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Abstract
The Coulomb drag between two spatially separated one-dimensional (1D)
electron systems in lithographically fabricated 2 µm long quantum wires is
studied experimentally. The drag voltage VD shows peaks as a function of
a gate voltage which shifts the position of the Fermi level relative to the 1D
subbands. The maximum in VD and the drag resistance RD occurs when the
1D subbands of the wires are aligned and the Fermi wave vector is small. The
drag resistance is found to decrease exponentially with interwire separation.
In the temperature region 0.2 K � T � 1 K, RD decreases with increasing
temperature in a power-law fashion RD ∝ T x with x ranging from −0.6 to
−0.77 depending on the gate voltage. We interpret our data in terms of the
Tomonaga–Luttinger liquid theory.

1. Introduction

Moving charges in a conductor exert a Coulomb force on the charge carriers in a nearby
conductor and induce a drag current in the latter through momentum transfer. This
phenomenon, known as Coulomb drag (CD), between spatially isolated, closely spaced electron
systems has been the focus of considerable attention in the past few years. The interest in CD
arises mostly from the fact that it offers the unique possibility of investigating electron–electron
interaction in low-dimensional systems through measurements of the transport coefficients.
The CD between two-dimensional (2D) electron systems [1] has been extensively studied [2]
both experimentally and theoretically. The quantity usually measured in experiments is the
drag resistance RD = −VD/I , where I is the current in one (‘drive’) of the layers and VD is the
voltage developed in the other (‘drag’) layer, when no current is allowed to flow in the latter.
The temperature, layer separation, and electron-density dependencies of the drag resistance,
the influence of disorder and of a magnetic field, as well as the manifestations of collective
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excitations and electron–phonon interaction have been investigated [2]. The basic physics
involved in the description of RD is now well understood, except in the case of the CD in the
quantum Hall regime where some questions remain unresolved [3, 4].

Recently, a growing interest is being shown in the CD between one-dimensional (1D)
electron systems formed in spatially separated quantum wires. In early theoretical papers [5, 6]
it was shown that due to the restrictions imposed by the momentum and energy conservation
rules, the drag at low temperatures has a sharp maximum when the energy levels of the two wires
are aligned such that the Fermi velocities (or electron densities) in the wires are nearly equal.
If the alignment is perfect, the drag should decrease linearly with temperature; otherwise
the decrease is found to be exponential (see equation (2) below). Further theoretical work
concentrated on the drag between 1D systems in the presence of disorder [7] or in the ballistic
regime [8, 9]. The common feature of the papers cited above is that they are based on the
Fermi liquid (FL) description of the 1D electron systems, where the excitations are viewed as
well-defined Fermi quasiparticles.

On the other hand, it is expected that in the 1D case the Coulomb interaction between
electrons modifies both the ground state and the elementary excitations of the electron systems
in such a way that the systems should be described in terms of a Tomonaga–Luttinger (TL)
liquid rather than in terms of a FL model [10]. In recent theoretical papers [11–14] the Coulomb
drag between 1D systems has been studied within the TL liquid concept. The main result of
the studies [11–13] is that the interwire momentum transfer is modified by electron–electron
interactions in such a way that the drag is enhanced at low temperatures, until at T = 0,
interlocked charge-density waves form in the wires and the drag resistance diverges. A simple
qualitative explanation of this phenomenon is based on the observation that the drag results
from backscattering of density excitations in one wire from density fluctuations in the other.
Therefore, the situation is similar to that of a TL liquid with backscattering at an impurity and it
is known [15] that for repulsive interaction the effective backscattering strength increases with
decreasing temperature and eventually diverges at T = 0. The strong-coupling regime, when
the drag resistance diverges, may remain elusive experimentally since in the wires of finite
length at sufficiently low temperatures the drag becomes suppressed due to the influence of
the Fermi liquid reservoirs to which the wires are connected [14]. Nevertheless, the predicted
increase of the drag with decreasing temperature in a characteristic power-law fashion [13] is
in sharp contrast with the prediction of FL theories and, therefore, may serve as a signature of
the TL behaviour. To stress the importance of this suggestion, we notice that the TL behaviour
does not manifest itself in simpler experiments, where single-wire conductance is investigated:
the measured conductance remains independent of the Coulomb interaction [16] because of
the influence of the reservoirs and of the screening effects.

