Динамика решетки Bi₂Te₃ и колебательные моды в рамановском рассеянии топологических изоляторов MnBi₂Te₄ · *n*(Bi₂Te₃)

Н. А. Абдуллаев^{а,b}, И. Р. Амирасланов^{а,b}, З. С. Алиев^а, З. А. Джахангирли^{а,b}, И. Ю. Скляднева^c, Е. Г. Ализаде^a, Е. Н. Алиева^{b,a}, М. М. Отроков^{d,e}, В. Н. Зверев^f, Н. Т. Мамедов^{а1)}, Е. В. Чулков^{g,h1)}

^а Институт физики Национальной Академии Наук Азербайджана, AZ1141 Баку, Азербайджан

^bБакинский Государственый Университет, AZ1148 Баку, Азербайджан

^с Томский Государственный Университет, 634050 Томск, Россия

^dCentro de Fisica de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastian, Basque Country, Spain

 $^e I\!K\!E\!RBASQUE,$ Basque Foundation for Science, 48011 Bilbao, Spain

^fИнститут физики твердого тела Российской академии наук, 142432 Черноголовка, Россия

⁹Санкт-Петербургский Государственный Университет, 198504 С.-Петербург, Россия

^hDepartamento de Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Facultad de Ciencias Quimicas, Universidad del País Vasco UPV/EHU, 20080 San Sebastian/Donostia, Basque Country, Spain

> Поступила в редакцию 9 апреля 2022 г. После переработки 11 мая 2022 г. Принята к публикации 12 мая 2022 г.

Работа посвящена экспериментальному исследованию и симметрийному анализу колебательных мод активных в рамановском рассеянии ван-дер-ваальсовских топологических изоляторов $MnBi_2Te_4$ · $n(\text{Bi}_2\text{Te}_3)$, где n представляет количество пятислойных пакетов Te-Bi-Te-Bi-Te между двумя соседними семислойными пакетами Te-Bi-Te-Mn-Te-Bi-Te. Методом конфокальной рамановской спектроскопии исследуются кристаллические структуры с n = 0, 1, 2, 3, 4, 5, 6 и ∞ . Проводится сравнение экспериментальных частот колебательных мод одинаковой симметрии с изменением п. Параллельно, теоретически рассматривается динамика решетки свободных пленок, состоящих из одного, трех и четырех пятислойных пакетов, а также объемных Bi_2Te_3 $(n = \infty)$ и $MnBi_2Te_4$ (n = 0). Колебательные моды последних двух систем имеют одинаковую симметрию, но разные поля смещений, которые, в случае активности моды в рамановском рассеянии, не содержат смещений атомов марганца для любого конечного п. Показывается, что две колебательные моды, в низкочастотной области спектра (35–70 см⁻¹) структур с n = 1, 2, 3, 4, 5 и 6 практически отвечают динамике решетки n-го количества свободных пятислойных пакетов Ві2 Те3. По этой причине остальные две колебательные моды, которые наблюдаются в высокочастотной области спектра (100–140 см⁻¹) и которые экспериментально неразличимы в смысле принадлежности к тому или иному пакету или к обоим пакетам одновременно, следует также предписывать колебаниям в пятислойных пакетах при неподвижных атомах семислойных пакетов.

DOI: 10.31857/S1234567822120084, EDN: imxnfw

1. Ведение. До открытия первого собственного антиферромагнитного топологического изолятора $MnBi_2Te_4$ с температурой Нееля 25.4 К [1] рассматривались разные возможности создания магнитной щели в точке Дирака и реализации фазы квантового аномального эффекта Холла (КАЭХ). Самый простой способ решения такой задачи был реализован, как теоретически [2,3], так и экспериментально [4], путем допирования магнитными атома-

словливает низкую температуру реализации КАЭХ.
Другой способ, так называемый эффект магнитной близости, формирующийся вблизи границы раздела ТИ/ферромагнитный полупроводник, приводит в общем случае к смещению топологического поверхностного состояния в глубь ТИ и соответственно к ослаблению магнитного эффекта [6,7]. Этот недоста-

ми немагнитного топологического изолятора (ТИ).

