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Abstract
The presence of pronounced electronic correlations in one-dimensional
systems strongly enhances Coulomb coupling and is expected to result in
distinctive features in the Coulomb drag between them that are absent in the
drag between two-dimensional systems. In this review, we review recent
Fermi and Luttinger liquid theories of Coulomb drag between ballistic
one-dimensional electron systems, also known as quantum wires, in the
absence of inter-wire tunnelling, to focus on these features and give a brief
summary of the experimental work reported so far on one-dimensional drag.
Both the Fermi liquid (FL) and the Luttinger liquid (LL) theory predict a
maximum drag resistance RD when the one-dimensional subbands of the
two quantum wires are aligned and the Fermi wave vector kF is small, and
also an exponential decay of RD with increasing inter-wire separation, both
features confirmed by experimental observations. A crucial difference
between the two theoretical models emerges in the temperature dependence
of the drag effect. Although the FL theory predicts a linear temperature
dependence, the LL theory promises a rich and varied dependence on
temperature depending on the relative magnitudes of the energy and length
scales of the systems. At very low temperatures, the drag resistance may
diverge due to the formation of locked charge density waves. At higher
temperatures, it should show a power-law dependence on temperature,
RD ∝ T x , experimentally confirmed in a narrow temperature range, where x
is determined by the Luttinger liquid parameters. The spin degree of
freedom plays an important role in the LL theory in predicting the features
of the drag effect and is crucial for the interpretation of experimental results.
Substantial experimental and theoretical work remains to be done for a
comprehensive understanding of one-dimensional Coulomb drag.

1. Introduction

Moving charge carriers in a conductor exert a Coulomb force
on the charge carriers in a nearby conductor and induce a drag
current in the latter via momentum transfer. This phenomenon,
known as Coulomb drag, was predicted by Pogrebinskii in his

pioneering paper [1] in which he argued that in a structure
of two semiconductor layers separated by an insulating layer,
there would be a drag of carriers in layer 1 (‘drag layer’),
resulting in a drag current ID, due to the direct Coulomb
interaction with the carriers in layer 2 (‘drive layer’), where
an electric current I flows. If no current is allowed to flow in
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Figure 1. Schematic view of Coulomb drag between parallel
quantum wires.

the drag layer, the charge carriers will accumulate at one end
inducing a charge imbalance across the layer. This charge will
continue to accumulate until the force of the resulting electric
field balances the drag force. In the stationary state there will
be an induced or ‘drag’ voltage VD in the drag layer. When the
carriers in both layers are of the same type (electrons or holes),
the drag voltage has a sign opposite to the voltage drop in the
drive layer. Figure 1 gives a schematic view of Coulomb drag
between two parallel quantum wires. The quantity usually
measured in experiments is the drag voltage VD. The drag
resistance RD is defined as RD = −VD /I.

Coulomb drag between two-dimensional (2D) electron
systems has been extensively studied [2] both experimentally
and theoretically. The basic physics involved in the description
of the drag in two dimensions is now well understood on the
basis of Fermi liquid (FL) theory of interacting fermions. The
FL theory is well established in three dimensions and holds
marginally for many two-dimensional systems, but generally
fails in one dimension. The theory is based on Landau’s
conjecture that the low-lying excitations of interacting fermion
systems can be connected continuously to those of the non-
interacting Fermi gas—there is a smooth mapping between
the quasiparticles of the interacting and those of the non-
interacting system [3].

Coulomb drag between one-dimensional (1D) electron
systems has been the focus of considerable interest in recent
years because our understanding of the quantum properties in
interacting 1D systems is unsatisfactory. Experimental work
on the subject remains quite limited [4–7]; however, a fair
number of theoretical papers have been published [8–18]. The
primary reason for this theoretical interest is that Coulomb drag
is one of the most effective ways to study electron–electron
(e–e) interaction.

It is now theoretically established that in an interacting 1D
electron gas of infinite length, the e–e interaction completely
modifies the ground state of the system. The elementary
excitations cannot be treated as non-interacting quasiparticles
of a conventional Fermi liquid, but instead acquire a bosonic
nature. An adequate theoretical description of these interacting
1D systems can be given in terms of the so-called Luttinger
liquid (LL) [19] (for a recent review see [20]), complementary
to the FL description in higher dimensions. In a real 1D system
of finite length at finite temperatures, the extent of influence
of the e–e interaction will depend on the system parameters.

Experimental details to observe the manifestation of
Luttinger liquid behaviour, however, have been quite limited
[21–24]. Part of the problem is that the (e–e) interaction has
little influence on the conductance of a single wire, since the
current is proportional to the total electron quasi-momentum,

which is conserved in electron–electron collisions. To look
for experimental evidence of the LL state, it would therefore
help to explore a new experimental tool based on new
devices and physical phenomena. Coulomb drag between
1D electron systems in a dual-wire configuration opens up a
new opportunity and avenue for experimentally probing the
LL state in a 1D electron system.

The purpose of this review is to present the current status
of the theory of Coulomb drag between 1D electron systems
for electron transport in the ballistic regime, and to report on
experimental measurements of the 1D drag effect. Ballistic
transport takes place when the quantum wire dimensions are
smaller than both the elastic and the inelastic scattering lengths.
Electron transport is strictly one dimensional when only the
lowest 1D subband of the wire is occupied and transport takes
place in the fundamental mode. The ballistic regime is well
suited for Coulomb drag study, since in this regime other
scattering processes, such as impurity and phonon scattering,
are either insignificant or totally absent.

Further theoretical and experimental investigation of
the 1D Coulomb drag effect can enhance our general
understanding of the properties of systems of low
dimensionality. This broad class of systems is currently a very
active area of research. In addition to its fundamental interest, a
comprehensive understanding of Coulomb interaction between
quantum wires is expected to play a significant role in the
design of nanodevices, such as single-electron transistors
(SETs) [25] and quantum cellular automata (QCA) [26], which
are composed of quantum dots and quantum wires in close
proximity.

The paper is organized as follows: Section 2 describes
the theory of 1D Coulomb drag based on the Fermi liquid
approach. Section 3 reviews the Luttinger liquid description
of this effect. In section 4 we present a summary of the
experimental work reported so far and a comprehensive
analysis of the experimental results using both the FL and
the LL descriptions of 1D Coulomb drag. Finally, section 5
gives some guidelines for future work on the subject.

2. Fermi liquid approach

In this section the 1D Coulomb drag is analysed within
the Fermi liquid concept. We will follow [8, 18] and use
the physical picture developed by Landauer [27], Imry [28]
and Büttiker [29]. We assume that each quantum wire is
connected to ideal electronic reservoirs attached to its ends.
The relaxation processes in the reservoirs are considered to be
so fast that each of them is in thermal equilibrium.

The e–e interaction within a single quantum wire does not
result in a current variation because of the quasimomentum
conservation in the e–e collisions. However, if two such
wires, 1 and 2, are near one another and parallel, the
Coulomb interaction of electrons belonging to different wires
can transfer momenta between the wires, which eventually
gives rise to a drag effect.