Though a fair amount of theoretical work is available on the CD between 1D electron
systems, there has been a conspicuous absence of experimental work on the subject. Recently,
we have briefly reported [17] experimental evidence of CD between ballistic quantum wires.
The present work consists of more extensive studies and reports results on the temperature,
interwire distance, driving voltage, and magnetic field dependencies of the drag resistance
RD . The most important observation is that in the temperature region 0.2 K � T � 1 K
RD increases with decreasing temperature as RD ∝ T x , where x ranges from −0.6 to −0.77
depending on the Fermi level position with respect to the 1D subbands. The observed features
of the temperature dependence of RD can be successfully explained in the framework of the
TL liquid theory.

The paper is organized as follows. In section 2 we describe the samples and the meas-
urement techniques used. The experimental results obtained are summarized in section 3.
Analysis of the results and a discussion follow in section 4.
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2. Device and experimental techniques

The quantum-wire samples were fabricated from a two-dimensional electron gas (2DEG)
located 80 nm below the surface at the interface of a MBE-grown Si modulation-doped
AlGaAs/GaAs heterostructure. At 4.2 K, the 2DEG had an electron concentration of
2.7 × 1015 m−2 and a mobility of 70 m2 V−1 s−1, giving a Fermi energy of 9.7 meV and
an electron mean free path of 6 µm. The experimental device was a planar structure consisting
of three independent surface Schottky gates: top gate T, middle gate M of 50 nm width, and
bottom gate B. The three gates form two lithographically defined constrictions of width 250 nm
and length L = 2 µm (figure 1). The device was mounted on the mixing chamber of a dilution
cryostat and thermally bonded to it. By negative voltage biasing of the gates T, M, and B
that depletes the 2DEG under them, two electrically isolated conduction channels could be
created. The central parts of these channels form two quantum wires of 2 µm nominal length.
The conduction channels widen out at both ends forming 2D reservoirs which ensure phase
randomizing. The geometrical shapes of the gate edges were designed to ensure adiabatic
transition from wide to narrow regions. By appropriate voltage biasing of the gates T, M,
and B, it was possible to vary the width and separation of the quantum wires. Electrical
characterization of the wires was carried out by measuring their conductance at 60 mK using
a standard low-bias, low-frequency, lock-in technique. The conductance was measured, of
one wire at a time, and of both simultaneously, as a function of wire width by varying the
appropriate gate voltages to establish the ballistic nature of the electron transport and to check
whether the two wires showed identical transport behaviour. The two wires were found to have
nearly identical conductance staircases with a small difference in the pinch-off voltages which
could be compensated for by introducing an adequate voltage shift between the gates T and
B. The measured conductance showed characteristic features of ballistic transport (figure 2).
However, the observed conductance plateaus were not sufficiently well defined due, very likely,
to deviations from adiabaticity at the constriction openings and scattering in the wires caused
by roughness of the gate edges. The application of a magnetic field B perpendicular to the
plane of the device improved the adiabaticity and reduced the scattering, producing fairly well-
defined conductance plateaus at B � 1 T (figure 2). On the other hand, we did not see either
sharp peaks in the pinch-off regime or dips superimposed on the first plateau, like for wires
with strong disorder [18]. This allowed us to conclude that a true 1D transport regime has been
realized in our experiment. The information obtained from the above characterization made it
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Figure 1. A schematic diagram of a quantum-wire device used for the Coulomb-drag
measurements.
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Figure 2. The conductance staircase of the top wire as a function of the bias voltage Vg applied to
the gates T and M with gate B grounded at 60 mK and in different magnetic fields: 0 (1), 0.35 (2),
and 0.86 T (3). Similar results were obtained for the bottom wire except for a small difference in
the pinch-off voltage.

possible to choose later, by adjusting the appropriate gate voltages, the location of the Fermi
level EF in a specific 1D subband and/or the relative alignment of the 1D subbands belonging
to the two wires. For measurements of the CD the top wire was chosen as the drive wire and
the bottom one as the drag wire. Measurements were carried out on a number of devices and
the results presented in section 3 are representative of typical device behaviour.