Однако из-за неоднородного распределения магнит-

ных атомов в реальных ТИ магнитная щель нере-

гулярно менялась вдоль поверхности [5], что обу-

¹⁾e-mail: n.mamedov.physics@bsu.edu.az; evguenivladimirovich.tchoulkov@ehu.eus

$MnBi_2Te_4 \cdot n(Bi_2Te_3)$	n	Пространственная	Параметры		Последовательность		
		группа	решетки		атомных пакетов		
			a (Å)	c (Å)			
Bi ₂ Te ₃	∞	R- $3m$	4.386	30.497	-5-		
$MnBi_2Te_4$	0	R- $3m$	4.3304(1)	40.956(2)	-7-		
$MnBi_4Te_7$	1	P- $3m1$	4.3601(1)	23.798(2)	-5-7-		
${\rm MnBi}_{6}{\rm Te}_{10}$	2	R- $3m$	4.3685(2)	101.870(7)	-5-5-7-		
${\rm MnBi_8Te_{13}}$	3	R- $3m$	4.3927(8)	132.336(24)	-5-5-5-7-		
$MnBi_{10}Te_{16}$	4	P- $3m1$	4.3701(7)	54.304(9)	-5-5-5-7		
$MnBi_{12}Te_{19}$	5	R- $3m$	4.377	199.410	-5-5-5-5-7-		
$MnBi_{14}Te_{22}$	6	R- $3m$	4.379	223.908	-5-5-5-5-5-7-		

Таблица 1. Пространственная группа симметрии, параметры решетки и последовательность чередования пятислойных и семислойных пакетов для каждого члена серии MnBi₂Te₄ · n(Bi₂Te₃)

ток удается преодолеть в значительной степени при нанесении на поверхность немагнитного ТИ ультратонкой пленки ферромагнитного изолятора, обладающего кристаллической структурой и атомным составом, подобными таковым в исходном ТИ [6, 8–11]. Появление MnBi₂Te₄ во многом сняло проблему создания магнитной щели в спектре поверхностных топологических состояний и, одновременно, дало старт началу исследований целой серии кристаллических аналогов MnBi₂Te₄, известных сегодня как MnBi₂Te₄ $n(Bi_2Te_3)$, где n представляет количество пятислойных пакетов Te-Bi-Te-Bi-Te (ПСП) между двумя соседними семислойными пакетами Te-Bi-Te-Mn-Te-Bi-Te (ССП) в структуре с данным n [12].

Важность исследований этой серии, как естественных гетероструктур была впервые подчеркнута в работе, посвященной поверхностным топологическим состояниям, магнитным и транспортным свойствам $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ [13] и, в дальнейшем, нашла отражение во многих работах [12, 14–24], включая работы по рамановскому рассеянию [12, 19–24]. Однако динамика решетки, равно как и другие свойства структур с n выше трех остаются до сих пор неисследованными. Открытым пока остается и вопрос о существенном несоответствии между количеством мод, активных в рамановском рассеянии, которое должно наблюдаться в рамках симметрийного анализа объемного кристалла, и таковым наблюдаемым для структур с n = 1, 2, и 3. Следует отметить, что хотя структуры $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ при комнатной температуре являются парамагнитными, их топология остается нетривиальной и в этом случае [25, 26].

В настоящей работе представлены результаты исследований рамановского рассеяния для топологических изоляторов $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ с $n = 0, 1, \ldots, 6, \infty$. Параллельно, теоретически рассмотрена динамика решетки одного, трех и четырех ПСП Bi₂Te₃, а также объемных Bi₂Te₃ $(n = \infty)$ и MnBi₂Te₄ (n = 0). В совокупности, полученные результаты позволили установить весьма необычную динамику решетки топологически нетривиальных систем MnBi₂Te₄ · n(Bi₂Te₃), которая позволяет объяснить вышеупомянутое несоответствие.

2. Получение и рентгеновский анализ образцов. Монофазные образцы каждого члена серии скалывались под оптическим микроскопом из кристаллических слитков $MnBi_2Te_4 \cdot n(Bi_2Te_3)$, выращенных методом Бриджмена-Стокбаргера из предварительно синтезированных поликристаллических фаз каждого состава. Процедура синтеза и условия выращивания отличались от таковых для MnBi₂Te₄ [12] только процентным содержанием начальных компонент и небольшим изменением температуры выращивания, в соответствии с требуемым п. Дифрактограммы от плоскостей (0001), подтверждающие соответствие структуры каждого из исследованных образцов требуемому *n* были получены используя рентгеновский дифрактометр BRUKER XRD D2 Phaser (Cu, $K_{\alpha 1}$; $5 \le 2\theta \le 100^{\circ}$). Фазовый состав и структурный анализ образцов проводился с использованием программных пакетов EVA и TOPAS-4.2. Структурные данные, полученные по каждому члену серии приведены в табл. 1.