The drag force due to the ballistic current in wire 2 creates
a sort of permanent acceleration on the electrons of wire 1.
As wire 1 has a finite length L a steady drag current ID is
established.

Within the Fermi liquid approach we restrict ourselves to
direct electron–electron collisions mediated by the Coulomb
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interaction. Let us analyse the conservation laws for such
collisions of electrons belonging to two different wires, 1 and
2, each of them being parallel to the x-axis. We have

ε
(1)
nk + ε

(2)
n′k′ = ε

(1)
l,k+q + ε

(2)
l′,k′−q. (1)

Here h̄k is the x-component of the electron quasimomentum.
In this and the next sections we will put h̄ = 1 and kB = 1
(where kB is the Boltzmann constant). These quantities will
be restored only in some final (or most important) formulae.
Now,

ε
(1,2)
nk = ε(1,2)

n (0) + k2/2m, (2)

m being the effective mass while n being the transverse
quantization subband (channel) index, with primed quantities
corresponding to wire 2 throughout. The solution of
equation (1) can be written as

q = −(k − k′)/2±
√

(k − k′)2/4 + mδε (3)

with δε = ε(1)
n (0) + ε

(2)
n′ (0) − ε

(1)
l (0) − ε

(2)
l′ (0).

We assume that the electrons of the quantum wires are
degenerate and the temperature is low compared to the electron
Fermi energy. For the electron–electron collision to be
possible, the absolute values of the four quantities, namely,
ε

(1)
nk , ε

(2)
n′k′, ε

(1)
l,k+q and ε

(2)
l′,k′−q should be within the stripes kBT

near the corresponding Fermi levels. This means that within
the accuracy mT/kF, the following relations should be valid

k = k
(n)
F , k′ = k

(n′)
F ,

|k + q| = k
(l)
F , |k′ − q| = k

(l′)
F .

(4)

Here k
(n)
F denotes the Fermi quasimomentum for band n. In

general it is impossible by variation of a single quantity, i.e.
the transferred quasimomentum q, to satisfy both relations of
equation (4) (provided, of course, that the distances between
the channel bottoms are much bigger than T ).

In other words, one cannot in general satisfy equation (1)
for a finite δε. Therefore for a general case one should
have n = l, n′ = l′. If both wires are identical equations
n = l′, n′ = l are also possible. In both cases δε = 0. We
will assume the wires to be different. Then

δ
(
ε

(1)
nk + ε

(2)
n′k′ − ε

(1)
l,k+q − ε

(2)
l′,k′−q

)
= (m/|q|)δ(k − k′ + q).

(5)

This means that the quasimomentum transferred during a
collision is q = k′ − k, i.e. the electrons swap their
quasimomenta as a result of collision.

Assuming that the drag current in wire 1 is much smaller
than the ballistic current in wire 2, we calculate the drag current
by solving the Boltzmann equation for wire 1 (otherwise we
should have solved a system of coupled equations for both
wires). We assume the wires to be different though having
the same lengths L and consider the interaction processes
when electrons in the two quantum wires after scattering
remain within the initial subbands ε

(1)
nk = ε(1)

n (0) + k2/2m

and ε
(2)
n′k = ε

(2)
n′ (0) + k2/2m,n being the subband’s number.

The Boltzmann equation for the electrons occupying the nth
subband is

vk

∂F (1)

∂k
= I(12){F (1), F (2)} (6)

where F (1,2) are the electron distribution functions in wires 1
and 2 respectively, and I is the collision integral. We assume
that the only type of collisions that is essential is the inter-wire
e–e collisions described by the term

I(12){F (1), F (2)} = 2
∫

dk′

2π

∫
dq

2π

∑
n′

w(1, k + q, n; 2,

k′ − q, n′ ← 1, k, n; 2, k′, n′)P (7)

where

P =
[
F

(1)
nk F

(2)
n′k′

(
1− F

(1)
nk+q

) (
1− F

(2)
n′k′−q

)
− F

(1)
nk+qF

(2)

n′k′−q

(
1− F

(1)
nk

) (
1− F

(2)

n′k′

)]
, (8)

2 is the spin factor; the scattering probabilities are assumed
to be spin-independent. If the e–e collisions can be treated
within the perturbation theory, then the scattering probability
is given by

w(1, k + q, n, 2, k′ − q, n′ ← 1, k, n; 2, k′, n′)
= 2π |〈1, k + q, n; 2, k′ − q, n′|V |1, k, n; 2, k′, n′〉|2
× δ

(
ε

(1)
nk + ε

(2)
n′k′ − ε

(1)
n,k+q − ε

(2)
n′,k′−q

)
. (9)

The matrix element of electron–electron interaction can be
transformed to

〈1, k + q, n; 2, k′ − q, n′|V |1, k, n; 2, k′, n′〉
= 1

L

∫
d2r⊥

∫
d2r ′⊥φ

∗
n(r⊥)φ

∗
n′(r
′⊥)

×Vq(r⊥ − r′⊥)φn(r⊥)φn′(r′⊥) (10)

where Vq =
∫

dxV (x, r⊥) exp(−iqx), r⊥ = (y, z). We have∫
dx

∫
dx ′V (r− r′) eiq(x−x ′) = 2e2LK0(|q‖�r⊥|) (11)

where �r⊥ = r⊥ − r′⊥ and K0 is a modified Bessel function
defined in [30]. Now,

K0(ξ ) =
{ −ln(ξ/2) ξ 	 1,√

π/2ξ e−ξ ξ � 1.
(12)

It means that the e–e interaction goes down exponentially
provided |q‖r⊥ − r′⊥|/h̄� 1.

To calculate the current in wire 1, we iterate the Boltzmann
equation (6) in the collision term I(12). The first iteration gives
for the nonequilibrium part of the distribution function �F(1)

np

�F
(1)

nk = −
(

z± L

2

)
1

vn

I(12){F (1), F (2)} (13)

for k > 0 (k < 0) respectively. One gets for the drag current

ID = −2eL
∑

n

∫ ∞
0

dk

2π
I(12){F (1), F (2)}. (14)

We assume in the spirit of the Landauer–Büttiker–Imry
approach the driving wire connected to the reservoirs which
we call ‘left’ (+) and ‘right’ (−), each of these being
in independent equilibrium. Let the x-component of the
quasimomentum of an electron in wire 2 before scattering
be k′ and after scattering by an electron of wire 1 let this
be k′ − q. Let k′ > 0 while k′ − q < 0. Then the first
distribution function in wire 2 is F

(0)

n′k = f
(
ε

(2)

n′k − µ(+)
)

where
f is the equilibrium Fermi function. The second one is
F

(0)
l′,k+q = f

(
ε

(2)
l′,k+q−µ(−)

)
where µ(±) = µ±eV/2. At eV = 0
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the wires are in equilibrium. We denote the corresponding
equilibrium chemical potential as µ.

