03,05,11

Механизм переноса заряда в новом магнитном топологическом изоляторе MnBi_{0.5}Sb_{1.5}Te₄

© Н.А. Абдуллаев^{1,2}, Х.В. Алигулиева^{1,3}, В.Н. Зверев⁴, З.С. Алиев^{1,5}, И.Р. Амирасланов^{1,2}, М.Б. Бабанлы^{2,6}, З.А. Джахангирли^{1,2}, Е.Н. Алиева¹, Х.Н. Ахмедова^{1,5}, Т.Г. Мамедов¹, М.М. Отроков^{7,8}, А.М. Шикин⁹, Н.Т. Мамедов¹, Е.В. Чулков^{9,10}

¹ Институт физики НАН Азербайджана, Баку, Азербайджан ² Бакинский государственный университет, Баку, Азербайджан ³ Сумгаитский государственный университет, Сумгаит, Азербайджан ⁴ Институт физики твердого тела РАН, Черноголовка, Россия ⁵ Азербайджанский государственный университет нефти и промышленности, Баку, Азербайджан ⁶ Институт катализа и неорганической химии НАН Азербайджана, Баку, Азербайджан ⁷ Centro de Fisica de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Donostia-San Sebastian, Basque Country, Spain ⁸ IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ⁹ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия ¹⁰ Dpto. de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Aptdo. 1072, Donostia-San Sebastián, Basque Country, Spain E-mail: abnadir@mail.ru Поступила в Редакцию 13 апреля 2021 г.

В окончательной редакцию 13 апреля 2021 г. Принята к публикации 18 апреля 2021 г.

Получен новый слоистый магнитный топологический изолятор состава MnBi_{0.5}Sb_{1.5}Te₄. Исследована электропроводность в плоскости слоев и в направлении перпендикулярном слоям в области температур 1.4–300 К. Обнаружено, что в обоих направлениях в интервале температур 50–300 К наблюдается "металлический" характер температурной зависимости удельного сопротивления $\rho(T)$. Ниже температуры T = 50 К величина ρ возрастает и демонстрирует нетривиальную температурную зависимость с особенностью в области критической температуры $T_c = 23$ К. Возрастание сопротивления в температурном интервале 50–23 К обусловлено спиновыми флуктуациями и магнитным фазовым переходом. Ниже T_c и вплоть до 1.4 К $\rho(T)$ демонстрирует поведение характерное для эффекта слабой локализации, что подтверждается анализом данных, полученных при исследовании магнитосопротивления.

Ключевые слова: топологические изоляторы, удельное сопротивление, фазовые переходы, слабая локализация, магнитосопротивление, слоистые кристаллы.

DOI: 10.21883/FTT.2021.08.51154.085

1. Введение

В последнее время наблюдается новый всплеск интереса к топологическим изоляторам в связи с открытием магнитных топологических изоляторов [1–5]. Топологические изоляторы впервые были теоретически предсказаны еще в 1980-х годах [6]. К настоящему времени экспериментально обнаружены целые классы топологических изоляторов, включая трехмерные (3D) топологические фазы различных соединений [7–17].

Как известно, объем материала с топологической фазой является изолятором, а поверхность — метал-

лом. Проводящие свойства поверхности являются следствием сильного спин-орбитального взаимодействия и симметрии относительно обращения времени, которые приводят к возникновению спин-поляризованных топологических поверхностных состояний с дисперсией дираковского типа, т. е. линейной зависимостью энергии от импульса, как в графене. Практический интерес к топологическим изоляторам обусловлен тем, что поверхностные состояния защищены симметрией обращения времени от рассеяния назад на немагнитных примесях и дефектах — и поэтому носители заряда в этих состояниях могут двигаться вдоль поверхности объемного материала без потери энергии. Таким образом, возможно осуществление бездиссипативного переноса заряда.