3. Методика экспериментальных и теоретических исследований рамановского рассеяния. Рамановское рассеяние исследовалось с помощью конфокальной установки Nanofinder 30 (Tokyo Instruments, Japan) с дифракционной решеткой 1800 штрих/мм и спектральным разрешением 0.5 см⁻¹. Рассеяние возбуждалось на длине волны 532 нм излучением второй гармоники Nd: YAG лазера с максимальной мощностью 10 мВт. Диаметр лазерного пятна на образце не превышал 4 мкм. Детектирование сигнала проводилось в режиме счета фотонов ССD камерой, охлажденной до тем-

	Ν	Полное колебательное представление $MnBi_2Te_4 \cdot n(Bi_2Te_3)$					
n		Оптическ	Акустическая				
		Инфракрасные	Рамановские	часть			
		моды	моды				
∞	F	$2A_{2u}(\Gamma_2^-)$	$2A_{1g}(\Gamma_1^+)$	$A_{2u}(\Gamma_2^-)$			
	0	$+2E_u(\Gamma_3^-)$	$+2E_g(\Gamma_3^+)$	$+E_u(\Gamma_3^-)$			
0	7	$3A_{2u}(\Gamma_2^-)$	$3A_{1g}(\Gamma_1^+)$	$A_{2u}(\Gamma_2^-)$			
	1	$+3E_u(\Gamma_3^-)$	$+3E_g(\Gamma_3^+)$	$+E_u(\Gamma_3^-)$			
1	12	$6A_{2u}(\Gamma_2^-)$	$6A_{1g}(\Gamma_1^+)$	$A_{2u}(\Gamma_2^-)$			
		$+6E_u(\Gamma_3^-)$	$+6E_g(\Gamma_3^+)$	$+E_u(\Gamma_3^-)$			
2	17	$8A_{2u}(\Gamma_2^-)$	$8A_{1g}(\Gamma_1^+)$	$A_{2u}(\Gamma_2^-)$			
		$+8E_u(\Gamma_3^-)$	$+8E_g(\Gamma_3^+)$	$+E_u(\Gamma_3^-)$			
3	22	$11A_{2u}(\Gamma_2^-)$	$11A_{1g}(\Gamma_1^+)$	$A_{2u}(\Gamma_2^-)$			
		$+11E_u(\Gamma_3^-)$	$+11E_g(\Gamma_3^+)$	$+E_u(\Gamma_3^-)$			
4	27	$13A_{2u}(\Gamma_2^-)$	$13A_{1g}(\Gamma_1^+)$	$A_{2u}(\Gamma_2^-)$			
		$+13E_u(\Gamma_3^-)$	$+13E_g(\Gamma_3^+)$	$+E_u(\Gamma_3^-)$			
5	32	$16A_{2u}(\Gamma_2^-)$	$16A_{1g}(\Gamma_1^+)$	$A_{2u}(\Gamma_2^-)$			
		$+16E_u(\Gamma_3^-)$	$+16E_g(\Gamma_3^+)$	$+E_u(\Gamma_3^-)$			
6	37	$18A_{2u}(\Gamma_2^-)$	$18A_{1g}(\Gamma_1^+)$	$A_{2u}(\Gamma_2^-)$			
		$+18E_u(\Gamma_3^-)$	$+18E_g(\Gamma_3^+)$	$+E_u(\Gamma_3^-)$			

Таблица 2. Полное колебательное представление для каждого члена n серии MnBi₂Te₄ · n(Bi₂Te₃). N – количество атомов в элементарной ячейке. В скобках после спектроскопического обозначения дана теоретико-групповая симметрия каждого представления в точке Γ (центр зоны Бриллюена). Колебания E_u и E_g дважды вырождены

пературы -100 °С. Временной промежуток сбора сигнала не превышал 1 мин, а сам сигнал отфильтровывался с использованием краевых фильтров LP03-532RU-50 (SemrockCompany). Расположение фильтров (https://www.semrock.com/filter-spectraat-non-normal-angles-of-incidence.aspx) позволяло регистрировать 100 % рамановского сигнала в области 40–5000 см⁻¹ и не менее 50 % сигнала в области 35–40 см⁻¹. Измерения проводились в геометрии обратного рассеяния. Полученные спектры приводятся в работе в нормализованном виде.

Теоретические расчеты проводились в рамках теории возмущений функционала плотности. В случае $MnBi_2Te_4$ использовался псевдопотенциальный метод в рамках кода ABINIT [27] с базисом плоских волн. Для Bi₂Te₃ мы использовали псевдопотенциальный подход и смешанный базис [28, 29], в котором валентные состояния представлены в виде комбинации плоских волн и локальных орбиталей s- и *р*-типа в узлах Ві и Те, что позволило уменьшить энергию обрезания для плоских волн до 10 Ry без потери точности. Для обменно-корреляционного функционала использовалось РВЕ приближение [30]. Все рассчитанные величины получены с учетом спинорбитального взаимодействия [31]. При интегрировании по зоне Бриллюэна мы использовали неоднородную сетку *k*-точек, очень плотную 96 × 96 вблизи центра зоны (для малых диапазонов импульса) и крупную 12×12 для остальной части зоны Бриллюэна.

Полное колебательное представление для каждого члена n серии MnBi₂Te₄ · n(Bi₂Te₃) приведено в табл. 2.