Let us denote by �{F } the expression one gets after
substitution of the equilibrium distribution functions given
above into the collision term. For k′ > 0 (k′ < 0)

and k′ − q < 0 (k′ − q > 0), where k′ is the electron
quasimomentum in wire 2 before the scattering, we obtain

�{F (1), F (2)} = ±2 sinh
(

eV

2T

) [
1− f

(
ε

(1)
nk − µ

)]
× [

1− f
(
ε

(2)
n′,k′ − µ(+)

)]
× f

(
ε

(1)

n,k+q − µ
)
f

(
ε

(2)

n′,k′−q − µ(−)
)
. (15)

We begin with a discussion of the ohmic case eV/kB 	 1.
Accordingly, we replace sinh(eV/2T ) by its argument and all
the chemical potentials in equation (15) by the same value µ.
The initial and final states of the colliding electrons should
be within T of the Fermi levels [8]. This means that only the
terms with ε(1)

n (0) = ε
(2)

n′ (0), where the equality is satisfied
with the indicated accuracy, give the principal contribution to
the current. (The importance of equal channel velocities was
also pointed out in [9].) The contribution of each such pair of
levels to the current is

ID = e5m3LkBT eV

2π2κ2

1

kn
3 gnn(2kn)

[
ε(1)
n (0) − ε

(2)
n′ (0)

]2

4(kBT )2

×
[

sinh
ε(1)
n (0) − ε

(2)

n′ (0)

2kBT

]−2

(16)

where

gnn′(q) =
∣∣∣∣
∫

d2r⊥
∫

d2r ′⊥|φn(r⊥)|2|φn(r
′
⊥)|2K0(q|�r⊥|)

∣∣∣∣
2

,

(17)

κ is the dielectric susceptibility of the lattice, kn =√
2m[µ− εn(0)]. This equation has also been obtained using

linear response theory. In the case considered, wire 2 is a
part of a usual structure for measuring ballistic conductance,
i.e. it joins two classical reservoirs, each of them being in
independent equilibrium. The driving current is [28]

I = N e2

π
V, (18)

N being the number of active channels (i.e. the subbands
whose bottoms are below the Fermi level). So far a simplifying
assumption has been used: the chemical potential µ in wire 1
and the average chemical potential in wire 2 are equal. In
the general case they can have different values µ(1) and
µ(2), respectively. Then one still gets equation (16) with the
replacement

ε(1,2)
n (0)→ ε̃(1,2)

n (0) ≡ ε(1,2)
n (0) − µ(1,2).

One can measure either the current or the voltage that
builds up in wire 1. The ratio of the drag current to the
ballistic driving current for ε̃(1)

n (0) = ε̃
(2)
n′ (0) is given by

I

ID
= 4e4m3LkBT

πh̄3κ2N
∑
nn′

Dnn′ (19)

where

Dnn′ = 1(
k

(1)
n + k

(2)
n

)3 gnn′
(
k(1)

n + k(2)
n

)
. (20)

Figure 2. Schematic representation (for µ(1) = µ(2)) of
simultaneous transitions due to the interaction between electrons of
the two wires for eV � kBT . Circles ◦ and • represent the initially
unoccupied and occupied states respectively.

Figure 3. I/ID is plotted (for µ(1) = µ(2) = µ) as a function of
W1/W2 where the width of wire 1 is controlled through gate voltage
(µ = 14 meV, T = 1 K, W2 = 42 nm, L = 1µm, κ = 13 and the
spacing between wires is 50 nm).

Here k(1,2)
n =

√
2m

[
µ(1,2) − ε

(1,2)
n (0)

]
. In this approximation,

k(1,2)
n = k

(1,2)
n′ . In an experiment one usually measures the drag

resistance RD = −VD/I = IDGD/I , where GD is the ballistic
resistance of the drag wire and depends on the number of
occupied subbands.

The 1D subband structure of the wires can be modified
by changing the effective wire widths by applying appropriate
gate voltages (figure 5). The variation of gate voltage may
affect the positions of the levels of transverse quantization in
the two wires in a different way. In the course of such a
variation, a coincidence of a pair of such levels in the two
wires may be reached. The estimate (20) is not very sensitive
to the form of confining potential and electron densities. In
figure 3 the ratio I/ID is plotted (for µ(1) = µ(2)) as a function
of the ratio of effective wire widths. This plot exhibits striking
oscillations with large peak-to-valley ratios. The peaks occur
when channel velocities in two interacting wires are equal
which happens whenever any two current-carrying channels
line up. This sort of coupling is particularly strong when such
channel velocities are quite small.

The condition ε̃(1)
n (0) = ε̃

(2)

n′ (0) gives the main maxima of
the drag current, especially for the lowest levels of transverse
quantization. Some subsidiary maxima can also be observed,
particularly in external magnetic field, see [14].

So far we have considered the peaks of the drag current
under conditions where the Fermi level is well above the
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coinciding bands in wires 1 and 2. Now we would like to
say a few words about a special case that may be particularly
important regarding the experiment described below. This is
the case where the bottoms of two subbands not only coincide
but also just touch the Fermi level. Then the conduction
electrons obey the so-called intermediate statistics. It means
that their equilibrium distribution functions are

f = 1

exp(k2/2mT ) + 1
. (21)

The drag current is proportional to the e–e scattering
probability averaged over this distribution function. The
scattering probability itself is determined by the quantum
mechanics, i.e. it depends on the form of electron wavefunction
in the quantum wire, or in other words, on the exact form
of the confining potential. Investigation of the temperature
dependence of the drag in this special case is one of the
problems of the theory to be solved in future.

Now we turn to the case of non-ohmic transport in
the drive wire, i.e. to the case where eV � kBT [18].
The situation for µ(1) = µ(2) is illustrated in figure 2. The
upper and lower dashed lines correspond to the positions of
the chemical potentials µ(−) and µ(+), respectively, while
the middle dashed line corresponds to the average value µ.
Parabolas (1) and (2) represent the dispersion law of electrons
in wires 1 and 2 respectively. The full circles correspond to
the initial states of colliding electrons.

Before the collision, states 1a and 2a are occupied. The
circle representing state 1a is below the dashed line, i.e. below
the Fermi level µ. The circle 2a represents a state with p > 0,
which is also occupied as the corresponding energy is below
µ(+).

After the collision, state 1b is occupied. It is represented
by a circle above the dashed line, which means that it has been
free before the collision. In wire 2 state 2b with p < 0 is
also occupied. It is above µ(+), i.e. it had been free before the
transition.

The width of the stripe between the two straight lines is
eV . If the bottoms of the active subbands are well below the
Fermi level, the drag current should be proportional to the
number of occupied initial states as well as to the number of
free final states.

