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Superconducting properties of the metastable alloy Zn-Sb were studied in a
set of intermediate states of a bulk sample during its transformation toward the
insulating state. When the temperature reduces below the transition, the critical
current rises till 0.7 T;, then drops and finally reaches the limiting value. The latter
scales with the normal resistance of the sample as R, “, whereas in the maximum

at 0.7T. the scaling power is different,. R, 32, Comparison with properties of small
superconducting tunnel junctions is made.

Some substances exhibit weak superconductivity and demonstrate Josephson
properties in a bulk. Superconducting ceramics with poor contacts between grains
are an example of such type of materials [1]. In this study, we investigated
behavior of such substances using quenched high-pressure phase of alloy Zn-Sb
[2]. Being stored at liquid nitrogen temperature after quenching, this alloy
remained as metastable crystalline superconductor. Slow watchful heating induced
gradual transition into an insulating state. We could trace the evolution of the
superconducting response chopping the transformation by abrupt cooling at different
stages and studying the intermediate states at low temperatures. With practically
fixed temperature of the transition onset T, the resistive transition curves get
a low-temperature tail first, then the transition becomes uncomplete and, next,
quasireentrant. The huge interval of resistivities of the material while spanning
this set of states is due to the inhomogeneous character of the transition: the
insulating phase appears presumably in a fractal-like fashion making the current
paths along the metallic phase long and confined [3]. Similar behavior has been
also found in alloys Ga-Sb [4] and Cd-Sb [5].

At the preceding stage, we studied J-V-characteristics in a quasireentrant state
[2, 6], with the resistance in the minimum of R, =~ 0.5R,. Maximum of the
critical current observed at T/T, ~ 0.7 was the most noteworthy feature of those
experiments. In this paper, we go ahead with investigating the nature of this
maximum. '

Consider a 3D-lattice of Josephson junctions. There exist two logical possibili-
ties. First, each single junction may have the well known temperature dependence
of the critical current [7] with the maximum for the bulk sample critical current
being caused by the temperature dependent nonuniformity of the current distri-
bution over the network [6]. Secondly, the observed maximum may reflect the
properties of individual junctions. The aim of this paper is to study this second
possibility. For this purpose, we selected moderate-resistance states of the alloy
Zng;Sbsg with tails in the superconducting transition and matched their behavior
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against the behavior of single small superconducting tunnel junctions studied by
Tinkham group [8, 9].

We present here the measurements of the set of ten successive states of a
Zn4;Sbsg sample with normal tesistance values R, from 3 Ohm to 1500 Ohm
(approximate resistivity values, correspondingly, from 0.3 Ohm-cm to 150 Ohm-cm).
These were the states with tailed transitions. In the states with smaller R, the
transition was sharp and we could not reach critical current because of overheating
of the contacts. The transition in the last of the presented states, one with
R, =1500 Ohm, was already uncomplete at the lowest temperature used (1.2 K).
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Fig.l. Hysteresis loops on the J-V curves in two states: that with R, = 37Ohm
(above) and with R, = 14300hm (below). T = 1.2K. Dashed line on the upper
loop is the tangent to the inflection point. 'Also shown are straight lines which
correspond to values of the normal resistance. The positions of the critical currents
are marked

Two typical J-V curves with hysteresis loops are shown in Fig.l. Both
branches of the loops have random steps, presumably, due to discrete structure of
the network. Voltage jumps up (down) indicate switching off (on) the shortening
Josephson currents in some bonds of the network. The J-V loops display two
critical currents, J, on the rising branch and J, (called the recapture critical current
[8]) on the descending branch of the loop. For J. rather poor reproduction was
typical: the value of J. changed from run to run. The value of J, reproduced
much better but it had its own disadvantage. Fig.l shows that there are different
possibilities to determine it. Point J,; is defined as the position of the last jump
down of the voltage, point J,; is the intersection with the J-axis of the tangent
to the inflection point 82V/82J = 0. However, this uncertainty did not affect our
conclusions.

The initial part of the J-V curve in the high-resistance state has a finite slope
because the resistance in this state did not reach zero even at 1.2 K. Second, in
this state most of the (J,V) points on the loop correspond to resistances R=V/J
much larger then R,. Hence, the resistance in the loop region is controlled by
the single-particle tunneling between superconducting parts of the network.

The loops presented in Fig.l were obtained at low temperature. On rising the
temperature the loops become narrower. Then both the hysteresis and the steps
disappear. At t = T/T. 2 0.5, the critical currents coincides J. =J,. At t 2 0.8,
the precision of measurements of J, falls down because the curve V(J) becomes
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very smooth, the inflection point shifts to higher voltages and its position becomes
uncertain.
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Fig.2. Temperature dependence or the critical current J, normalized by the normal
resistance R, in the power 3/2 in five different states

In Fig.2, we display the temperature dependence of J,(T) for a number of
different states. Being normalized by the factor R?./z they coincide precisely above
t 2 0.3, in the vicinity of maximum J,(T) = Jrmaz- At low temperatures, the

curves diverge and each one approaches its own limiting value J, min. According
to Fig.3,

Jr,ma: x R;B/Z, (1)

Jr.min < RZ2. (2)

Relations (1), (2) are the main experimental results of this paper.

