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Abstract

The influence of magnetic field B on the ballistic conductance G of a small (0.25 um in diameter) quantum dot has been
studied experimentally at 70 mK. In the open regime for B~ 1T, the conductance as a function of the gate voltage shows
several periods of oscillations superimposed on the quantized conductance plateaus. With the increase of the magnetic field,
we observe a splitting of the oscillation minima which eventually leads to a halving of the oscillation period accompanied by
a pronounced decrease of the amplitude. At B~ 1.4 T, the oscillations with halved period appear as small resonances on the
flat plateaus. We attribute the observed phenomena to spin splitting effect on the Aharonov—Bohm oscillations and interpret
our results using a model of electron scattering between propagating and confined magnetic edge channels. © 1999 Elsevier

Science B.V. All rights reserved.
PACS: 73.61.-r; 85.30.Vw
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1. Introduction

Experimental investigations [1-11] of submicron
size quantum dots electrostatically defined in two-
dimensional (2D) electron gas by Schottky gate pat-
terns have revealed a number of magnetotransport
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phenomena, which originate from the wave nature
of electrons and are observable at low temperatures,
when electron transport is known to be ballistic.
Typically, when the magnetic field B is about 1T,
the magnetic length is small enough in comparison
with the dot diameter D, and the ballistic current
through the dot flows via magnetic edge states [12].
In these conditions, one may observe oscillations of
the quantum dot conductance associated with inter-
ference effects due to circular motion of the electrons
in the edge channels around the cavity. One revo-
lution of the electron changes its phase by 2n®/¢,,
where @ = 4B is the magnetic flux through the area
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A enclosed by the edge state, and ¢ = A/e is the flux
quantum. When the magnetic field is swept, or when
the area of the dot is changed by the gate voltages,
the conductance of the dot oscillates with the period
determined by the relation d® = ¢,. Taking into ac-
count the direct relation between the level splitting
A due to angular momentum quantization (orbital
quantization) in a ring formed by an edge channel
and the phase gained by an electron per revolution
in this channel, one can say also that the oscillations
appear when the energy levels of the quantum dot
are swept one by one across the Fermi level of the
system. Such Aharonov—-Bohm (AB) oscillations of
the ballistic conductance through cavities [13] have
been observed in many experiments on quantum dots
and antidots [1,2,5-11] both in the magnetic-field and
gate-voltage dependences.

Several groups have reported [6,7,9,10] experimen-
tal observations of the period-halving phenomena in
the oscillatory dependence of quantum dot conduc-
tance on the magnetic field. Similar behavior has been
also observed for AB oscillations in an antidot sys-
tem [11]. It seems that a unified explanation cannot
be applied for all these period-halving phenomena,
because the experimental conditions have been dif-
ferent for each case. For medium-sized dots (0.5 pm
in diameter) the period halved when application of
the gate voltage led to transition from the intermedi-
ate regime between the first and second spin-resolved
plateaus to the second plateau regime [6,7]. This be-
havior has been explained [7] in terms of phase locking
of spin-up and spin-down states (these states appear
in “antiphase” to each other due to Coulomb interac-
tion between the electrons) and different contributions
of these states to the transport (in the second spin-
resolved plateau, when both spin-up and spin-down
states propagate through the dot, the period of the os-
cillations is halved with respect to the case when only
spin-up states are propagating). For large-sized dots
(1 um in diameter) the period halving occured in cer-
tain ranges of the magnetic field [9,10], and, in con-
trast to the experiments [6,7], could not be explained
by accounting different spin state contributions, be-
cause only one spin-resolved state propagated through
the dots. The period halving of AB oscillations in the
antidot system [11] cannot be attributed to spin split-
ting as well. Therefore, in many cases the exact origin
of period-halving phenomena still remains unclear.

The observations reported in Refs. [6,7] prove the
existence of spin-split, “phase-locked” electron states
inside the quantum dots in the magnetic fields around
3.5T. However, as far as we know, no observations of
spin splitting, which would appear and develop with
the increase of the magnetic field, have been reported
for quantum dots. In fact, a single observation of such
spin splitting phenomenon was the splitting (without
halving of the period) of AB oscillations in a quan-
tum point contact, which possibly contained an impu-
rity forming an antidot configuration [14]. To observe
the development of spin splitting in the quantum dots
by AB oscillations, one should keep phase coherence
of the electrons in the magnetic fields substantially
smaller than 3.5 T. This can be achieved for quantum
dots of a smaller size.