To calculate the drag current, one can recast the product
of distribution functions in the collision term, equations (7)
and (8), into the form

P = 2 sinh (eV/2T )Q (22)

where

Q = exp
ε

(1)
nk − µ

T
exp

ε
(2)
n′k′ − µ

T
f

(
ε

(1)

nk − µ
)
f

(
ε

(2)

n′k′ − µ(+)
)

× f
(
ε

(1)
nk′ − µ

)
f

(
ε

(2)
n′k − µ(−)

)
. (23)

For the drag current one gets

I = −sinh
(

eV

2T

)
8e5mL

π2κ2

∑
nn′

∫ ∞
0

dk

∫ ∞
0

dk′
gnn′(k + k′)

k + k′
Q.

(24)

As above, one can conclude that the terms which give
the main contribution to the drag current are those where

∣∣ε̃(1)
n (0) − ε̃

(2)
n′ (0)

∣∣ is smaller than or of the order of kBT or
eV . We will assume that there is only one such difference
(otherwise we would have got a sum of several terms of the
same structure).

As Q is a sharp function of k and k′, one can take out of
the integral all the slowly varying functions and get (the result
is given for the general case where µ(1) �= µ(2))

ID = I0
1

2
sinh

(
eV

2kBT

) eV

4kBT
− ε̃nn′

2kBT

sinh
(

eV

4kBT
− ε̃nn′

2kBT

)

×
eV

4kBT
+

ε̃nn′

2kBT

sinh

(
eV

4kBT
+

ε̃nn′

2kBT

) (25)

where

I0 = −64e5m3L(kBT )2

κ2π2h̄4 Dnn′ . (26)

Here ε̃nn′ = ε̃(1)
n (0) − ε̃

(2)

n′ (0).

For eV 	 kBT equation (25) turns into equation (16).
Let us consider the opposite case eV � kBT . One gets for the
drag current

ID = B
[(

eV

2

)2

− (ε̃nn′)
2

]
, B = −16e5m3L

κ2π2h̄4 Dnn′ .

(27)

This result is non-vanishing only if |ε̃nn′| < eV/2.
In this section we have discussed a Fermi liquid theory of

the Coulomb drag current in a quantum wire brought about by a
current in a nearby parallel quantum wire. A ballistic transport
in both quantum wires is assumed. The drag current ID as a
function of the wire widths comprises one or several spikes;
the position of each spike is determined by a coincidence of
a pair of levels of transverse quantization, εn(0) and εn′(0) in
both wires.

3. Luttinger liquid theory of Coulomb drag

In 1D systems e–e interaction gives rise to electronic
correlations that are believed to destroy the Fermi liquid.
Instead, a different state is generated that is usually described
as a Luttinger liquid [19, 32] (for reviews see e.g. [20,
33–35]). It is therefore not surprising that in 1D systems
e–e interaction affects the drag in a different way than in
two- or three-dimensional systems. Indeed, in 1D systems
interaction strongly enhances the effect, getting stronger with
decreasing temperature. As a result, the positive temperature
characteristic of the drag resistance from Fermi liquid theory
can become a negative one. For sufficiently long wires the drag
resistance becomes exponentially large at low temperatures.

This section reviews in the main part the works [15–17],
and is organized as follows: Section 3.1 introduces bosonic
variables as the appropriate language for the discussion to
follow. In section 3.2 the renormalization group method is
employed in order to show in which way the drag becomes
enhanced by electron correlations. This consideration will also
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clarify some relevant energy and length scales of the problem.
Section 3.3 elaborates on the influence of the electron spin
on the drag, while section 3.4 deals with non-linearities and
asymmetric double wires. Section 3.5, briefly discusses the
drag in a system with a finite region of interaction.

3.1. Bosonic variables

For treating interactions it is convenient to describe excitations
of the many-electron system in terms of collective coordinates:
for example by the displacement ϕ(x) of electrons. They are
normalized in such a way that density and current fluctuations
are given by ∂xϕ(x) = −√π(n(x) − n0) and ∂tϕ(x) =√

πI (x)/e. Rewriting the Hamilton of an interacting 1D
electron gas in ϕ(x) and its canonical conjugated field �(x)

yields the Hamiltonian of an elastic string

H = v

2

∫
dxK�2 +

1

K
(∂xϕ)2. (28)

The stiffness or interaction parameter K and the velocity v

are determined by the parameters of the electronic system.
For non-interacting electrons K = 1, v = vF, while for a
system with repulsive interaction 0 < K < 1 and v ≈ vF/K .
The solutions ϕ(x, t) of the Hamiltonian (28) are 1D waves
with wave velocity v. In the limit of strong interactions
K 	 1, these solutions correspond to the plasma oscillations
of the electron density. Contrary to the underlying fermionic
operators, the fields ϕ and � obey bosonic commutation
relations. The substitution of the former by the latter is
therefore known as ‘bosonization’ [19, 20, 33–35].

Excitations of a double wire can be similarly described
by the respective displacement fields ϕ1(x) and ϕ2(x) of each
wire. Assuming a symmetrical system, the two eigenmodes
of the density oscillations (at a given wavenumber q) are the
symmetric mode (+), where the density in both wires oscillates
in phase, and the anti-symmetric mode (−), where the phases
of the density oscillations differ by π . A transformation to
the corresponding displacement fields φ± = (ϕ1 ± ϕ2)/

√
2

decouples the Hamiltonian into a symmetric and an anti-
symmetric part,

H = H1 + H2, H± = v±
2

∫
dx K±�2 +

1

K±
(∂xφ±)2.

Each part has its own set of parameters. In good approximation

K± =
(

1 +
V0 ± V̄ 0

πvF
− V2kF

πvF

)−1/2

, (29)

and v± = vF/K±, where V0, V̄0 are the Fourier transforms
of intra-wire and inter-wire interaction V (x) and V̄ (x) for
small momentum q → 0. V2kF is the intra-wire backscattering
strength (δq = 2kF) [17]. For the range of applicability of
expression (29) see [36, 37], where more precise estimates of
the Luttinger liquid parameters are given.

So far inter-wire backscattering of electrons, where a large
momentum of order δq = 2kF is exchanged, has not been
taken into account. As pointed out in the previous section,
this coupling, however, is essential for the drag and must be
incorporated in the description. Fortunately, this can also be
done in terms of the displacement field, leading to

Hb = λ
E2

0

πvF

∫
dx cos(

√
8πφ−). (30)

The energy E0 is of the order of the Fermi energy, and the
dimensionless coupling λ is given by

λ = V̄2kF

2πv−
. (31)

Note that the symmetric and anti-symmetric modes still remain
decoupled. There is no corresponding term in the intra-wire
interaction. The reason is that the backscattering within a
wire appears as the exchange part of the forward scattering
(δq → 0), and therefore can be absorbed in the parameters
K± and v± (cf equation (29)).

The origin of the backscattering Hamiltonian Hb becomes
clear in the limit of strong repulsive intra-wire interaction.
In this case the electrons of each wire form well-correlated
states with charge densities periodic in 2π/kF. Accordingly,
their local interaction energy is 2π-periodic in the relative
displacement (s1 − s2)kF =

√
8πφ−. The integral over

cos
√

8πφ−(x) with an appropriate prefactor therefore gives,
to first order, the corresponding part of the total energy.