3. Experimental results

To be sure that the measurements of the drag effect were made in the absence of interwire
tunnelling, we first measured the tunnelling current across the middle gate between the drain
of the drive wire and the source of the drag wire. The results shown in figure 3 indicate that
for typical values of the top and bottom gate voltages used the tunnelling current could be
neglected for middle gate voltage VM < −0.7 V. For all subsequent drag measurements, VM

was chosen to be less than −0.7 V, except for studying the dependence of the drag on the
interwire separation when higher values were used.

To carry out measurements of the drag voltage VD , first the middle gate voltage VM and
the bottom gate voltage VB were chosen to have EF slightly above the bottom of the lowest
1D subband of the drag wire. A drive bias voltage VDS , low enough to be within the linear
regime of transport, was applied to the drive wire to send a current I through it. No current
was allowed to flow in the drag wire. VD and I were then measured simultaneously as the
voltage VT of the top gate was swept. Measurements were done at 70 mK in the absence of
any applied magnetic field. In figure 4 we show the measured drag voltage VD as a function
of VT for fixed values of VM and VB as given in the figure caption. The drag voltage shows
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Figure 3. Interwire tunnelling current IT N as a function of the middle gate voltage VM at 60 mK
and in zero magnetic field. I is the drive current in the top wire. VB = −1.5 V, VT = −1.2 V,
and VDS = 300 µV. Note that the above values of VB and VT are approximately those at which a
maximum drag effect is observed in later measurements with VM = −0.74 V.
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Figure 4. Drag voltage VD and drive current I as functions of the top gate voltage VT at 70 mK
and in zero magnetic field with a drive voltage of 300 µV. VM = −0.74 V, VB = −1.525 V. For
these values of VM and VB the Fermi level EF is located just above the bottom of the lowest 1D
subband of the drag wire.

two prominent peaks, a strong one at VT = −1.21 V and a weaker one at VT = −1.10 V.
The peaks are found to occur in the rising parts (steps) between the conductance plateaus of
the drive wire. This suggests that they occur when the bottom of the second and the first 1D
subband of the drive wire align themselves, one after another, with the bottom of the lowest
1D subband of the drag wire as VT is varied.

Figure 5 shows the dependence of V MAX
D , the height of the first VD-peak of figure 4, on

the drive bias voltage VDS in zero magnetic field at 60 mK. Except for the temperature, the



3394 P Debray et al

0 200 400 600 800
0

0.2

0.4

0.6

0.8 T = 60 mK
B = 0

300 µV

V
D

M
A

X
 (

µ V
)

V
DS

 (µV)

Figure 5. The maximum V MAX
D of the first drag voltage peak of figure 4 as a function of the drive

voltage VDS at 60 mK in zero magnetic field. The linear regime is maintained for VDS at least up
to 300 µV.

measurement procedure and the experimental conditions were the same as those for figure 4.
V MAX

D is found to vary linearly with VDS up to about 350 µV indicating linear transport
in this range of VDS . The dependence becomes sublinear beyond this value. The results of
figure 5 demonstrate that the measurements of figure 4 carried out with VDS = 300 µV lie well
within the linear transport regime. The observation of this linear behaviour for eVDS � kBT ,
though surprising, can be understood when one considers the inhomogeneity of the width of
the quantum wires along the length due to the roughness of the gate edges (section 4).