В отличие от немагнитных аналогов, магнитные топологические изоляторы могут иметь щель в конусе Дирака, что делает возможным наблюдение ряда уникальных физических явлений, таких как квантованный аномальный эффект Холла (QAH), магнитоэлектрический эффект, аксионная электродинамика, майорановские фермионы и др. [1,18–21]. Магнитные топологические изоляторы востребованы и в новой области современной электроники — спинтронике, в основном в средствах переноса, записи и хранения информации.

Первые попытки открытия щели в топологическом поверхностном состоянии реализовывались легированием немагнитных топологических изоляторов, например, типа Bi₂Te₃ магнитными примесями Mn, Cr, Fe и др. [22-24]. Однако принципиальной трудностью легирования является невозможность равномерного распределения легирующих примесей по объему. Это приводит к тому, что транспортные явления будут определяться наименьшей из всех локальных щелей с существенным понижением температуры реализации вышеперечисленных физических явлений. Другим возможным способом добиться формирования щели в конусе Дирака является формирование ультратонкой пленки двумерного ферромагнетика с магнитным моментом, направленным перпендикулярно пленке, на поверхности немагнитного трехмерного топологического изолятора. Некоторые из теоретически предсказанных систем [25-28] были недавно реализованы экспериментально методом молекулярно-лучевой эпитаксии [26,28]. Еще одним классом материалов, в которых происходит расщепление дираковского состояния, являются собственно магнитно упорядоченные топологические изоляторы. Недавно был предложен и экспериментально реализован антиферромагнитный топологический изолятор MnBi₂Te₄ [2]. Фотоэмиссионные измерения [2,4] и инфракрасная спектроскопия плазменного края свободных носителей [29] показали, что уровень Ферми в этом соединении пересекает зону проводимости, т.е. лежит выше объемной запрещенной зоны.

Отметим, что практическое наблюдение бездиссипативного переноса заряда в топологических изоляторах сталкивается с большими трудностями. Дело в том, что в топологических изоляторах, наряду с поверхностными носителями заряда, в еще большей концентрации имеются в наличии топологически незащищенные объемные носители, которые могут доминировать в суммарном механизме переноса заряда. Для уменьшения вклада объемных носителей заряда, необходимо, чтобы уровень Ферми находился в запрещенной зоне. Такую корректировку (tuning) положения уровня Ферми можно добиться либо опять-таки легированием, либо же использованием твердых растворов. Теоретически, крайние члены ряда твердых растворов MnBi_{2-x}Sb_xTe₄-MnBi₂Te₄ и МпSb₂Te₄ являются антиферромагнитными топологическими изоляторами [2,30,31]. Экспериментально, антиферомагнитное топологическое состояние твердо установлено только для MnBi₂Te₄ [2]. Ситуация с MnSb₂Te₄ пока остается не ясной ввиду сильного перемешивания атомов между подрешетками Mn и Sb в реальных образцах этого соединения. В твердых растворах MnBi_{2-x}Sb_xTe₄ с увеличением доли содержания сурьмы *x* по данным холловских измерений и по положению уровня Ферми, переход проводимости с *n*-типа в *p*-тип происходит при x > 0.6 [32,33].

В настоящей работе сообщается о получении и исследовании электрических и гальваномагнитных свойств твердого раствора магнитного топологического изолятора MnBi_{0.5}Sb_{1.5}Te₄.

2. Экспериментальная часть

Технология получения и характеризация магнитных топологических изоляторов семейства $MnBi_2Te_4(Bi_2Te_3)_n$ подробно описана в работе [34]. Слоистое соединение $MnBi_{0.5}Sb_{1.5}Te_4$ кристаллизуется в ромбоэдрическую (rhombohedral) структуру (пространственная группа R-3m) с осью c, перпендикулярной плоскости слоев. На рис. 1 приведена рентгеновская дифрактограмма для соединения $MnBi_{0.5}Sb_{1.5}Te_4$. Определенный параметр решетки в направлении оси c равен примерно 41 Å.