4. Результаты и обсуждение. Соединения с $n = \infty$ и n = 0 являются концевыми членами серии MnBi₂Te₄ · $n(Bi_2Te_3)$ и их структуры содержат либо только пятислойные, либо только семислойные атомные пакеты, ПСП и ССП, соответственно (табл. 1, последняя колонка). Спектры рамановского рассеяния этих членов приведены на рис. 1.

Идентификация мод для $MnBi_2Te_4$ (рис. 1, розовая кривая) основана на сравнении экспериментальных спектров с расчетными частотами и симметрией фононов в точке Γ (рис. 2) и согласуется с данными недавней работы [24], где дополнительно проведены измерения поляризации наблюдаемых фононов. Для Bi_2Te_3 (рис. 1, голубая кривая) наблюдаемые моды идентифицированы на основе сравнения с расчетными частотами и симметрией мод, представленых на рис. 3.

Как видно из рис. 2 и 3, при одинаковой симметрии колебательных мод, поля смещений в MnBi₂Te₄ и Bi₂Te₃, равно как и во всех остальных членах серии разные. На обоих рисунках горизонтальные смещения атомов происходят в плоскости слоев, а верти-

Рис. 1. (Цветной онлайн) Частоты и симметрия фононных мод, наблюдаемых в Рамановском рассеянии MnBi₂Te₄ (розовая кривая) и Bi₂Te₃ (голубая кривая)

Рис. 2. (Цветной онлайн) Поля смещений раманактивных колебательных мод MnBi₂Te₄. Наблюдаемые частоты в см⁻¹ приведены внизу каждой моды, вместе с расчетными, указанными после наклонной (/)

Рис. 3. (Цветной онлайн) Поля смещений раманактивных колебательных мод Bi_2Te_3 . Наблюдаемые частоты в см⁻¹ приведены внизу каждой моды, вместе с расчетными, указанными после наклонной (/)

кальные перпендикулярно этой плоскости. Для простоты указаны только направления смещения каждого атома. Атомы Mn не участвуют в колебаниях, активных в рамановском рассеянии.

Как видно из табл. 2, ожидаемое количество мод в спектрах рамановского рассеяния членов MnBi₂Te₄ · $n(Bi_2Te_3)$ с n = 0 (MnBi₂Te₄) и $n = \infty$ (Bi₂Te₃) составляет 6 и 4, соответственно. В спектрах же, приведенных на рис. 2, наблюдаются только 5 из 6 и 3 из 4 ожидаемых рамановских мод, соответственно. Как следует из сопоставления данных на рис. 1 и табл. 2, недостающей модой для каждого материала является мода E_q симметрии.

Проявление этой низкочастотной моды в рамановском рассеянии объемного Bi_2Te_3 затрудняется инструментальными ограничениями (см. предыдущий раздел) и при определенной интенсивности сигнала ее регистрация оказывается невозможной. По крайней мере, в целом ряде работ [32–37], эта мода не наблюдалась. В то же время существуют работы [38–41], которые сообщают о наблюдении в Bi_2Te_3 моды с E_g симметрией и частотой 36.5 см⁻¹. В MnBi₂Te₄ низкочастотная E_g мода с расчетной частотой 28.2 см⁻¹ (рис. 2, E_g^1) ни в одной из опубликованных до сих пор работ не наблюдалась. Поэтому в дальнейших рассуждениях мы будем пользоваться расчетным значением частоты этой моды.

На рисунке 4 приведены спектры рамановского рассеяния всех членов серии $MnBi_2Te_4 \cdot n(Bi_2Te_3)$. Как следует из этого рисунка, наиболее значительные изменения в спектре происходят при переходе от $MnBi_2Te_4$ (n = 0) к $MnBi_4Te_7$ (n = 1).

Спектры $MnBi_4Te_7$ (n = 1) и $MnBi_2Te_4$ (n = 0)представлены на рис. 5 (черные точки) вместе с результатами разложения этих спектров на составляющие (сплошные зеленые линии).

Обратимся к самым низкочастотным модам на рис. 2 (E_g^1, A_{1g}^1) для MnBi₂Te₄ и рис. 3 (E_g^1, A_{1g}^1) для Bi₂Te₃ с синфазными смещениями атомов Bi и Te и сравним их с самыми низкочастотными модами в спектрах MnBi₄Te₇ и MnBi₂Te₄ (рис. 5, верхний и нижний спектры, соответственно), которые также легко идентифицируются как E_q^1 и A_{1g}^1 моды.