Since a magnetic field applied perpendicular to the plane of the device improved the quality
of the conductance staircase (figure 2), measurements of VD were also carried out in a field
to study its influence on the CD. In figure 6 we show the results for zero field and in a field
B = 0.86 T at 70 mK. Two clear effects of the field are observed. First, V MAX

D for the first
drag peak is enhanced almost by a factor of 3. Second, there is a narrowing of this peak. In
addition, a weakening of the second drag peak is observed under the influence of magnetic
field. VD is also found to remain linear in VDS (figure 7) at least up to 300 µV. As shown
in the figure, the linear behaviour is valid not only for the peak height, but also for the entire
peak region.

The CD effect is expected to decrease [8, 9] strongly as the interwire separation d increases.
In the voltage range of interest, d is found to vary almost linearly with VM according to

d = d0 + α(V0 − VM) (1)

where V0 is the value of VM for which the 2DEG under the middle gate M is just depleted and
α gives the total spatial displacement of the two depletion edges of M with respect to its bias
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Figure 6. Drag voltage VD and drive current I as functions of the top gate voltage VT at 70 mK in
zero field and in a magnetic field of 0.86 T with VDS = 300 µV. VM = −0.74 V and VB = −1.51 V.
The dot–dash peak is the zero-field result with its peak height normalized to that of the peak in
0.86 T. The field enhances VD almost by a factor of 3 and narrows the drag peak.
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Figure 7. Drag voltage VD as a function of the top gate voltage VT for three values of the
drive voltage VDS at 60 mK in a magnetic field of 0.86 T: 30 (1), 100 (2), and 300 µV (3).
VM = −0.74 V and VB = −1.508 V. The dotted peak is the one for 30 µV magnified by a factor
10 and shows complete linearity of VD with VDS up to at least 300 µV.
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voltage. Note that d0 is a constant for the same device and is nominally equal to the litho-
graphic width of the gate M which is 50 nm in our devices. We determined V0 by measuring
the 2D–1D transition of the conductance of our devices. To do this, the conductance of the
device was measured as a function of bias voltage applied simultaneously to gates M and T
or B, while the third gate was grounded. A sharp drop in the conductance occurs at V0 when
the 2DEG under the two gates is depleted and a quantum wire is created. V0 was found to
be −0.4 V. The coefficient α = 580 nm V−1 was determined from the measured conductance
staircases of the quantum wires, making use of the experimental value of the Fermi energy.
Figure 8(a) shows how V MAX

D for the first drag peak depends on VM at 60 mK. To carry out
these measurements, each time VM was changed, VB was adjusted to maintain the same width
of the drag wire so that EF was always just above the bottom of the lowest 1D subband. VD

was then measured as a function of VT . Measurements were done in a field of B = 0.86 T to
make use of the enhanced drag effect in a field. V MAX

D is found to increase as VM becomes
less negative due to a decrease in d in accordance with equation (1). It reaches a maximum
value at VM � −0.69 V, then decreases again for VM > −0.69 V when interwire tunnelling
occurs (figure 3). The dependence of the corresponding drag resistance on VM in the absence
of interwire tunnelling is found to be exponential and can be described well by the relation
RD ∝ eβVM , where β � 14.2(9) V−1. This is illustrated in figure 8(b).
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Figure 8. The dependence of the drag response on the interwire separation. (a) The maximum
V MAX

D of the first drag peak of figure 6, in a magnetic field, as a function of the middle gate voltage
VM at 60 mK. (b) The natural logarithm of the corresponding drag resistance RD as a function of
VM . The dotted line is a linear fit to the data points.