In this paper we report observation of magnetotrans-
port phenomena in a quantum dot whose lithographic
size (~0.25 um) is smaller from those used in previ-
ous studies. In the first and second quantized conduc-
tance plateau regime, starting from a magnetic field
B =0.8T we see oscillations of the quantum dot con-
ductance G as a function of the gate voltage which
we identify as AB oscillations. With the increase of B,
we observe a gradual splitting of the oscillation min-
ima and, finally, an exact halving of the oscillation
period around B = 1.2 T. Our experimental data allow
us to interpret observed phenomenon in terms of spin
splitting of the electron states. Moreover, at B~ 1.4 T,
when the oscillations with halved period appear as
small resonance dips on the flat plateaus, we see signs
of further subsequent halving of the period.

2. Experimental results

The quantum dots used in this study were fabri-
cated from high-mobility (~110m?/(Vs) at 4.2K),
low-electron-density (~3 x 10'>m~2), modulation-
doped (Si) GaAs/AlGaAs heterostructures grown by
MBE. A quantum dot of lithographic diameter of
0.25 um was defined by six surface Schottky gates:
four symmetrically placed side gates and two sym-
metrically placed central gates. All the gates were
biased using filtered battery voltage sources. For
measurements, the four side gates were connected
together, as were the central gates. Standard low-bias
ac techniques were used to measure the two-terminal
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Fig. 1. Dependence of the conductance G on the side gate voltage
Vs for 09T<B<14T at Voc=—0.5V. The curves are shifted
vertically for clarity. The inset shows magnified initial part (be-
tween vertical dashed lines) of the first plateau for B=14T re-
vealing second halving of the period.

conductance at 70 mK which was corrected for a low
series resistance.

Fig. 1 shows dependence of the conductance G
on the side gate voltage V5 at central gate voltage
Ve =—0.5V for several values of the magnetic field B
applied perpendicular to the plane of the device. In the
tunneling regime (G <0.5G,, Gy =2e?/h) we observe
oscillations with a period of 3.2 mV. These oscillations
are very little affected by the magnetic field and re-
semble resonant tunneling peaks. In the open regime,
oscillations with large period A4Vs ~ 13 mV appear on
the first plateau at B = 0.9 T. The minima of the oscil-
lations already show signs of splitting. Any change of
Ve to lower values leads only to a shift of the curve as
a whole to higher V5 without any significant effect on
the oscillations. A small increase of the magnetic field
dramatically modifies the picture on the plateau, lead-
ing to more pronounced splitting, which at 3>1.2T
leads to oscillations with halved period, with substan-
tially smaller amplitude. An increase of B from 1.2 to
1.4 T does not change the period. However, the shape
of the oscillations changes: at 1.4 T they appear as
resonant dips superimposed on the flat quantized con-
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Fig. 2. Magnetic field dependence of the conductance G for fixed
Vs =—0.94V. Long and short arrows indicate positions of major
and minor peaks.

ductance plateau. At this field we also observe indi-
cations of a new set of oscillations appearing on the
first half of the plateau with much smaller amplitude
and apparently a second halving of the period. We
note that G(J5) dependence at B= 1.4 T already show
signs of spin-resolved transport (a weak indication of
an intermediate plateau at G ~ e?/h is present), and
we observe the period halving with the increase of Vs
as we move from the regime when only spin-up state
is propagating through the dot to the plateau regime
when both spin-up and spin-down states are propagat-
ing. This phenomenon is analogous to that observed
in Refs. [6,7]. Furthermore, we observe large-period
oscillations on the second plateau (it is not shown in
the figure) starting from B=0.78 T and a halving of
their period at B~ 1.1 T. The period of the oscillations
on the second plateau is about 1.5 times greater than
on the first plateau.

Fig. 2 shows the dependence of the conductance for
Vs =—0.94V (corresponding to the end of the first
plateau at 0.9 T) on magnetic field B applied perpen-
dicular to device plane. Although this picture is less
clear than the G(¥5) dependence, it still shows peri-
odic features. Four main peaks (long arrows) in the
region from 0.5 to 1.2 T follow each other with a pe-
riod of about 200 mT. In addition, small amplitude
peaks (short arrow) with 65 mT spacing are seen be-
tween them. Fourier transform (not shown here) of
G(B) dependence also reveals 200 and 65 mT periods.
However, since postions of the minor peaks correlate
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Fig. 3. Temperature dependence of G(Vs) at B=1T. The inset
shows magnified part of G(Vs) in the tunneling regime.

with positions of the peaks in the Shubnikov—de Haas
oscillations, we are reluctant to associate them with
intrinsic properties of our dot. Region of higher fields,
where the conductance is saturated, is difficult to ana-
lyze, although a few resonances are seen between 1.2
and 1.5T.

Effect of temperature on the oscillations at B=1T
is illustrated by Fig. 3. An increase of the temperature
to 1K leads to a decrease of the amplitude of the first
plateau oscillations almost by one order of magnitude.
At 2K these oscillations are completely washed out,
while the oscillations in the tunneling regime still per-
sist at 2.5K.