В MnBi₄Te₇ эти моды оказываются сдвинутыми (более чем на 20%) в сторону больших частот по сравнению с MnBi₂Te₄. Такое существенное увеличение частоты при замене одного ССП в MnBi₂Te₄ на один ПСП Bi₂Te₃ явно связано с уменьшением количества атомов, участвующих в синфазных смещениях, что имеет место при переходе от MnBi₂Te₄ к Bi₂Te₃ (сравни E_g^1 и A_{1g}^1 моды на рис. 2 и 3).

Рис. 4. Эволюция рамановских спектров MnBi₂Te₄ · $n(Bi_2Te_3)$ с изменением n. Пунктирные линии 1, 3, 5 и 6 соединяют моды одинаковой симметрии и пересекают нижнюю и верхнюю горизонтальные оси следующим образом: 1 - 38 и 41 см^{-1} ; 3 - 57.4 и 61 см^{-1} ; 5 - 101 и 101 см^{-1} ; 6 - 139 и 133 см^{-1} соответственно. Пунктирные линии 2 и 4 пересекают нижнюю горизонтальную ось при 45.8 и 65.4 см^{-1} соответственно. (Мода с частотой 110 см^{-1} в MnBi₂Te₄ на рис. 4 не указана)

Как свидетельствуют результаты разложения спектров на компоненты (рис. 5, сплошные зеленые линии), вопреки ожидаемому количество мод, наблюдаемых для $MnBi_4Te_7$ (n = 1) явно меньше, чем для $MnBi_2Te_4$ (n = 0). При этом полностью отсутствует какое-либо дополнительное уширение основных мод, обусловленное ростом количества атомов в элементарной ячейке и появлением с ростом n большего количества мод (табл. 2, вторая и четвертая колонки, соответственно). Суперпозиция таких близких по частоте мод должна была бы привести к уширению основных линий. Как показывают результаты разложения и анализ уширения

Письма в ЖЭТФ том 115 вып. 11-12 2022

Рис. 5. (Цветной онлайн) Сравнение данных настоящей работы для структур с n = 1 (верхний спектр) и n = 0 (нижний спектр). Результаты разложения спектров на составляющие показаны сплошными зелеными линиями. Вертикальная прерывистая линия показывает расчетное положение самой низкочастотной моды E_g^1 в MnBi₂Te₄ [12]

составляющих компонент, проведенный для всех спектров на рис. 4, начиная с n = 1, с ростом n количество мод в спектрах $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ не изменяется и составляет 4. Примечательно, что количество мод для $MnBi_4Te_7$ (n = 1) могло бы достигать 12-ти, а для $MnBi_{14}Te_{22}$ 36-ти (табл. 2, данные для n = 1 и n = 6 в четвертой колонке).

Таким образом, если количество мод в экспериментальных спектрах $MnBi_2Te_4$ полностью согласуется с данными симметрийного анализа для объемного кристалла, то на первый взляд их количество в $MnBi_2Te_4 \cdot n(Bi_2Te_3) c n > 0$ противоречит этим данным. Это противоречие снимается, если предположить, что колебательные моды в $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ с n > 0 полностью или почти полностью вырождены по частоте.

ПСП	E_g	A_{1g}	E_g	A_{1g}	ПСП	E_g	A_{1g}	E_g	A_{1g}
$MnBi_2Te_4 \cdot n(Bi_2Te_3)$	см ⁻¹				${\rm Bi}_2{\rm Te}_3$	$_{\rm CM}^{-1}$			
1	38	57	100.5	134	1	36.0	50.5	102	136.5
2	38.5	60	101.5	134	2	_	-	-	-
3	40	60.5	101.5	134	3	36.5	53.0	102.4	136.1
4	41	61	101	134	4	37.2	56.2	101.2	137.2
5	41* ⁾	61	101	133	5	_	-	-	-
6	41* ⁾	61	102.5	135	6	—	-	-	-
∞	$41^{*)}$	61	100	133	∞	39.3	63.1	101.9	132.3

Таблица 3. Частоты Раман-активных колебательных мод, наблюдаемых для разного количества ПСП в $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ – первые пять колонок, и их расчетные частоты для разного количества ПСП Bi_2Te_3 – следующие пять колонок

*)Не наблюдается и принята равной частоте для n = 4.

Низкочастотные моды E_g^1 и A_{1g}^1 в MnBi₂Te₄ · $n(\text{Bi}_2\text{Te}_3)$ с n > 0 соответствуют E_g^1 и A_{1g}^1 колебаниям n-го числа ПСП Bi₂Te₃, что согласуется с данными наших расчетов, проведенных выборочно для одного, трех и четырех ПСП Bi₂Te₃ и приведеных в табл. 3.

Действительно, как видно из табл. 3, расчетные значения частот этих мод для одного ПСП Bi_2Te_3 практически совпадают с наблюдаемыми частотами мод с аналогичной симметрией в $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ с n = 1. Частоты этих мод с повышением количества ПСП Bi_2Te_3 от 1 до 4 имеют тенденцию к повышению, аналогично наблюдаемой для низкочастотных мод в $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ при изменении n от 1 до 4 (рис. 4).

