film at a frequency of 87 GHz [21]. At a
sufficiently high 7'mp, the contribution of the JV-band
to the field penetration depth vanishes, and the func-
tion AA (T) becomes close to that predicted by the SC
model: AA (T) oc T" with the exponent n > 1 [ 16,92]. A
crossover from a linear AA(T) to a power function
with n = 4 with increasing impurity concentration was
observed in recent experiments [111] with YBCO cry-
stals with some Y atoms replaced by Pr ions.

The complex conductivity as = a\ - ia^ of a two-
band superconductor is a combination of conduc-
tivities in the S-band (of =of-z'(rf) and W-band
(<rf=o-f-^):

where vs'N and ms'N are the densities of states and
effective masses of carriers in the respective bands.
Numerical calculations of a\ (T) and RS(T) [109] are
in satisfactory agreement with measurements of
YBCO films [21], although these data have not been
carefully analyzed as yet in the range of low tempera-
tures and near Tc.
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properties of HTS materials have been attracting
more attention from researchers [113-117] because of
intriguing effects that are tentatively attributed to the
mixed (j + rf)-wave symmetry of the order parameter,
and more interesting discoveries in this field of
research can be expected in the immediate future.

Fig. 22. Evolution of ai(T)/a2(ty curves due to changes in the
interband scattering constant y. Calculations are made by the two-
band model with a rf-wave order parameter in the 5-band and an
i-wave order parameter in the N-band [112].

Even though the two-band model has its uncon-
tested advantages, attempts to apply it to the micro-
wave response of tetragonal HTS single crystals is
problematic since, unlike YBCO, they contain no
chains and, therefore, no magnetic scatterers like Cu2+

ions in YBCO. Meanwhile, magnetic impurities play
an essential role: scattering by these impurities
reduces the gap in the TV-band to zero and leads to
the linear temperature dependence of AAaA for T« Tc.
There is no such problem with (/-wave superconduc-
tors. Moreover, it seems that the experimental curves
of ZS(T) and as(T) in YBCO in the intermediate
temperature range cannot be interpreted in terms of
^-pairing in both bands. Therefore, an option with a
J-wave order parameter in one of the bands turns up
as a matter of course. An attempt to introduce such
an order parameter was made by Golubov, and calcu-
lations of CT2(r)/CT2(0) are plotted in Fig. 22 [112].
The curves were calculated using a two-band model
with a J-wave superconducting gap in the 5-band and
i-wave symmetry in the Af-band. The model param-
eters were An = 3, A22 = 0.5, in Eq. (42) £" = 0.5, and
only the constants of interband scattering 712 =
721 = 7 were included. The solid line in Fig. 22 shows
a feature at Tx0.6Tc, which vanishes as the disorder
increases. A similar approach was employed by Sri-
kanth et al. [70] in interpreting their experimental
data, in particular, for the phenomenological descrip-
tion of the curve in Fig. 20C. Recently the microwave

6. CONCLUSION

This review is an attempt to summarize and class-
ify measurements of the surface impedance ZS(T) =
Rs(T) + iXs(T) of high-quality YBCO, BKBO,
TBCCO, TBCO, and BSCCO crystals in the tempera-
ture range 4.2 < T< 150 K. The common features of
all these materials are the linear temperature depend-
ence of surface resistance, &Rs(T)ccT, and reactance,
AXs(T)ocMab(T)acT, at temperatures T«TC, their
rapid growth as 71-* Tc, and their behavior in the nor-
mal state corresponding to the linear dependence
Apab(T)acT, Rs(T)=Xs(T) = J(on0p(T)/2. There
are differences between the curves of ZS(T) in
BSCCO, TBCCO, and TBCO single crystals with
tetragonal lattices, and BKBO crystals with the cubic
lattice on one hand, and YBCO crystals with the
orthorhombic structure on the other. Whereas the lin-
ear sections of these curve in the tetragonal materials,
ARS(T)acT, obtained at a frequency of ~ 10 GHz can
extend to Tc/2, in YBCO the linear section terminates
at T<Tc/3, and at higher temperature the RS(T)
curve has a broad peak. In addition, the Xab(T) curves
of YBCO have features in the intermediate tempera-
ture range.

The paper suggests a simple description of all
these properties of ZS(T) based on the two-fluid
model, which takes into account scattering of quasi-
particles and characteristic changes in the density of
superconducting carriers at low temperatures and in
the neighborhood of the critical temperature. The
underlying ideas of this model may be essential for a
future microscopic model of the microwave response
of HTS materials.

Only microwave properties of HTS crystals of
the highest quality and with optimal doping levels
have been discussed, because a great deal of experi-
mental data concerning these materials has been accu-
mulated by this time. For this reason, we have set
aside three issues, which are, in our opinion, quite
important and worth mentioning at the end of the
review.

Firstly, the evolution of the temperature depend-
ence ZS(T) with changes in the doping level from the
optimal value has not been studied sufficiently. No
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microwave measurements of one and the same crystal
but with a variable and controlled carrier concentra-
tion are available. At the same time, such data are
essential for theoretical studies aimed at creating a
microscopic theory of HTS, because they will shed
light on such problems as possible changes in the
order parameter symmetry [118,119], evolution of the
pseudogap [120-122], superconductor-dielectric tran-
sitions [123], etc.

Secondly, the nature of the residual surface resist-
ance of HTS crystals measured in experiments
remains unclear. The effect of the sample surface con-
ditions on the Z,(T) signal has not been studied,
although there are several phenomenological [124-
130] and microscopic [131-136] models indicating the
importance of such studies. For example, the theory
[136] predicts that in the case of diffuse scattering on
the surface, an s-wave component can be added to
the bulk d-wave order parameter in the region near
the sample surface. Probably, this effect can be
responsible for the difference among curves of cr2(T')
in Fig. 20 measured in YBCO with approximately
equal parameters characterizing their quality. Recent
microwave experiments [137] also indicate that
studies of microscopic properties of single-crystal
surfaces are important.

Thirdly, measurements of the surface impedance
anisotropy, which remain scarce up to now, have not
been discussed, although several experiments have
provided evidence in favor of different temperature
dependences of the surface impedance in the ai-plane
and along the c-axis [41-43,45,65]. The theory
[22,109,128-143] predicts different scenarios for pro-
cesses in HTS in the microwave band, depending on
the mechanism responsible for the anisotropy; there-
fore a comparison between theoretical data and accu-
rate microwave measurements would, undoubtedly,
be very helpful.

Presently solutions to the problems listed above
are in the pipeline, and it seems that they will deter-
mine the development of experimental and theoretical
research of the microwave response of HTS materials
in the immediate future.
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