3.2. Drag

The backscattering Hamiltonian (30) is of sine-Gordon type,
and allows for an intuitive understanding of the drag in the
case of large couplings λ. Suppose that the total energy is
dominated by Hb, the system minimizes its energy by fixing
the field φ− to a value

√
8πφ0 = π +2πm, where m an integer

number. Accordingly, the relative displacement of electrons
in wires 1 and 2 is constant in time and space. This means that
two interlocked charge density waves have been formed, such
that a current in one wire is necessarily accompanied by an
equally large current in the second wire. In this ideal situation
the drag is absolute [15].

What happens to the drag if the situation is not that ideal is
the topic of this section. Considerable insight with a minimum
of calculation effort will be gained by making use of the
concept of renormalization.

Neglecting for a while all interactions except for the inter-
wire backscattering, the double-wire system can be viewed as
a pair of uncorrelated 1D Fermi liquids. As explained in the
previous section, the interwire backscattering coupling then
causes a drag resistivity ρD = RD/L, where L is the length of
the drag wire, linear in temperature and proportional to λ2,

ρD ≈ ρ0λ
2T /E0 (32)

(cf equation (16) in the limit T � �εn(0)). To first order the
drag only depends on the direct backward scattering part of the
interaction. However, higher order contributions to ρD include
inter- and also intra-wire forward scattering. In one dimension
these higher order contributions are crucial and must be
taken into account. The renormalization group theory does
the job quite elegantly by successively integrating out high
energy degrees of freedom down to an energy scale E < E0.
As a result, the original (‘bare’) couplings K−, λ become
renormalized to E-dependent couplings K−(E) and λ(E). The
energy scale at which the renormalization procedure has to be
stopped can be given by the temperature, system size or even by
the coupling λ(E) itself, depending on the circumstances. The
net effect of higher order processes on the drag between a pair
of weakly coupled wire can be summarized by replacing—
for example in equation (32)—the bare coupling λ by a
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Figure 4. The RG-flow of a double-wire system of spin-less
electrons. Point A corresponds to the bare couplings of a double
wire with a rather large inter-wire distance d � λF, and point B
corresponds to wires with narrow spacing d 	 λF. Point C
corresponds to a single spin- 1

2 liquid.

renormalized energy-dependent (‘running’) coupling constant
λ(E). Further, good approximations for relevant energy scales
can be easily extracted from the renormalization procedure.
This should be enough motivation for a short excursion to the
renormalization flow of the sine-Gordon model.

3.2.1. Renormalization flow. The flow is well known from a
closely related problem, that of an interacting spin- 1

2 electron
liquid [39]. For small couplings λ 	 1, it is described by the
differential equations

dλ

dt
= (2 − 2K)λ,

dK

dt
= −2λ2K2, (33)

where t denotes the negative logarithm of the rescaled energy,
t = ln E0/E. (The subscript ‘−’ is suppressed henceforth.)
Figure 4 shows schematically the flow in a K–λ diagram. Each
point represents a system characterized by the parameters K
and λ. Under renormalization the system develops according
to the stream lines in the parameter space. The arrows indicate
the direction of decreasing energy scale.

The main feature of the flow is the so-called Kosterlitz–
Thouless transition: systems with parameter below the line
K = 1+λ renormalize towards weaker backward scattering λ,
systems above or on the left of this line renormalize towards
larger λ. Systems on the right of the transition line flow to the
point at K = 1 and λ = 0, which represents a non-interacting
Fermi liquid.

Whether a system develops to weaker or stronger
couplings λ obviously depends on the location of the
bare coupling (subscript ‘0’), the initial points of the
renormalization trajectories. For systems with symmetrical
interaction, V (x) = V̄ (x), as is the case for a spin- 1

2 electron
liquid, one finds for small V2kF that K0 = 1 + λ0, i.e. the
initial point lies exactly on the transition line. These systems
(marginally) renormalize towards the non-interacting Fermi
point. This is indeed the expected behaviour for the spin-
mode of an electron liquid. (The spin-mode corresponds to the
anti-symmetric mode (−).) If one could measure the relative
drag of spin-up and spin-down electrons, one would find that
due to the additional temperature dependence in λ(T ), the drag
resistivity decays with temperature even faster than the naively
expected linear behaviour.

Interestingly, the situation is completely different for a
real double-wire system. Due to the spatial separation of the

two wires, the intra-wire interaction V (x) always exceeds the
inter-wire interaction V̄ (x). Inspection of equations (29) and
(31) reveals that as a consequence the initial point is always
above or on the left of the transition line, where λ renormalizes
to higher values. Therefore, here the backscattering coupling
λ, although usually much smaller than that in the previous
case, increases with decreasing energy scale or temperature.
Hence, for low temperatures (and long wires, see below) the
drag resistivity will always be larger than that predicted by the
Fermi theory. This will be described more quantitatively in
the next paragraph.

3.2.2. Temperature dependence of the drag. Before rushing
into a discussion of the various kinds of regimes with different
types of temperature dependencies, it is advisable to clarify
the relevant energy and length scales. There is E0 ∼ EF, the
largest energy scale, the temperature TL, at which the thermal
wavelength becomes of the order of the system size and
the actual temperature T. The corresponding length scales
are the Fermi wavelength λF ∼ E0/v, the system size L
and the thermal wavelength LT = v/T . Less obviously, a
fourth energy and length scale are given by the sine-Gordon
Hamiltonian H− + Hb: the energy (mass) M of a soliton and
its width Ls. The soliton mass M coincides with the energy
scale at which the renormalization procedure breaks down, the
soliton width Ls is the corresponding length scale. The relative
order of these scales classify several different regimes.

For high temperatures T > TL,M the renormalization
of λ is terminated by T. Thus, λ = λ(T ). In this case
the temperature dependence of λ(T ) can be approximately
determined by integrating the flow equations (33), leading
to a

λ(T ) = λ0

(
T

E0

)2K−2

. (34)

This result inserted in equation (32) gives the temperature
dependence,

ρD ≈ ρ0λ
2
0

(
T

E0

)4K−3

, (35)

valid for TL,M 	 T 	 E0. The e–e interaction changes via
the renormalization of the backscattering coupling, the linear
temperature dependence known from the 1D Fermi liquid to
a temperature scaling with an interaction-dependent power
χ = 4K−3. For sufficiently strong interaction, K can assume
values below 3/4. Then the power χ becomes negative and
the drag increases with decreasing temperature. For vanishing
interaction, K = 1, equation (35) goes over to the linear
behaviour of the Fermi liquid.

Lowering the temperature below M or TL, two scenarios
are possible: if the wire is sufficiently long, L � W , at a
temperature T ∼ M the system eventually enters the strongly
coupled regime, where λ(T ) ∼ 1. For short wires, L � Ls,
this regime can not be reached. Here the renormalization
halts at a temperature T ∼ TL, where the thermal wavelength
is of the order of the system size. In this case even at low
temperatures the systems are weakly coupled, λ(TL)	 1.