As mentioned in section 1, the temperature dependence of the CD effect is a crucial
feature that can be used to probe which one of the two theoretical models, the FL or TL liquid,
constitutes a more appropriate description of the 1D CD effect. With this in mind, we measured
VD as a function of the temperature T with T in the range from 60 mK to 1.2 K, both in zero
magnetic field and in a field B = 0.86 T. Since the effect is enhanced in a magnetic field, a drive
bias voltage of 50 µV was used in its presence. Except for the temperature, the experimental
conditions and the measurement procedure were the same as those used for obtaining the results
of figures 4 and 6. The results are shown in figures 9(a) and 9(b). A decrease of VD with
increasing temperature is observed. The dependence on temperature of the drag resistance
RD corresponding to the maximum of the first drag peak is shown in figures 10(a) and 10(b).
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Figure 9. The dependence of the drag response on the temperature. (a) The drag voltage VD as a
function of the top gate voltage VT in zero magnetic field with 300 µV drive voltage at temperatures
70, 180, 300, 450, and 900 mK, corresponding to the curves in the order of decreasing peak height.
(b) The same as in (a) but in a magnetic field of 0.86 T and with a VDS = 50 µV at temperatures
60, 180, 300, 450, 900 mK and 1.2 K. For both (a) and (b), VM = −0.74 V and VB = −1.508 V.
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Figure 10. The temperature dependence of the drag resistance RD corresponding to V MAX
D for

the first drag peak of figure 9 in zero field (a) and in a magnetic field of 0.86 T (b). Note that the
data points at the low end of the temperature range fall below the power-law curve indicating a
suppression of the drag effect at these temperatures.

In the range 0.2 K � T � 1.2 K, the temperature dependence of RD can be described well
by the power law RD ∝ T x with x = −0.77(2) and −0.73(6) for B = 0 and B = 0.86 T,
respectively. It is interesting to note that the data points at temperatures lower than 180 mK,
for zero field, and than 300 mK, for nonzero field, fall below the power-law curve, indicating
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a suppression of the drag effect. As we move to the right shoulder of the drag peak, toward
less negative VT , the temperature dependence of RD becomes progressively weaker but also
fits well to power laws. For example, at VT = −1.17 V we found x = −0.61(2).

4. Discussion

The origin of the observed peaks in VD (figure 4) can be understood when one considers a
simple equation [8] for the drag resistance between quantum wires derived in the FL framework
for zero magnetic field:

RD = LkBT |V̄kF 1+kF 2 |2
h̄2e2vF 1vF 2(vF 1 + vF 2)

(�/2kBT )2

sinh2(�/2kBT )
. (2)

Here � is the difference between the quantization energies of the 1D states in the two wires, L

the wire length, while kFi and vFi = h̄kF i/m∗ are the Fermi wave vectors and Fermi velocities
in the wire i (i = 1, 2). Next, V̄q is the interwire matrix element of the Coulomb potential,
which can be approximated by (2e2/ε)K0(qd), where K0 is the modified Bessel function, d the
interwire distance, and ε the dielectric constant. According to equation (2), the magnitude of
the CD effect is proportional to the backscattering probability due to the Coulomb interaction
between the Fermi quasiparticles of different wires. The drag is enhanced when the 1D
levels of the two wires are aligned, which corresponds to � = 0 and kF 1 = kF 2 = kF ,
and the Fermi wave vectors in the wires are small so the interwire momentum transfer
h̄q = h̄(kF 1 + kF 2) = 2h̄kF is also small. As seen from figure 4, the occurrences of the
drag peaks correspond to these conditions. The first peak in VD occurs when the Fermi level
is just above the bottoms of the lowest 1D subbands of both wires. Similarly, the second peak
occurs when the lowest subband of the drag wire lines up with the second subband of the drive
wire [9, 17]. Both the increase and the narrowing of the first drag peak in a magnetic field of
0.86 T (figure 6) can be attributed to an increase of the density of states in 1D subbands due
to the magnetic-field-induced enhancement of the effective mass. The theoretical calculations
[9] of the influence of a magnetic field on the CD between quantum wires show the same
tendencies (see figure 2 of [9]). The theory also suggests a suppression of the drag due to a
reduction of the backscattering probability as the centres of the wave functions of forward-
and backward-moving electrons are pulled apart by the magnetic field [9]. Since the magnetic
length for 0.86 T field is 28 nm and the effective width of the drive wire for the first subband
is about 23 nm, this effect should not have a very considerable influence on the first drag
peak. However, because of the larger effective wire width, the field-induced shift of the wave
functions is expected to be significant for the second subband. This can explain the observed
decrease of the amplitude of the second peak in the magnetic field. Since we are mainly
concerned with 1D transport in the fundamental mode, hereafter we discuss only the region of
the first drag peak.