Таким образом, совокупность полученных данных по колебательным модам, активным в рамановском рассеянии свидетельствует о том, что часть динамики решетки $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ с n > 0, связанная, по крайней мере с низкочастотными модами, определяется динамикой решетки *n*-го количества ПСП Bi_2Te_3 .

С этим хорошо согласуются и данные экспериментальных исследований рамановского рассеяния сверхтонких пленок Bi₂Te₃, выращенных газотранспортным методом на подложках Si/SiO₂ или флурофлогопитовой слюды [41]. Аналогично описанной выше низкочастотной E_g моде в MnBi₂Te₄ · n(Bi₂Te₃) с n > 0, низкочастотная E_g мода наблюдалась для двух ПСП Bi₂Te₃ (минимальное количество ПСП, исследованных в работе [41]) и ее интенсивность стремительно падала с дальнейшим увеличением числа ПСП. Разница в $\sim 2 \, \text{см}^{-1}$ между частотами этой моды для случая n = 2 в MnBi₂Te₄ · $n(Bi_2Te_3)$ (табл. 3, 38.5 см⁻¹) и двух ПСП Ві₂Те₃ (36.5 см⁻¹ [37]), видимо, обусловлена технологическим фактором. В первом случае подложка, необходимая для получения одного (двух и т.д.) ПСП Ві₂Те₃ (второй случай)

отсутствует и полученная структура свободна от ее влияния. Точно так же, как для MnBi₂Te₄ · n(Bi₂Te₃) с n > 0, в случае одного и более слоев Bi₂Te₃, положение низкочастотной A_{1g} моды испытывает небольшой сдвиг в сторону больших частот с увеличением числа ПСП Bi₂Te₃. Полное сравнение наших данных по MnBi₂Te₄ · n(Bi₂Te₃) с n, отличным от нуля и данных [41] по Bi₂Te₃ с разным количеством ПСП приведено на рис. 6. Ясно видно, что влияние подложки, заметное для случая n = 2, быстро убывает с ростом n и для n > 3 практически не наблюдается.

Согласно расчетам (табл. 3, девятая колонка) высокочастотная мода E_g в Bi₂Te₃ не испытывает дисперсию частоты при изменении числа ПСП Bi₂Te₃, аналогично подобным модам в MnBi₂Te₄ · n(Bi₂Te₃) на рис. 4, частота которых (101 см⁻¹) с ростом n не изменяется. Хотя и имеется совпадение частоты (101 см⁻¹) мод с симметрией E_g , соединенных прерывистой линией 5 на рис. 4, ставить знак равенства между этими модами и относить их к колебаниям, связанным с ССП MnBi₂Te₄ или ПСП Bi₂Te₃ в MnBi₄Te₇ нельзя. В рамках имеющихся экспериментальных данных эти моды неразличимы.

Похожая ситуация наблюдается и для самой высокочастотной моды A_{1g} как для Bi_2Te_3 (табл. 3, десятая колонка), так и для подобных мод на рис. 4. Высокочастотные моды, имеющие одинаковую симметрию A_{1g} , но разные частоты 139 (MnBi₂Te₄) и 136 см⁻¹ (MnBi₄Te₇) и соединенные прерывистой линией b на рис. 4, строго говоря, также неразличимы с точки зрения принадлежности к ССП MnBi₂Te₄ или ПСП Bi₂Te₃ или к обоим одновременно. Небольшое (2%) уменьшение частоты этой высокочастотной моды при появлении одного ПСП Bi₂Te₃ в MnBi₂Te₄ (n = 0) и образовании MnBi₄Te₇ (n = 1) не может быть решающим для выбора какого-то одного из вышеприведенных вариантов принадлежности этой моды. Тем не менее, факт наличия низкочастотных

Рис. 6. Сравнение данных настоящей работы для $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ с n = 2, 3, 4, 5, 6 и ∞ (сплошные кривые) с данными [41] (кружки) для объемного Bi_2Te_3 и двух (2QL), трех (3QL)), четырех (4QL), пяти (5QL), шести (6QL) ПСП Bi_2Te_3

мод, связанных с колебаниями именно в пятислойных пакетах, диктует необходимость появления и высокочастотных мод этих пакетов. По этой причине, высокочастотные моды также следует отнести к колебаниям атомов Ві и Те в пятислойных пакетах при неподвижных атомах в семислойных пакетах. Этого же требует предельный переход к спектру Bi₂Te₃, который в противном случае окажется невозможным.