In the strongly coupled regime the energy is dominated by
the backscattering term Hb, giving rise to an almost absolute
drag. Deviations from this ideal drag correspond to processes
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where the relative displacement
√

8πφ− slips from one global
minimum position, say at π , to a neighbouring one at −π or
3π . At temperatures T < M these processes are enabled by
thermally activated solitons moving along the wire. As a result
the drag resistivity shows for T < M an activated behaviour,

ρD(T ) ∼ ρ̃0 eM/T .

This behaviour changes again when the temperature falls
below TL (for the strong coupling regime considered, TL <

M). It has been shown [16] that the drag then decreases
linearly with temperature, due to the on set of coherent
soliton-tunnelling. At even lower temperatures T <√

TLM exp(−M/TL) the drag decreases with T 2 [16].
In the weakly coupled regime, the drag resistance decays

∝ T 2 as the temperature drops below TL. This can be
understood as follows: having renormalized down to an energy
TL, the original Fermi wavelength λF ∼ v/E0 has become
enlarged to a rescaled wavelength λF(TL) ∼ v/TL = L.
Hence, the wires of length L have effectively shrunk down
to point-like constrictions connecting electronic reservoirs on
either side. The drag in this situation is equivalent to that in
a pair of 1D Fermi liquids (K = 1) that interact over a short
length � LT only. As will become clear in section 3.5, the
drag is then proportional to T 2 (cf section 3.5, K = 1).

The temperature scale T∗ at which the system enters the
strongly coupled regime is given by the soliton mass T∗ = M.
Estimating it by λ(T∗) ∼ 1 with the approximate expression
(34) yields

T∗ ∼ E0 λ
1

2−2K . (36)

The minimum wire length required is then L∗ = v/T∗ =
λFλ
− 1

2−2K .

3.3. Electron spin

For comparison with experiments, the treatment of the electron
spin is mandatory. To this end one can introduce bosonic fields
ϕc/s that are related to the charge/spin density nc = n↑ ± n↓
in the same way as ϕ is related to the density n of spinless
particles above. For a double wire, this results in a total
of four modes: symmetric and anti-symmetric charge modes
(c+ and c−) as before, and, additionally, symmetric and anti-
symmetric spin modes (s+ and s−). Each mode is again
described by a quadratic Hamiltonian of the type (28) with
corresponding interaction parameters Kc±,Ks±, etc.

The neutral spin-modes are not affected by the interaction,
wherefore Ks± = 1 and vs± = vF. Nevertheless, despite their
neutrality, the spin-modes weakly couple to the anti-symmetric
charge mode c− via backscattering processes. Hence, the drag
is influenced by the spin degree of freedom [17].

A quantitative analysis of the weakly coupled regime can
be done again by making use of renormalization along the lines
described above. The main results are summarized below: in
the presence of spin the inter-wire backscattering coupling
scales towards stronger couplings. However, fluctuations
in the neutral spin-modes moderate the enhancement due to
the interactions. This is reflected by an effective interaction
parameter

Keff = Kc− + Ks±
2

= Kc− + 1

2

which is closer to the non-interacting value 1 than the original
Kc−. The parameter Kc− is given by

Kc− ≈
(

1 + 2
V0 − V̄0

πvF
− V2kF

πvF

)−1/2

. (37)

As a result, in the weakly coupled regime the drag resistance
scales with temperature as

ρD ≈ ρ0λ
2
0

(
T

E0

)2Kc−−1

(cf equation (35)). The cross-over temperature T∗ turns out to
be approximately

T∗ ∼ E0 λ
1

1−Kc− .

Comparison with equation (36) again reveals the moderating
effect of the spin. If two systems have similar interaction
constants K− ≈ Kc−, but one is spin polarized while the other
is not, their respective cross-over temperatures and lengths are
related by(

T∗
E0

)2

pol

≈
(

T∗
E0

)
unpol

,

(
λF

L∗

)2

pol

≈
(

λF

L∗

)
unpol

.

Since T∗/E0 ∼ λF/L∗ is usually a small number, the cross-
over temperature of the spin-unpolarized system is smaller
than that of a comparable spin-polarized system by orders of
magnitudes .

3.4. Non-linear drag and mismatching Fermi momenta

So far our considerations were confined to the linear regime
(I → 0) of a symmetrical double-wire system. This section
extends the discussion to both the non-linear regime, and
systems with a misfit in the Fermi momenta, δk = kF1 −
kF2 �= 0.

It is again useful to look first at the associated energies. A
finite current I in the active wire defines an energy � = I/e,
and the energy associated to the misfit is of course � = vδk.
Non-linearities of the drag voltage VD in the current I, or
an effect of the misfit δk, will be significant only if the
corresponding energies |�| or |�| exceed T , TL and M.

In the weakly coupled regime both cases can be analysed
by perturbative methods. Finite currents and a non-vanishing
δk can be treated by a transformation φ(x, t) → φ(x, t) +
�x/v + �t . The term linear in x describes the density
difference (∂xφ ∝ (n1 − n2)) and the term linear in t
corresponds to a Galilei boost of the active wire. Accordingly,
Hb becomes

Hb = λ
E2

0

πvF

∫
dx cos

√
8π(φ + �x/v + �t).

It is possible to derive a closed expression for the drag voltage
VD as a response to this perturbation [38]. It is valid for
arbitrary ratios �/�, and can be written as

eVD

L
= C

E2
0λ

2
0

v

(
T

E0

)4K

{A(� −�)B(� + �)

+ A(� + �)B(� −�)}. (38)

C is a numerical constant of order unity, and A and B are
temperature-dependent functions, given by

A(E) =
∫

ds i sin

(
E

E0
s

)(
π

(
1

s
+ i

)
sinh

T s

πE0

)−2K

,
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and a similar expression with cos instead of i sin for B. This
expression holds also for vanishing �,�, where it leads to the
result (35). For current and δk large compared to temperature,
�,�� T , equation (38) reduces to [15]

eVD

L
= const λ2

0 (�2 −�2)2K−1, for |�| < |�|
= 0 otherwise.

For non-vanishing � the drag vanishes as long as the current
is below a threshold value. For larger currents the voltage
shows a power-law dependence on the current. A thorough
discussion of the non-linear I–V characteristic can be found
in [15].

Actually, at finite temperatures the drag does not vanish
completely for |�| > |�|, rather it shows an activated
behaviour as in the case of 1D Fermi liquids. This can be
made more explicit [38]. Evaluating expression (38) in the
limit �→ 0 at finite � results in a drag resistivity

ρ�,T = ρ0λ
2

(
T

E0

)4K−3

F2K(�/T ), (39)

where F2K is an interaction-dependent function defined by

F2K(ε) = N2K(ε)
dN2K

dε
(−ε) + N2K(−ε)

dN2K

dε
(ε),

N2K(ε) = lim
δ→0

∫
ds eisε/π

((
δ

s
+ i

)
sinh s

)−2K

.