Электрические и гальваномагнитные (эффект Холла и магнитосопротивление) эффекты в слоистых кристаллах $MnBi_{0.5}Sb_{1.5}Te_4$ были изучены стандартным четырехзондовым методом по селективной методике на переменном токе частотой 20.5 Hz с использованием Lock-in Amplifier — SR830. Величина тока не превышала 1 mA. Исследования проводились в широкой области температур 1.4–300 К. Сильные магнитные поля до 80 kOe были получены с помощью сверхпроводящего соленоида. Образец при гальваномагнитных измерениях помещался в центр соленоида.

Рис. 1. Рентгеновская дифрактограмма соединения MnBi_{0.5}Sb_{1.5}Te₄.

Анизотропия электропроводности в слоистых кристаллах MnBi_{0.5}Sb_{1.5}Te₄ была изучена усовершенствованным, комбинированным, четырехзондовым методом Montgomery [35], пригодным для образцов, приготовленных в виде тонких пластинок малых размеров. Такие пластинки легко получить из слоистых материалов путем их естественного скола в плоскости, параллельной слоям. Четыре контакта попарно наносятся на противоположные поверхности изучаемого образца в прямоугольной геометрии.

На рис. 2 приведены температурные зависимости удельного сопротивления в плоскости слоев (ρ_{\parallel}) и в направлении, перпендикулярном слоям (ρ_{\perp}) соединения MnBi_{0.5}Sb_{1.5}Te₄, в широкой области температур 1.5–300 К. На вкладке приведена температурная зависимость анизотропии электропроводности $\rho_{\perp}/\rho_{\parallel}$. Как видно, анизотропия электропроводности практически не меняется с температурой, что свидетельствует об одинаковом механизме переноса заряда в плоскости слоев и в направлении, перпендикулярном слоям.

Для более подробного анализа обратимся к электропроводности в плоскости слоев в другой конфигурации контактов, позволяющей проводить и исследования эффекта Холла. На рис. 3 показана температурная зависимость удельного сопротивления $\rho_{xx}(T)$ соединения MnBi_{0.5}Sb_{1.5}Te₄ в широкой области температур 1.4–300 K.

Как видно из рис. 3, температурная зависимость удельного сопротивления $\rho_{xx}(T)$ в области температур 50-300 К имеет характерный "металлический" ход: с уменьшением температуры величина удельного сопротивления уменьшается. Такая температурная зависимость характерна и для классического полупроводника Bi₂Te₃ [36]. Вышеизложенное обусловлено тем, что для этих кристаллов при синтезе из расплава стехиометрического состава уже изначально характерно наличие значительного количества собственных точечных дефектов структуры, т.н. антисайтных дефектов и дефектов замещения. Поэтому, выращенные монокристаллы MnBi_{0 5}Sb_{1 5}Te₄ имеют значительную концентрацию носителей заряда. Согласно исследованиям эффекта Холла, соединение MnBi_{0.5}Sb_{1.5}Te₄ является полупроводником р-типа, с концентрацией дырок в данном образце равной 1.7 · 10²¹ ст⁻³. Такая большая концентрация примесей формирует в запрещенной зоне значительное количество локальных состояний, образующих широкую примесную зону, перекрывающуюся с собственной зоной чистого кристалла. Поэтому, при исследованиях электропроводности монокристаллов MnBi_{0.5}Sb_{1.5}Te₄ наблюдается типичный "металлический" ход температурной зависимости удельного сопротивления.

Далее, ниже температур T = 50 K величина удельного сопротивления возрастает и зависимость $\rho(T)$ демонстрирует перегиб при критической температуре $T_c \sim 23 \text{ K}$ (рис. 3). Этот перегиб обусловлен магнитным фазовым переходом. В соединении MnBi_2Te_4 фазовый переход парамагнетик–антиферромагнетик происходит

Рис. 2. Температурные зависимости удельного сопротивления соединения $MnBi_{0.5}Sb_{1.5}Te_4$ в плоскости слоев (ρ_{\parallel}) и в направлении, перпендикулярном слоям (ρ_{\perp}). На вставке: температурная зависимость анизотропии электропроводности $\rho_{\perp}/\rho_{\parallel}$.