To estimate the interwire distance dependence of the drag effect at large d, one may use
the asymptotic form of the Bessel function in the expression for RD . Since RD ∝ [K0(2kF d)]2

and K0(2kF d) behaves as an exponential for 2kF d � 1, we expect an exponential decrease of
RD with d:

RD ∝ e−4kF d . (3)

Experimentally, the effective separation between the wires is found to be proportional to the
middle gate voltage, which moves the depletion edges in a nearly linear way and thus changes
d (equation (1)). The observed exponential dependence (figure 8(b)) of RD ∼ eβVM ∼ e−γ d

with γ = β/α is therefore consistent with equation (3) and can be used to estimate the Fermi
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wave vector corresponding to the peak value of VD . Using the experimentally determined
values β � 14.2 V−1 and α � 580 nm V−1, we find kF � 6.1 × 106 m−1. When VM is in the
range from −0.7 to −0.8 V, we have1 d � 0.2 µm. This gives 2kF d ∼ 3, so the approximation
of equation (3) is still reasonable.

The features discussed above, namely the origin of the peaks, the magnetic field effect,
and the interwire separation dependence, can all be understood in terms of the FL theory
of CD between ballistic 1D electron systems. We now discuss the features which cannot
be explained in this framework. The observed temperature dependence of the drag resistance
shown in figures 10(a) and 10(b) is in sharp contrast with the linear behaviour RD ∼ T expected
for Fermi liquids; see equation (2) for � → 0. The unusual temperature dependence cannot
be attributed to a temperature-induced modification of the wire conductance, since the latter
is found to be almost unchanged in this range of temperatures. A reduction of the interwire
Coulomb coupling due to enhanced screening by the reservoirs and gates is very unlikely at
such small temperatures. On the other hand, it is conceivable that correlated liquid behaviour
is established in the wires. Indeed, it is hardly surprising that the temperature dependence of
the observed CD does not fit into the FL scenario, because for the peak conditions the ratio
of the mean distance between the electrons in the same wire to the Bohr radius r̄/aB � 26
is large. Below we find that the temperature dependence of RD is in good agreement with a
theory [13] of the CD between TL liquids.

The essential point of the TL liquid theory of Coulomb drag is that the interwire Coulomb-
assisted backscattering probability λ, which determines the drag resistance RD , is affected by
the intrawire Coulomb interaction and becomes temperature dependent, λ = λ(T ), in contrast
to the bare probability λ0. The smallness of the observed drag resistance (RD < 100 *;
figure 10(a)) in comparison with the fundamental resistance h/2e2 indicates a weak interwire
coupling. According to [13], in this case λ(T ) should scale with temperature in a power law,
λ(T ) ∝ T 2Kc−−2, provided that the 1D levels in the wires are aligned. The exponent is expressed
through the TL parameter Kc− of the relative (i.e., interwire) charge mode. Therefore, instead
of the linear temperature dependence RD ∝ λ0T , typical for the case when the intrawire
Coulomb interaction is either neglected or treated in a perturbative approach within the FL
framework [8], one gets

RD ∝ λ(T )T ∝ T x x = 2Kc− − 1. (4)

The power-law behaviour is indeed observed in our experiment; cf. figure 10(a). Assuming
that equation (4) is applicable, one can determine the parameter Kc− from the experimental
data. We find Kc− = 0.12–0.2, depending on the gate voltage VT . It is crucial, however,
to check whether the rather low values of Kc− obtained are realistic and consistent with the
system parameters.