Note the remarkable similarity between properties of our samples and those of
single small high-resistance tunnel junctions: for such junctions, the critical current
also has maximum in the temperature dependence at T = 0.8 T,, more pronounced
in the states with high normal resistance [8], it also ceases to decrease and reaches
a limiting value at low temperature [9], the low temperature critical current is
also inversely proportional to the square of the normal resistance [8]. That is why
we start discussion listing the main éxpressions and relations for a small single
Josephson junction which has shunting capacitance C' and shunting resistance r(T).
We use below lower case for currents, resistances, and voltage for a single junction
to distinguish them from those in the bulk samples. The dynamics of a junction
depends on relations between the temperature 7' and two energies: the Josephson

coupling energy
E;= } (h/ ¢ )A (3)
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(here A(T) is the superconducting gap) and the Coulomb energy Ec =€?/2C. It
is clear from (3) that when the normal resistance is small, i.e. when

rn &K )‘i./e2 ~ 4kOhm, then E;>A>T, and hence E;>T (4)

holds below the transition temperature. Then the thermal fluctuations may be
neglected and the critical current jgo is [7]

x 2A(T)

. 2e
JcO (T) = 3 s

k

The phase difference ¢ of the superconducting order parameter across the junction
biased with current ¢ satisfies the equation [10]

AT

A(T) .

€Ty

Co+ p/r+(2/)U'(0) =0,  U(p) = ~Escosp — (h/2e)ip. (6)

Eq.(6) has two solutions for average voltage across the junction in some interval
of currents jco > 7 > jro, 1.e. it describes hysteretic behavior of the junction. The
recapture critical current j.o can be expressed through the dimensionless damping
parameter G, [10]

B. = (2/h)jco v C. (U]
When the parameter is large, B. > 1, then
2 /2R 12 ;12
'r = 4 y _1/2 = __ —_ '199__.
ro=( /T)Jcoﬁc - (GC) . (8)>

If r in expression (4) were determined by the single-particle tunneling current, it
would be equal to 5, 11]

T =rtun =Tn(T/A) exp(A/T). 9
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Then j,0 wound tend to zero at low temperature.

For junctions with higher r,, when inequalities (4) are not valid any more,
fluctuations become important. Then a term with a Gaussian fluctuating current
should be added into eq.(6). The fluctuations shift the currents j.o and j,o toward
each other and bring other critical currents j. and j, into line. According to (8],
the shift of j.o. is larger:

er < jr S jc < ja, (10)

so that in nonhysteretic regime, when j, =j., the measured critical current should
be interpreted as j,o [8].

We can successfully apply this interpretation to our results. Since the dissipa-
tive channel of the junction is determined by a single-particle tunneling current,
assuming upper case for j’s and r’s in expressions (2)-(5) we get from eqs.(2),
(4) and (9) the scaling relation (1). Note that this does not necessarily mean
that our sample is in essence a chain of small junctions. If it were so, it would
follow from (4) that the number of junctions in the chain and the capacitance C
of each of them remain the same while transformation of the sample. This seems
improbable. Here and below, we want only to emphasize that the behavior of a
bulk sample- fits the theory intended for a single junction.

The comments upon. the second relation, (2), are not so straightforward.

To starts with, J,o does not tend to zero with T — 0O despite egs. (4) and
(9). The similar behavior of single junctions [9] is explained by the effect of the
loading impedance Z,. of the leads. According to [9], there exists a minimum
value ;75" which is determined by the balance between the dc power fed to the
junction and the power dissipated at high frequency in the leads. The Josephson
channel sources the ac current josin(wt) and the average power dissipated at w
is of the order of jfo Zq4c. The power in the dc single-particle tunneling channel
being ;™™ (2A/e), we get relation [9]

IT €32y Zac ] A. (11)

The relation (2) follows from eq. (6) if we assume Z,. independent of r, and
Jeo x (1/rn) in accordance with eq. (2), and after we return to upper case.

The scaling law o< r;2 had been found in [8] also, though for the value of jo
instead of j.o. The explanation which was proposed in [8] used different terms.

The eq. (6) describes also a particle moving with friction along ¢ axis in the
titled cosinusoidal potential U (the “titled washboard model”) - see, for example,
review [12]. According to the Josephson relation v=(f/2e)y, the phase-ball being
trapped in a potential well means zero voltage v =0 across the junction and the
current without dissipation. In classical description, the particle can be shifted
toward the neighbor well due to either regular force dU/8¢ or thermoactivated
fluctuations. However, if the capacitance C is small and the Coulomb energy
Ec is comparable to E; then quantum description comes into play. Then the
phase-ball may tunnel to the neighbor well or even become completely delocalized
as an electron in a periodic potential. The energy of the ground state (of the
“bottom of the Bloch band”) was calculated in [8] in the Limit E¢c > E; and
turned to be —E2%/8Ec instead of —E; in the opposite limit. The similar result
was obtained in [13]. It was argued in [8] that, because of this crossover, E;
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should be replaced by E2 2/8Ec in the expression (2) for jio of a single junction
with small C. From here follows the scaling law similar to relation (2).

These arguments relate to jco, as well as experimental observations obtained at
very low temperatures [8]. Our experimental relation (2) contains J,. Hence, the
resemblance at this point is not so obvious.

In summary, similarity is established between the properties of bulk metastable
Zn-Sb alloy in different intermediate states and of small high-resistance low-
capacitance Josephson junctions. Hence, the equations describing these two subjects
should be similar. We doubt that our substance should be treated as a multitude
of separated and well defined small Josephson junctioms. In particular, this would
mean that for all the states under consideration the network of junctions and their
density are the same and that only the parameters of each of them alter from
state to state. The existing structure model of the transformation in the Zn-Sb
alloy [3] more favors thin superconducting wires and constrictions. Note that a
network of the phenomena of phase tunneling is possible for such objects as well
[14].

It is also unclear to what extend the discreteness of the substance is important
~ and whether the finite probability of the phase slipping cannot be attributed to
each point of the 3D-space as it happens when thin long 1D wires are considered.
This is the central point of the problem and we plan to study other similar
materials from the same point of view.
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