Рис. 3. Температурная зависимость удельного сопротивления $\rho_{xx}(T)$ соединения MnBi_{0.5}Sb_{1.5}Te₄ в широкой области температур 1.4–300 К.

при T = 25.4 K [2], а в MnSb₂Te₄ магнитный фазовый переход при T = 19 K [32].

С дальнейшим понижением температуры величина удельного сопротивления продолжает возрастать вследствие локализации носителей заряда при низких температурах, что характерно для "грязных металлов" [37], каковыми, возможно, являются твердые растворы MnBi_{0.5}Sb_{1.5}Te₄. Локализация носителей заряда (в данном случае дырок) обусловлена интерференцией амплитуд траекторий с самопересечением при рассеянии носителей на примесях и структурных дефектах (т. н. квантовая интерференционная добавка к проводимости, или слабая локализация). В приложенном внешнем магнитном поле когерентность амплитуд рассеяния нарушается, интерференция амплитуд рассеяния разрушается и сопротивление уменьшается, т.е. наблюдается отрицательное магнитосопротивление (рис. 4).

Следует отметить, что при температуре 5К уже в слабых магнитных полях напряженностью (H) до 5 kOe сопротивление падает с величины $1.25 \text{ m}\Omega \cdot \text{сm}$ до $1.05 \text{ m}\Omega \cdot \text{сm}$ (рис. 4), что коррелирует с возрастанием сопротивления (рис. 3). Это свидетельствует о том, что в данном случае мы наблюдаем эффект слабой локализации.

Влияние различных по величине внешних магнитных полей $H \leq 10$ kOe на температурную зависимость удельного сопротивления $\rho_{xx}(T)$ приведено на рис. 5. Как видно из рис. 5, с возрастанием величины приложенного магнитного поля (от 0 до 10 kOe) увеличение сопротивления, вызванное локализацией, постепенно исчеза-

Рис. 4. Зависимость удельного сопротивления ρ_{xx} MnBi_{0.5}Sb_{1.5}Te₄ от внешнего магнитного поля *H* при температуре T = 5 K.

Рис. 5. Температурная зависимость удельного сопротивления ρ_{xx} в MnBi_{0.5}Sb_{1.5}Te₄ при внешних магнитных полях напряженностью $0 \le H \le 10$ kOe.

Рис. 6. Температурная зависимость удельного сопротивления ρ MnBi₂Te₄ [2].

Рис. 7. Температурная зависимость удельного сопротивления ρ_{xx} в MnBi_{0.5}Sb_{1.5}Te₄ при внешних магнитных полях напряженностью 20 $\leq H \leq 60$ kOe.

ет и отчетливо виден пик на $\rho_{xx}(T)$, обусловленный магнитным фазовым переходом. Аналогичный пик на зависимости $\rho_{xx}(T)$ наблюдался нами и в монокристаллах MnBi₂Te₄ [2] (рис. 6), обусловленный магнитным фазовым переходом парамагнетик—антиферромагнетик. Возникновение пика обусловлено рассеянием носителей заряда на спиновых флуктуациях при магнитном фазовом переходе.

Как видно из рис. 5, приложенное поле H = 5 kOe практически ликвидирует возрастание сопротивления, вызванное слабой локализацией, что является дополнительным потверждением наблюдения эффекта слабой локализации.

Сравнение рис. 5 и 6 показывает, что пик на зависимости $\rho_{xx}(T)$ в MnBi_{0.5}Sb_{1.5}Te₄ более размыт, чем в MnBi₂Te₄. Это обусловлено тем, что в твердом растворе MnBi_{0.5}Sb_{1.5}Te₄ больше дефектов, что приводит к размытию температуры фазового перехода. Дальнейшее увеличение величин внешних магнитных полей (от 20 до 60 kOe) приводит к постепенному уменьшению пика на зависимости $\rho_{xx}(T)$ (рис. 7), что свидетельствует о магнитном происхождении этой особенности. Необходимо однако отметить, что достаточно сильное магнитное поле H = 60 kOe не ликвидирует полностью пик на зависимости $\rho_{xx}(T)$ в твердом растворе MnBi_{0.5}Sb_{1.5}Te₄, что указывает на достаточно сильное обменное взаимодействие.