3. Заключение. Колебательные моды, активные в рамановском рассеянии системы $MnBi_2Te_4 \cdot n(Bi_2Te_3)$ с n > 0 в исследованной области спектра оказываются практически вырожденными по частоте. Вследствие этого, количество наблюдаемых мод ограничено и равно четырем, как в случае Bi_2Te_3 . Вырождение охватывает как низкочастотные моды с синфазными смещениями атомов, так и высокочастотные с антифазными смещениями атомов. В обоих случаях колебательные моды отвечают смещени-

Письма в ЖЭТФ том 115 вып. 11-12 2022

ям атомов Ві и Те в ПСП при неподвижных или почти неподвижных атомах в ССП. Отметим, что неподвижность атомов Ві и Те в ССП никак не связана с симметрией, в отличие от центрального Mn, который в силу симметричности своего положения не участвует в колебаниях, активных в рамановском рассеянии для любого n в MnBi₂Te₄ · $n(Bi_2Te_3)$.

В целом, реализуется интересная ситуация, в которой ССП $MnBi_2Te_4$ практически "молчат", но это молчание не связано с симметрией и не имеет никакого отношения к "молчанию" так называемых "silent modes", неактивных как в рамановском рассеянии, так и в ИК (инфракрасном) отражении (поглощении) и имеющих отличные от нуля смещения атомов. Нам неизвестны примеры подобного поведения колебательных мод в слоистых кристаллах.

Отсутствие вклада магнитных атомов Mn в рамановские спектры решеточных колебаний указывает на необходимость исследований ИК спектров MnBi₂Te₄·n(Bi₂Te₃). Согласно нашим оценкам, верхняя граница частот дипольных колебаний с участием Mn составляет приблизительно 200 см⁻¹.

В контексте данной работы, которая основана на данных, полученных при комнатной температуре, связь между колебательными модами и магнитными фазовыми переходами отсутствует. Однако такая связь может вскрыться при низкотемпературных исследованиях всей серии MnBi₂Te₄ · $n(Bi_2Te_3)$ и данные настоящей работы послужат отправной точкой для анализа полученных результатов. Работа в этом направлении нами уже начата.

Авторы выражают благодарность Р. Хейду за обсуждение работы. Работа выполнена при финансовой поддержке академии наук Азербайджана в рамках проекта NovelMTI.

Е.В.Чулков благодарит за поддержку проект # 90383050 Санкт-Петербургского Государственного Университета.

- M. M. Otrokov, I. I. Klimovskikh, H. Bentmann et al. (Collaboration), Nature 576, 416 (2019).
- V.N. Men'shov, V.V. Tugushev, and E.V. Chulkov, JETP Lett. 94, 629 (2011).
- J. Henk, M. Flieger, I.V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).
- S.-Y. Xu, M. Neupane, Ch. Liu et al. (Collaboration), Nat. Physics 8, 616 (2012).
- I. Lee, Ch.K. Kima, J. Lee, S.J.L. Billinge, R. Zhong, J.A. Schneeloch, T. Liu, T. Valla, J.M. Tranquada, G. Gu, and J.C.S. Davis, PNAS **112**, 1316 (2015).

- S. V. Eremeev, V. N. Men'shov, V. V. Tugushev, and E. V. Chulkov, Phys. Rev. B 88, 144430 (2013).
- V. N. Men'shov, I. A. Shvets, and E. V. Chulkov, JETP Lett. **110**, 771 (2019).
- 8. W. Luo and X.-L. Qi, Phys. Rev. B 87, 085431 (2013).
- М. М. Отроков, Т. В. Меньщикова, И. П. Русинов, М. Г. Вергниори, В. М. Кузнецов, Е. В. Чулков, Письма в ЖЭТФ 105, 275 (2017).
- M. M. Otrokov, T. V. Menshchikova, M. G. Vergniory, I. P. Rusinov, A. Yu. Vyazovskaya, Yu. M. Koroteev, G. Bihlmayer, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, 2D Mater. 4, 025082 (2017).
- E. K. Petrov, I. V. Silkin, T. V. Menshchikova, and E. V. Chulkov, JETP Lett. 109, 121 (2019).
- Z. S. Aliev, I.R. Amiraslanov, D.I. Nasonova, A.V. Shevelkov, N.A. Abdullayev, Z.A. Jahangirli, E.N. Orujlu, M.M. Otrokov, N.T. Mamedov, M.B. Babanly, and E.V. Chulkov, J. Alloys Compd. 789, 443 (2019).
- I.I. Klimovskikh, M.M. Otrokov, D.Estyunin et al. (Collaboration), npj Quantum Mater. 5, 54 (2020).
- J. Wu, F. Liu, M. Sasase, K. Ienaga, Y. Obata, R. Yukawa, K. Horiba, H. Kumigashira, S. Okuma, T. Inoshita, and H. Hosono, Sci. Adv. 5, eaax9989 (2019).
- C. Hu, X. Zhou, P. Liu, J. Liu, P. Hao, E. Emmanouilidou, H. Sun, Y. Liu, H. Brawer, A. P. Ramirez, H. Cao, Q. Liu, D. Dessau, and N. Ni, Nat. Commun. **11**, 97 (2020).
- S. Tian, S. Gao, S. Nie et al. (Collaboration), Phys. Rev. B 102, 035144 (2020).
- J.-Q. Yan, Y. H. Liu, D. Parker, Y. Wu, A. A. Aczel, M. Matsuda, M. A. McGuire, and B. C. Sales, Phys. Rev. Materials 4, 054202 (2020).
- C. Hu, L. Ding, K. N. Gordon et al. (Collaboration), Sci. Adv. 6(30), eaba4275 (2020).
- R. Lu, H. Sun, S. Kumar et al. (Collaboration), Phys. Rev. X 11, 011039 (2021).
- P. Rani, A. Saxena, R. Sultana, V. Nagpal, S. Islam, S. Patnaik, and V.P.S. Awana, Journal of Superconductivity and Novel Magnetism **32**, 3705 (2019).
- H. Li, Sh. Liu, Ch. Liu, J. Zhang, Y. Xu, R. Yu, Y. Wu, Y. Zhang, and S. Fan, Phys. Chem. Chem. Phys. 22, 556 (2020).
- M. Rodriguez-Vega, A. Leonardo, and G. A. Fiete, Phys. Rev. B 102, 104102 (2020).
- 23. C. Pei, Y. Xia, J. Wu, Y. Zhao, L. Gao, T. Ying, B. Gao,