3. Discussion

Below we discuss physical origin of the observed
phenomena. The small-period oscillations which are
observed in the tunneling regime can be associated
with Coulomb blockade phenomenon [15]. This is in-
dicated by their stability with respect to the tempera-
ture and magnetic field effects [8]. Coulomb energy for
our quantum dot is estimated as e?/2C ~ 0.7 meV and
estimated level separation is of the same order. Ob-
served temperature effect on these oscillations can be
explained by thermal smearing of the Fermi surface.

The oscillations in the open regime (plateau) can
be identified with AB oscillations. Since the dot is
small in our experiment, we can see just several oscil-
lations of this kind. The period 4B =200mT in G(B)
dependence (see Fig. 2) corresponds to an AB circle

of 0.16 um in diameter, which correlates with the
size of our dot at the gate voltages of Fig. 1. On the
other hand, the width of the G(V5) plateau (Fig. 1) at
B =1T allows us to estimate the depletion rate of the
quantum point contact (i.e. change of the constric-
tion width w with respect to the side gate voltage) as
ow/0Vs = 0.58 nm/mV. Under the assumption that the
same depletion rate holds everywhere in the quantum
dot, we find that the largest period AVs~13mV of
G(Vs) oscillations corresponds to a change of the mag-
netic flux by 6@ =0.5tDB(0w/dV5)AVs ~0.73¢y.
Remembering that this is only a rough estimate, we
conclude that the periodicity of G(Vs) dependence is
again in agreement with the AB concept.

To determine which edge channels contribute to
the interference in our experiment, it is important to
note that with the increase of B, when different edge
states become well separated from each other, our os-
cillations transform to resonance dips on the plateaus.
Similar dips have been observed experimentally [2,3]
and can be explained by resonant reflection of an open
(mostly transmitted) edge state from the next, mostly
confined edge state. This explanation is supported by a
numerical calculation [16]. Another important point is
that quantum transport in our case is spin-unresolved.
Both spin states penetrate through the constrictions at
B ~ 1T and both of them should be taken into account
when resonant reflection processes are considered.

The transport model we employ for a qualitative
phase analysis is schematically shown in the lower
part of Fig. 4. Two propagating edge channels corre-
sponding to two different spin states (s =u,d) couple
to two confined edge channels of different spins due
to wave function mixing occurring in narrow regions
near the constrictions (shown by short straight lines).
Outside of the scattering regions electron transport is
assumed to be adiabatic. Since we neglect spin-flip
processes, the mixing takes place between the prop-
agating and confined edge channels of the same spin
and the ballistic conductance is calculated as a sum of
different spin channel contributions. Using the formal-
ism described in detail by Kirczenow [17], we obtain

G e Aty sin(15/2) + (1 — ;) sin(@os/2)]

Tk Sia OF — At cos(@15/2) + (1 — ;) cos(pos/2) P

Oi=1+16 4+ (1 —t,)" +2t,(1 — ;) cos[(@15s — Pos)/2],
(1)
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Fig. 4. Dependence of the conductance G calculated from
Eq. (1) on the phase shift ¢, corresponding to one revolution of
an electron around the cavity. Four graphs (2,3 and 4 are shifted
by 0.25Gy,0.5Gy, and 0.75Gy, respectively) correspond to differ-
ent transmission coefficients and spin phase shifts: (1) #=10.9 and
Y =0.4m; (2) t=0.95 and = 0.67; (3) t = 0.98 and y = 0.87; (4)
t=0.995 and  =n. Interedge phase shifts ¢y — @os are equal
to 2. Lower part shows schematic diagram of edge states and
mixing between them.

where ¢, are the transmission probabilities of the
individual conducting channels (the four mixing re-
gions are assumed to be identical and symmetrically
placed so that the scattering phase shifts [17] do not
contribute in the overall transmission of the dot), and
@;s are the phase shifts gained by electrons after one
revolution around the dot in the propagating (i =0)
and confined (i=1) edge channels. These phase
shifts are related to the areas A4;; enclosed by respec-
tive edge states according to ¢;s =2mBA;s/¢po. One
can expect that #, and ¢4 do not differ considerably
from each other, since the spatial separation between
the states with different spins is small in comparison
with the magnetic length. On the other hand, it is
important to take into account the difference between
@ and @4, because spin splitting causes the spin-up
and spin-down electrons to move along the equipo-
tentials enclosing slightly different areas. Further, it
seems reasonable to assume that variation of the gate
voltage Vs produces approximately equal changes
of all the areas A;,, at least for small intervals of