3. Заключение

Нами получены и охарактеризованы новые магнитные топологические изоляторы твердого раствора MnBi_{0.5}Sb_{1.5}Te₄. Из исследований анизотропии электропроводности выявлен одинаковый механизм переноса заряда в плоскости слоев и в направлении, перпендикулярном слоям, в широкой области температур 1.4-300 К. Обнаружено, что в интервале температур 50-300 К наблюдается "металлический" характер температурной зависимости удельного сопротивления. Ниже температур *T* = 50 К величина удельного сопротивления возрастает и зависимость $\rho(T)$ демонстрирует перегиб при критической температуре $T_c = 23$ К. Возрастание сопротивления в этом температурном интервале обусловлено спиновыми флуктуациями и происходящим магнитным фазовым переходом. Ниже температуры 23 К возрастание сопротивления обусловлено эффектом слабой локализации, на что указывают данные исследований влияния внешнего магнитного поля на электропроводность.

Финансирование работы

Настоящая работа была выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики (гранты № EİF-BGM-4-RFTF-1/2017-21/04/1-М-02 и EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/16/1), Российского фонда фундаментальных исследований (грант № 18-52-06009), гранта № 73028629 Санкт-Петербургского университета, а также фонда Spanish Ministerio de Ciencia e Innovación (Grant N PID2019-103910GB-I00).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Y. Tokura, K. Yasuda, A. Tsukazaki. Nature Rev. Phys. 1, 126 (2019).
- [2] M.M. Otrokov, I.I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z.S. Aliev, S. Gaß, A.U.B. Wolter, A.V. Koroleva, A.M. Shikin, M. Blanco-Rey, M. Hoffmann, I.P. Rusinov, A.Yu. Vyazovskaya, S.V. Eremeev, Yu.M. Koroteev, V.M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I.R. Amiraslanov, M.B. Babanly, N.T. Mamedov, N.A. Abdullayev, V.N. Zverev,

A. Alfonsov, V. Kataev, B. Büchner, E.F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R.C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C.H. Min, S. Mose, T.R.F. Peixoto, F. Reinert, A. Ernst, P.M. Echenique, A. Isaeva, E.V. Chulkov. Nature **576**, 416 (2019).