F2K is a continuous function. It decays exponentially at
large positive arguments, F2K(ε) ∼ exp−ε, and behaves
algebraically for large negative arguments, F2K(ε) ∼ |ε|K−1.
The result obtained for non-interacting 1D Fermi liquids is
recovered by putting K = 1. In this case

N2(ε) = 1

π

ε

eε − 1
,

such that the expression (39) corresponds to equation (16).
While N2(ε) bears some resemblance to the Bose distribution,
for the special interaction parameter K = 1/2 one obtains
exactly the Fermi function

N1(ε) = 1

eε + 1
.

For general parameter K, an analytical expression for N2K is
lacking. It is an open question whether the functions N2K are
related to the exclusion statistics of fractional excitations in
the Luttinger liquids.

3.5. Finite interaction region

Double wires that interact only over a region of finite length
l < L have also been investigated [12, 13]. For temperatures
T < v/l, this problem can be mapped to the classical problem
of a Luttinger liquid with a single impurity. Qualitatively, these
systems behave similar to those considered in the previous
sections. In the weakly coupled regime, the drag scales with
temperature with an interaction-dependent exponent, 4K − 2.
A strongly coupled regime with almost absolute drag at zero
temperature exists as well. However, it is reached only for
sufficiently strong interaction K < 1/2. For K > 1/2
the inter-wire backscattering coupling renormalizes to weaker
couplings, such that the drag vanishes for T → 0.

4. Experimental search for 1D Coulomb drag

Although a fair amount of theoretical work has been available
on Coulomb drag between 1D electron systems, there has
been a conspicuous absence of experimental work. This may
be attributed to two difficulties encountered in measuring the
1D drag. First, since it is a very small effect, the drag
voltage usually has a very small magnitude and must be clearly
distinguished from spurious signals. Second, and perhaps the
major difficulty, has been the difficulty in creating parallel,
electrically isolated, quantum wires with a spatial separation
large enough to completely suppress inter-wire, while small
enough to give a drag voltage of a reasonable magnitude.
It was only recently that Debray et al [5] reported the first
experimental observation of Coulomb drag between ballistic
quantum wires. The same authors later published a more
comprehensive experimental work [6] on the subject. Work
along the same lines has lately been reported by Yamamoto
et al [7]. In the following, we give a brief outline of the
reported experimental work and an analytical discussion of
the results in the framework of the Fermi and the Luttinger
liquid theory as discussed in section 2 and 3.

4.1. Experimental techniques for dual-wire sample
realization

The samples used for 1D Coulomb drag measurements
consisted of two electrically isolated, parallel quantum wires,
with a small spatial separation. Such samples were fabricated
from AlGaAs/GaAs heterostructures with a high-mobility
(∼=106 cm2/Vs) two-dimensional electron gas (2DEG) at the
interface. The dual-wire samples were fabricated using high-
resolution electron beam lithography, combined with deep
chemical etching. The samples used so far were made in a
planar geometry by depletion of a single 2DEG layer by three
surface Schottky gates [5–7] deposited on the heterostructure
wafer. Figure 5 gives a schematic top view of the planar device
and the scanning electron micrograph of a typical device [6].
U, M and L are surface Schottky gates.

Dual-wire samples for drag measurements can also be
made in a vertical geometry [4] from two vertically stacked
quantum well (QW) structures with a 2DEG in each well (such
samples have not yet been used). The advantage of the planar
geometry is that the inter-wire separation can be changed
in situ by changing the bias voltage of the central gate M.
The disadvantage is that the narrow central gate creates a soft
lateral potential barrier, and to prevent tunnelling between the
wires the width of this barrier has to be of sufficient magnitude,
which sets a limit to the minimum inter-wire distance that
can be used without electron tunnelling interfering. Samples
with a vertical geometry have been widely used for studying
Coulomb drag between 2D electron layers [2]. The main
advantage of the vertical geometry is that very small inter-
wire separation (the barrier width) can be obtained without
tunnelling between wires. Since the magnitude of the drag is
expected to decrease exponentially with inter-wire separation,
one can expect to observe enhanced drag with the vertical
samples because of the smaller separation that can be achieved
with such samples. The major disadvantage is that the inter-
wire separation cannot be changed in situ, in contrast to the
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Figure 5. (a) Schematic top view of a planar Coulomb drag device.
U, M and L are surface Schottky gates. (b) A scanning electron
micrograph of a typical device with middle gate width of 50 nm.

planar case. Also, it is not obvious whether the widths of the
two wires can be independently changed through the use of
the mutually aligned top and bottom split gates.

4.2. Experimental observation of Coulomb drag

In their work, Debray et al [6] used a planar geometry of
quantum wires, as shown in figure 5, of lithographic length
L = 2 µm with a middle gate M of lithographic width
50 nm. The drag voltage VD was measured with a drive
voltage VDS in the linear regime of ballistic electron transport
as a function of the width of the drive wire by adjusting the
bias voltage VU, while the width of the drag wire was adjusted
to have the Fermi level EF just above the bottom of its lowest
1D subband. An appropriate negative bias voltage VM was
applied to the middle gate to ensure total absence of inter-
wire tunnelling. Measurements were done in the absence of
any such tunnelling. Figure 6(a) shows the measured drag
voltage VD as a function of the width of the drive wire. The
drag voltage is found to show peaks, which occur in the rising
parts between the plateaus of the drive wire conductance. This
suggests that they occur when the 1D subbands of the wires are
aligned and the Fermi wave vector kF is small. Measurements
carried out in a magnetic field B = 0.86 T perpendicular to
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Figure 6. The drag voltage VD and drive current I as a function of
drive wire width at a drive voltage VDS = 300 µV [6]: (a) in zero
magnetic field with the upper wire as the drive wire and (b) in a
magnetic field of 0.86 T with the bottom wire as the drive wire.

the plane of the device shown in figure 6(b) indicate identical
behaviour except that the magnitude of VD is enhanced almost
by a factor of 3.

In order to have unambiguous evidence that the observed
drag voltage VD is indeed due to the Coulomb drag effect,
the authors measured the dependence of VD and RD on the
inter-wire separation and the temperature. Figure 7 shows
the dependence of VDM, the height of the first VD peak of
figure 6(b) and the corresponding RD as a function of the
middle gate bias voltage VM. The two quantum wires
(figure 5) were spatially separated by an effective distance
d due to the depletion by VM of the 2DEG under the middle
gate M. In the voltage range of interest, d was experimentally
found to vary almost linearly with VM according to

d = d0 + α (V0 − VM) , (40)
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Figure 7. Dependence of the drag response on inter-wire separation
d via the middle gate voltage VM [6]. (a) The maximum VDM of the
first drag peak of figure 6(b) as a function of VM. (b) The natural
logarithm of the corresponding drag resistance RD as a function of
VM. The dotted line is a linear fit to the data points.

where V0 is the value of VM for which the 2DEG under M
is just depleted and α gives the total spatial displacement of
the two depletion edges of M with respect to its bias voltage.
d0 is a constant for the same device and is nominally equal
to the lithographic width of the gate M. One can change d
by varying VM. In equation (40), V0 and α were determined
experimentally. The dependence of RD on VM was found
to be exponential and can be described well by the relation,
RD ∝ eβVM , where β ∼= 14.2(9) V−1.