A recent work by Creffield et al [19] demonstrates that the interaction parameter of a
single quantum wire calculated by standard perturbative methods yields reliable values, even
for small values of kF w (w is the width of the wire) down to 0.1, while in our experiment
w � 23 nm (determined from experimental data) and kF w � 0.14. Encouraged by this result,
we determine Kc− in a similar way via the compressibility of the relative charge mode obtained
in the Hartree–Fock approximation, which leads to

KHF
c− =

(
1 +

2(V0 − V̄0)

πvF

− V2kF

πvF

)−1/2

(5)

1 The estimated value of d was obtained by two independent methods. The first method used experimental data on
gate-edge depletion (see section 3 for details) while the second one was based upon electrostatic calculations of the
double-well potential profile created by three parallel infinite gates for VM = −0.8 V and VT = VB = −1.5 V (the
variations of the gate voltages within the ±0.05 V range do not change this estimate considerably). Both methods
give values of d close to 0.2 µm, which is chosen for numerical estimates in section 4.
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where Vq and V̄q denote intra- and interwire matrix elements of the Coulomb potential,
respectively. Modelling them as one-dimensional Fourier transforms of the potentials

V (x) = e2ε−1(x2 + w2)−1/2 V̄ (x) = e2ε−1(x2 + d2)−1/2

we obtain an interaction parameter KHF
c− = 0.178. This calculation is done for parameters

d = 0.2 µm, w = 23 nm, kF = 6.1 µm−1, ε = 12.5, and m∗ = 0.068 me. If we take into
account screening by a homogeneous gate, i.e., subtract the image charge potentials

e2ε−1(x2 + w2 + 4l2)−1/2 e2ε−1(x2 + d2 + 4l2)−1/2

(l = 80 nm), from V (x) and V̄ (x), respectively, we obtain K
HF(S)
c− = 0.212. Since we

have split gates, the true value of Kc− lies somewhere between KHF
c− and K

HF(S)
c− and is in

reasonable agreement with the experimental values. Since the distance between the wires in
our experiment is larger than the thickness of the layer between the 2DEG and the surface
Schottky gates, the screening by the gates appears to be important. Nevertheless, our analysis
of the experimental data based on the exponential dependence given by equation (3) remains
valid irrespective of whether the screening is present or not. To demonstrate this, we stress
that both in the FL and in the TL liquid framework the drag resistance is proportional to the
square |V̄2kF

|2 of the 2kF -component of the interwire interaction, which leads to equation (3)
under the condition d > k−1

F .
Strictly speaking, the result (4) is valid for infinitely long wires. The temperature

dependence should be modified if the wire length L is smaller than the thermal length LT

estimated as LT = h̄vF /Kc−kBT . The length LT has a simple physical meaning: since
vF /Kc− is the group velocity of the relative electron-density fluctuations, and h̄/kBT is the
quantum lifetime associated with the thermal energy kBT , the length LT is the quantum
wavelength associated with this energy. The electron coming from the lead to the wire does
not have time to accommodate itself to the TL liquid if L < LT , so in this case the drag
effect should be weaker than that following from equation (4). Given a Fermi wave vector of
kF � 6 µm−1, we find that LT exceeds L = 2 µm for temperatures below TL � 250 mK. At
higher temperatures equation (4) should be applicable. The experimental data are consistent
with these estimates. At lower temperatures we do indeed observe a tendency to a weakening
of the drag with respect to the power-law dependence; cf. figure 10(a).

The influence of the magnetic field on the temperature dependence is not significant, as
follows from a comparison of figures 10(a) and 10(b). This may signify that Zeeman spin
splitting at B � 1 T is not important yet (otherwise, for spin-polarized electrons, the exponent
x should change [13]). Indeed, we do not see signatures of spin splitting in the quantized
conductance staircase in this field (figure 2). Another effect of the magnetic field is a decrease
of the parameter V2kF

related to intrawire backscattering. As the wave functions for the left-
and right-moving electrons are pulled apart by the magnetic field, this parameter is expected to
decrease rapidly. This, however, cannot affect the temperature dependence considerably, since
this parameter is small in comparison with parameters V0 and V̄0—see equation (5)—which
are less affected by the field. The magnetic field also increases vF for the same position of
the Fermi level. As long as this effect is small, this cannot produce a significant change of
the temperature dependence determined by parameter Kc−. Note, however, that the increase
of vF makes the thermal length LT bigger at the same temperature. This can explain why
a deviation from the power-law dependence occurs at a higher temperature, as seen from
figure 10(b).