N. Li, W. Yang, D. Zhang, H. Gou, Y. Chen, H. Hosono,G. Li, and Y. Qi, Chin. Phys. Lett. 37, 066401 (2020).

- J. Choe, D. Lujan, M. Rodriguez-Vega, Z. Ye, A. Leonardo, J. Quan, T. N. Nunley, L.-J. Chang, Sh.-F. Lee, J. Yan, G. A. Fiete, R. He, and X. Li, Nano Lett. 21, 6139 (2021).
- J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, and Y. Xu, Sci. Adv. 5, eaa5685 (2019).
- Y.-J. Hao, P. Liu, Y. Feng et al. (Collaboration), Phys. Rev. X 9, 041038 (2019).
- X. Gonze, J. M. Beuken, R. Caracas et al. (Collaboration), Mater. Sci. 25, 478 (2002).
- 28. S. G. Louie, K.-M. Ho, and M. L. Cohen, Phys. Rev. B 19, 1774 (1979).
- R. Heid and K.P. Bohnen, Phys. Rev. B 60, R3709 (1999).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- R. Heid, K.-P. Bohnen, I.Y. Sklyadneva, and E.V. Chulkov, Phys. Rev. B 81, 174527 (2010).
- W. Richter, H. Kohler, and C. R. Becker, Phys. Stat. Sol. (b) 84, 619 (1977).
- L. M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Völklein, and J. H. Correia, Thin Solid Films 518, 2816 (2010).
- N.A. Abdullaev, N.M. Abdullaev, A.M. Kerimova, S.Sh. Kahramanov, A.I. Bayramov, H. Miyamoto, K. Wakita, N.T. Mamedov, and S.A. Nemov, Semiconductors 46, 1140 (2012).
- Z. I. Badalova, N. A. Abdullayev, G. H. Azhdarov, Kh. V. Aliguliyeva, S. Sh. Gahramanov, S. A. Nemov, and N. T. Mamedov, Semiconductors 53, 291 (2019).
- D. L. Mo, W. B. Wang, and Q. Cai, Nanoscale Res. Lett. 11, 354 (2016).
- V. Chis, I. Yu. Sklyadneva, K. A. Kokh, V. A. Volodin, O. E. Tereshchenko, and E. V. Chulkov, Phys. Rev. B 86, 174304 (2012).
- W. Kullmann, J. Geurts, W. Richter, N. Lehner, H. Rauh, U. G. Eichhorn, and R. Geick, Phys. Stat. Sol. (b) **125**, 131 (1984).
- K. M. F. Shahil, M. Z. Hossain, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett. 96, 153103 (2010).
- Ch. Wang, X. Zhu, L. Nilson, J. Wen, G. Wang, X. Shan, Q. Zhang, Sh. Zhang, J. Jia, and Q. Xue, Nano Res. 6, 688 (2013).
- Y. Zhao, X. Luo, J. Zhang, J. Wu, X. Bai, M. Wang, J. Jia, H. Peng, Z. Liu, S. Y. Quek, and Q. Xiong, Phys. Rev. B **90**, 245428 (2014).