- [3] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian, W.-H. Fan, Z.-C. Rao, J.-R. Huang, J.-J. Li, Z.-T. Liu, W.-L. Liu, Y.-B. Huang, Y.-L. Li, Y. Liu, G.-B. Zhang, H.-C. Lei, Y.-G. Shi, W.-T. Zhang, H.-M. Weng, T. Qian, H. Ding. Phys. Rev. X 9, 041039 (2019).
- [4] I.I. Klimovskikh, M.M. Otrokov, D. Estyunin, S.V. Eremeev, S.O. Filnov, A. Koroleva, E. Shevchenko, V. Voroshnin, A.G. Rybkin, I.P. Rusinov, M. Blanco-Rey, M. Hoffmann, Z.S. Aliev, M.B. Babanly, I.R. Amiraslanov, N.A. Abdullayev, V.N. Zverev, A. Kimura, O.E. Tereshchenko, K.A. Kokh, L. Petaccia, G. Di Santol, A. Ernst, P.M. Echenique, N.T. Mamedov, A.M. Shikin, E.V. Chulkov. npj Quantum Materials 5, 54 (2020).
- [5] L. Ding, C. Hu, F. Ye, E. Feng, N. Ni, H. Cao. Phys. Rev. B 101, 020412 (2020).
- [6] Б.А. Волков, О.А. Панкратов. Письма в ЖЭТФ 42, 4, 145 (1985).
- [7] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang. Science **318**, 766 (2007).
- [8] Y. Xia, D. Qian, D. Hsieh L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan. Nature Phys. 5, 398 (2009).
- [9] H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang. Nature Phys. 5, 438 (2009).
- [10] K. Kuroda, M. Ye, A. Kimura, S.V. Eremeev, E.E. Krasovskii, E.V. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, K. Shimada, H. Namatame, M. Taniguchi. Phys. Rev. Lett. **105**, 146801 (2010).
- [11] Y.L. Chen, Z.K. Liu, J.G. Analytis, J.-H. Chu, H.J. Zhang, B.H. Yan, S.-K. Mo, R.G. Moore, D.H. Lu, I.R. Fisher, S.C. Zhang, Z. Hussain, Z.-X. Shen. Phys. Rev. Lett. **105**, 266401 (2010).
- [12] H. Lin, R.S. Markiewicz, L.A. Wray, L. Fu, M.Z. Hasan, A. Bansil. Phys. Rev. Lett. 105, 036404 (2010).
- [13] S.V. Eremeev, G. Bihlmayer, M. Vergniory, Yu.M. Koroteev, T.V. Menshchikova, J. Henk, A. Ernst, E.V. Chulkov. Phys. Rev. B 83, 205129 (2011).
- [14] S. Kim, M. Ye, K. Kuroda, Y. Yamada, E.E. Krasovskii, E.V. Chulkov, K. Miyamoto, M. Nakatake, T. Okuda, Y. Ueda, K. Shimada, H. Namatame, M. Taniguchi, A. Kimura. Phys. Rev. Lett. **107**, 056803 (2011).
- [15] S.V. Eremeev, G. Landolt, T.M. Menshchikova, B. Slomski, Yu.M. Koroteev, Z.S. Aliyev, M.B. Babanly, J. Henk, A. Ernst, L. Patthey, A. Eich, A.A. Khajetoorians, J. Hagemeister, O. Pietzsch, J. Weibe, R. Wiesendanger, P.M. Echenique, S. Tsirkin, I.R. Amiraslanov, J.H. Dil, E.V. Chulkov. Nature Commun. **3**, 635 (2012).
- [16] J. Henk, A. Ernst, S.V. Eremeev, E.V. Chulkov, I.V. Maznichenko, I. Mertig. Phys. Rev. Lett. 108, 206801 (2012).
- [17] M. Papagno, S.V. Eremeev, J. Fujii, Z.S. Aliev, M.B. Babanly, S.K. Mahatha, I. Vobornik, N.T. Mamedov, D. Pacile, E.V. Chulkov. ACS nano 10, 3, 3518 (2016).
- [18] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, Q.-K. Xue. Science **340**, 167 (2013).
- [19] Q.L. He, L. Pan, A.L. Stern, E.C. Burks, X.Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E.S. Choi, K. Murata, X. Kou, Z. Chen, T.Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia, K.L. Wang. Science **357**, 294 (2017).