The negative power-law temperature dependence is not the only experimental feature that
cannot be explained in the FL theory of the CD. It is worth mentioning that the experimental
value of RD (figure 10(a)) at T = 60 mK is more than one order of magnitude larger than
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that resulting from equation (2). That the measured drag is larger could be explained by the
interaction-renormalized interwire backscattering probability, which should be larger than the
bare one.

The experimental data at T = 60 mK show that VD still remains linear in the driving
voltage up to 350 µV (figure 5) though it is expected to show nonlinear behaviour starting
from VDS = (kB/e)T ∼ 6 µV. This estimate, however, corresponds to ideal ballistic wires,
while in the real wires the inhomogeneities of the conducting channels, appearing mostly due
to the roughness of the gate edge, should lead to a smearing of the band edges, extending the
region of linearity. This disorder smearing is also seen in the quantized conductance staircase
(figure 2), and we conclude that at T = 60 mK it is much more important than the thermal
smearing of the Fermi distribution. Besides, within the TL liquid description of transport, the
extended linearity region can be in part attributed to a considerable reduction of the electric
field inside the wire due to the renormalization of the group velocity of the excitations as a
result of the interactions [20]. If Kc− = 0.2, this corresponds to an increase of the linearity
region by a factor of 5, which, however, is not sufficient to explain the experimental data
without consideration of disorder smearing. More surprising is the sublinear behaviour of VD

for VDS > 350 µV. The FL theory of the CD predicts a superlinear behaviour [21] RD ∼ V 2
DS

for eVDS � kBT and eVDS � �. This behaviour is qualitatively understandable, since the
phase space for electron transition in electron–electron scattering increases with the increasing
drive voltage. The experimentally observed sublinear behaviour contradicts this picture, and,
therefore, cannot be explained using the FL theory. On the other hand, very probably it could
be explained in the TL liquid framework, because the effect of increasing the drive voltage
is similar to that of increasing the temperature described above: in both cases the electron–
electron correlation is expected to weaken. Unfortunately, we cannot present here quantitative
arguments supporting this suggestion, since the nonlinear drag between TL liquids has not yet
been studied theoretically.

So far we have interpreted our experimental results in terms of Coulomb drag only.
However, considering the large interwire separation in our experiment, one cannot completely
rule out the possibility of an acoustic phonon-mediated drag (PMD) contribution to the drag
resistance. Because there is no information available on PMD in 1D systems, we cannot give a
detailed analysis of this question. Nevertheless, existing results for 2D systems [22] show that
the PMD rapidly decreases with temperature T at T < 2 K and does not decrease exponentially
with increasing interlayer separation. Our data on the temperature and interlayer separation
dependence of RD qualitatively contradict this behaviour. This allows us to conclude that the
PMD contribution, if present at all, is insignificant in our experiments.

In conclusion, we have investigated the Coulomb drag between ballistic 1D electron
systems and studied its dependence on interwire separation and temperature in the absence of
tunnelling between the wires. The observed negative power-law temperature dependence of the
drag resistance can be explained quantitatively in terms of the TL liquid theory. The observed
sublinear dependence of the drag voltage on the drive voltage also seems to be consistent
with the TL liquid description of electron transport. Thus, we have good indications that the
electron systems in the wires investigated are Tomonaga–Luttinger liquids. Clearly, further
experimental and theoretical work is necessary to put the TL nature of Coulomb drag on a
firm footing.
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