Vs corresponding to several oscillations on the same
plateau. Assuming this, we calculated dependence
of the conductance on ¢ = ¢y, at fixed phase shifts
P1u — Pou = P1d — Pod =2n. To take into account
smearing of the Fermi surface due to finite temper-
ature 7, we have averaged Eq. (1) with the weight
factor @7 " exp(3/@r)/[1 + exp(3p/@r)I, where
“angle” of thermal smearing ¢r is defined as 2n7/4
(in the calculation we put 7/4 =0.033, which corre-
sponds to 7=70mK and 4=0.2meV). Gradually
increasing the transmission probability ¢ = ¢, =4 and
spin phase shift y = ¢, — @14, we obtain a set of os-
cillation pictures (see Fig. 4) which is similar to that
we observe experimentally by increasing the magnetic
field (Fig. 1). When the phase shifts ¢, — @o, and
@14 — @oa are different, split minima in the calculated
G curves show an asymmetry. Such an asymmetry is
present also in the experimental results.

Comparison of this model with the experimental re-
sults suggests attributing the observed halving of the
oscillation period to spin splitting effect. The increase
of B not only lifts the transmission probability due to
enhanced separation of the edge states but also pro-
duces splitting of the states with different spins. The
splitting should become important at B= 1T, because
at this field we begin to observe it in the Shubnikov—
de Haas oscillations of 2D gas in our sample at 70 mK.
As the electron states with different spins are resolved,
the areas 4;, and 4,4 become different. As a result, spin
splitting of the AB oscillations takes place. However,
the experimentally observed locking of the spin phase
shift i to m with the increase of B cannot be explained
within a model of noninteracting electrons. The equal-
ity iy = m means that zero-dimensional quantization in
the edge channels gives a set of equally spaced levels
with alternating spin-up and spin-down states. This is
understandable if one assumes that as the magnetic
field increases and the edge channels become more lo-
calized, the splitting of the electron states is governed
by Coulomb interaction rather than by Zeeman effect.
It seems reasonable that the electron state configura-
tion with spin-up and spin-down levels in “antiphase”
is favorable for minimization of the Coulomb energy,
especially when the exchange interaction is concerned
[18].

Further halving of the period observed in the begin-
ning of the plateau in a field of 1.4 T can, in principle,
be explained as a manifestation of higher harmonics in
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the AB oscillations. To illustrate this, we did calcula-
tions for a more complicated model, which included,
in addition to that shown in Fig. 4, mixing between
forward- and backward-propagating electron waves in
open (0s) edge channels near the constrictions. With
the same assumptions as before (when all the phases
@;s change in an equal way), the conductance given by
this model shows more complex behavior as a func-
tion of ¢, than the conductance of Eq. (1) and shows
an additional (with respect to the spin splitting effect)
halving of the period. In particular, when transmis-
sion probabilities are close to 1 and = &, we obtain
a picture with alternating resonant dips of larger and
smaller amplitude which is similar to that we observe
experimentally at 1.4 T (see inset of Fig. 1). Another
higher-harmonic feature, a splitting of the oscillation
peaks, is also obtained from this model. This split-
ting we see at 1 T in the beginning of the first plateau
(Fig. 1). The fact that the smaller-period features
are seen only in the beginning of the plateau, where
contribution of the 0s—0s mixing should be more
significant, is consistent with the model described
above.

4. Conclusions

In this paper we described our investigations of
ballistic magnetotransport of electrons in a quantum
dot whose size is considerably smaller than the sizes
of the quantum dots investigated previously. The
phase coherence in this dot at 70 mK holds even at
zero magnetic field. This allowed us to observe the
large-amplitude AB oscillations of the ballistic con-
ductance at small enough magnetic fields (around
B=1T), when the edge channels start to be well-
defined. With the increase of magnetic field, we have
observed splitting and, finally, period halving of the
AB oscillations. We attribute this to spin splitting of
the electron states. As the magnetic field increases and
the confined edge states become more localized, the
oscillations associated with spin-up and spin-down
states in the dot progressively come in antiphase and
stay phase-locked so that the exact halving of the AB
oscillation period takes place.

Previous observations [6,7] of AB oscillations (car-
ried out for larger quantum dots in higher magnetic
fields) have revealed already phase-locked spin-up and

spin-down states. In contrast to this, we report the
direct observation of progressive spin splitting of elec-
tron states in quantum dots which is detected by split-
ting of AB oscillations and eventual halving of their
period. Since the phase locking develops as a result
of Coulomb interaction between the electrons in con-
fined edge states, our data can be useful for deeper
understanding of the role of Coulomb interaction on
the electron energy spectrum of quantum dots.

Furthermore, we have observed indications of fur-
ther subsequent period halving, which we attribute to
higher AB oscillation harmonics due to different types
of mixing between interfering edge states. The effect of
higher harmonics could be also taken into account for
interpretation of period halving phenomena in those
cases [9,10] when only one spin-resolved state prop-
agates through the dot and the halving cannot be ex-
plained by the spin splitting.
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