- [20] A.M. Essin, J.E. Moore, D. Vanderbilt. Phys. Rev. Lett. 102, 146805 (2009).
- [21] R. Li, J. Wang, X.-L. QiandS.-C. Zhang. Nature Phys. 6, 284 (2010).
- [22] J. Choi, H.-W. Lee, B.-S. Kim, S. Choi, J. Choi, J.H. Song, S. Cho. J. Appl. Phys. 97, 10D324 (2005).
- [23] J.W.G. Bos, M. Lee, E. Morosan, H.W. Zandbergen, W.L. Lee, N.P. Ong, R.J. Cava. Phys. Rev. B 74, 184429 (2006).
- [24] Y.S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J.G. Checkelsky, L.A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M.Z. Hasan, N.P. Ong, A. Yazdani, R.J. Cava. Phys. Rev. B 81, 195203 (2010).
- [25] M.M. Otrokov, T.V. Menshchikova, M.G. Vergniory, I.P. Rusinov, A.Yu. Vyazovskaya, Yu.M. Koroteev, G. Bihlmayer, A. Ernst, P.M. Echenique, A. Arnau, E.V. Chulkov. 2D-Materials 4, 025082 (2017).
- [26] T. Hirahara, S.V. Eremeev, T. Shirasawa, Y. Okuyama, T. Kubo, R. Nakanishi, R. Akiyama, A. Takayama, T. Hajiri, S.-I. Ideta, M. Matsunami, K. Sumida, K. Miyamoto, Y. Takagi, K. Tanaka, T. Okuda, T. Yokoyama, S.-I. Kimura, S. Hasegawa, E.V. Chulkov. Nano Lett. **17**, 3493 (2017).
- [27] M.M. Otrokov, T.V. Menshchikova, I.P. Rusinov, M.G. Vergniory, V.M. Kuznetsov, E.V. Chulkov. JETP Lett. 105, 297 (2017).
- [28] T. Hirahara, M.M. Otrokov, T. Sasaki, K. Sumida, Y. Tomohiro, S. Kusaka, Y. Okuyama, S. Ichinokura, M. Kobayashi, Y. Takeda, K. Amemiya, T. Shirasawa, S. Ideta, K. Miyamoto, K. Tanaka, S. Kuroda, T. Okuda, K. Hono, S.V. Eremeev, E.V. Chulkov. Nature Commun. 11, 4821 (2020).
- [29] B. Xu, Y. Zhang, E.H. Alizade, Z.A. Jahangirli, F. Lyzwa, E. Sheveleva, P. Marsik, Y.K. Li, Y.G. Yao, Z.W. Wang, B. Shen, Y.M. Dai, V. Kataev, M.M. Otrokov, E.V. Chulkov, N.T. Mamedov, Ch. Bernhard. Phys. Rev. B 103, L121103 (2021).
- [30] R.C. Vidal, H. Bentmann, T.R.F. Peixoto, A. Zeugner, S.K. Moser, C.H. Min, S. Schatz, K. Kißner, M. Unzelmann, C. Fornari, H.B. Vasili, M. Valvidares, K. Sakamoto, J. Fujii, I. Vobornik, T.K. Kim, R. Koch, C. Jozwiak, A. Bostwick, J. Denlinger, E. Rotenberg, M.M. Otrokov, E.V. Chulkov, M. Ruck, A. Isaeva, F. Reinert. Phys. Rev. B 100, 121104R (2019).
- [31] S.V. Eremeev, I.P. Rusinov, Yu.M. Koroteev, A.Yu. Vyazovskaya, M. Hoffmann, P.M. Echenique, A. Ernst, M.M. Otrokov, E.V. Chulkov.
 - Препринт на https://arxiv.org/abs/2102.02532 (2021).
- [32] J.-Q. Yan, S. Okamoto, M.A. McGuire, A.F. May, R.J. McQueeney, B.C. Sales. Phys. Rev. B 100, 104409 (2019).
- [33] B. Chen, F. Fei, D. Zhang, B. Zhang, W. Liu, S. Zhang, P. Wang, B. Wei, Y. Zhang, Z. Zuo, J. Guo, Q. Liu, Z. Wang, X. Wu, J. Zong, X. Xie, W. Chen, Z. Sun, S. Wang, Y. Zhang, M. Zhang, X. Wang, F. Song, H. Zhang, D. Shen, B. Wang. Nature Commun. **10**, 4469 (2019).
- [34] Z.S. Aliev, I.R. Amiraslanov, D.I. Nasonova, A.V. Shevelkov, N.A. Abdullayev, Z.A. Jahangirli, E.N. Orujlu, M.M. Otrokov, N.T. Mamedov, M.B. Babanly, E.V. Chulkov. J. Alloys Comp. 789, 443 (2019).
- [35] Л.И. Буравов. ЖТФ **59**, *4*, 138 (1989).
- [36] Н.А. Абдуллаев, С.Ш. Кахраманов, Т.Г. Керимова, К.М. Мустафаева, С.А. Немов. ФТП 43, 2, 156 (2009).
- [37] В.Ф. Гантмахер. Электроны в неупорядоченных средах. Физматлит, М. (2013). 288 с.

Редактор Т.Н. Василевская