The temperature dependence of Coulomb drag is a crucial
feature that can be used to probe which of the two theoretical
models, the FL or the LL theory, constitutes a more appropriate
description of 1D Coulomb drag. Measurements, as shown in
figure 6, carried out in the temperature range 60 mK to 1.2 K
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Figure 8. The dependence of drag voltage on temperature [6].
(a) The drag voltage VD as a function of the width of the upper
(drive) wire in zero magnetic field with VDS = 300 µV at 70, 180,
300, 450 and 900 mK, corresponding to curves in order of
decreasing peak height. (b) The same as in (a) but in a magnetic field
of 0.86 T with VDS = 5 µV at 60, 180, 300, 450, 900 mK and 1.2 K.

are shown in figure 8. A decrease of VD with increasing
temperature was observed. The dependence of the drag
resistance RD on temperature corresponding to VDM is shown
in figure 9 for both, in the absence and in the presence of an
applied magnetic field B. The temperature dependence can be
described well by the power law, RD ∝ T x , with x=− 0.77(2)
and −0.73(6) for B = 0 and B = 0.86 T, respectively. It is
interesting to note that the data points at temperatures lower
than 180 mK, for zero field, and 300 mK, for non-zero field,
fall below the power-law curve, indicating a suppression of the
drag effect.
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Figure 9. The temperature dependence of drag resistance RD

corresponding to VDM of the first drag peak of figure 8 in zero field
(a) and in a field of 0.86 T (b) [6]. Note that the data points at the
low end of the temperature range fall below the power-law curve.

Lately, using a lateral sample geometry, very similar to
that shown in figure 5(a), Yamamoto et al [7] have reported the
observation of Coulomb drag and the influence of an applied
magnetic field on it. Their results corroborate those of Debray
et al [5, 6]. In their work, Yamamoto et al also reported the
observation of a negative drag. However, since the negative
drag was observed only when the drive wire was completely
pinched off, it is highly questionable if the effect observed is
due to Coulomb drag.

4.3. Discussion

The origin of the observed peaks in the drag voltage VD

(figure 6) can be understood when one considers equations
(16)–(21). Since VD is directly proportional to the drag current

ID, VD will show maxima whenever any two 1D subband
bottoms of the two wires line up and the Fermi wave vectors in
the two wires are equal and small. As seen from figure 6, the
occurrences of the drag peaks correspond to these conditions.
The first peak in VD occurs when the Fermi level is just
above the bottoms of the lowest 1D subbands of both wires.
Similarly, the second peak occurs when the lowest subband of
the drag wire lines up with the second subband of the drive
wire. Both the increase and the narrowing of the first drag peak
in a magnetic field of 0.86 T (figure 6(b)) can be attributed to
an increase of the density of states in 1D subbands due to the
magnetic-field-induced enhancement of the electron effective
mass. The reduction in the magnitude of the drag peak as
we move away from the first peak towards higher values of
VU can be attributed to an increase in the effective inter-wire
separation of the wires. This dependence is explained in detail
later. Since we are mainly concerned with 1D transport in
the fundamental mode, we restrict our discussion here to the
region of the first drag peak.

To understand the dependence of drag on the inter-
wire distance shown in figure 7, we note that the matrix
element of the backscattering probability depends on the inter-
wire distance d via the modified Bessel function K0 (2kFd)

(section 2, equation (11)), which is an exponential function
of its argument for 2kFd � 1. The same dependence also
results from the LL theory [28]. Under this condition, an
exponential decrease of RD with d is expected according to
RD ∝ exp(−4kFd). This is consistent with the results of
figure 7. Using the experimentally determined values β =
14.2 V−1 and V0 = −0.4 V, α = 580 nm V−1, we find
kF = 6.1 × 106 m−1. Surprisingly, this corresponds to a
low density of about 8 electrons per 2 µm wire segment and
a mean electron distance r̄ ≈ 250 nm in the wire. When VM

is in the range of −0.7 to −0.8 V, we have (equation (40)
d ∼= 0.2 µm. This gives 2kFd ∼= 3, so the approximation of
2kFd � 1 is reasonable. This exponential decrease of RD

with d also explains why the height of the drag voltage peaks
in figure 6 decreases so rapidly as VU increases. An increase
in VU increases the width of the drive wire and hence d. The
decrease of RD for VM > −0.7 V occurs due to tunnelling of a
considerable fraction of the current from the drive wire to the
drag one, reducing the measured RD.

The experimental observed features of the drag effect
discussed above, namely, the origin of the drag voltage peaks,
the effect the magnetic field and the inter-wire separation
dependence, can all be understood in the framework of both
the FL and the LL theory. It is the temperature dependence of
the drag that is the crucial feature—it can be used to determine
which of the two theoretical models constitutes a more
appropriate description of 1D Coulomb drag observed under
the given experimental conditions. The observed temperature
dependence of RD, shown in figure 9, is in sharp contrast
with the linear temperature dependence predicted by the FL
theory (equation (19)). The unusual temperature dependence
cannot be attributed to a temperature-induced modification
of the wire conductance, since the latter is found to be almost
unchanged over the temperature range of the measurements. A
reduction of the inter-wire Coulomb coupling due to enhanced
screening by the reservoirs and gates is very unlikely at such
small temperatures. On the other hand, it is conceivable that
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a correlated LL behaviour is established in the wires. Indeed,
it is hardly surprising that the temperature dependence of RD

does not fit into a FL scenario, because for the experimental
condition of the first drag peak the ratio rs of r̄ and the Bohr
radius aB, rs = r̄/aB ≈ 26 is large.

The smallness of the drag resistance (RD < 100 �) in
zero magnetic field indicates a weak inter-wire back scattering
coupling. In this case, according to the LL model RD should
obey a power law as long as the thermal length LT is well
between the wire length L = 2 µm and the mean electron
distance r̄ ≈ 250 nm in the wire. For spin-unpolarized
electrons, valid for the data shown in figure 9, the LL
description predicts a power-law temperature dependence of
RD with exponent x = 2Kc− − 1 (equation (38)). The data
shown in figure 9 indeed show a power-law dependence of RD

on temperature with Kc1 = 0.12. Let us see if the condition
r̄ < LT < L is fulfilled in the experiment. Given a Fermi
wavevector of kF ≈ 6 µm−1 we find that LT = hvF/Kc−kBT

is equal to the wire length L = 2 µm at a temperature
TL
∼= 250 mK, and that LT approaches r̄ ≈ 250 nm at a

temperature of about 2 K. Here vF/Kc− is the group velocity
of the relative electron-density fluctuations and h/kBT is the
quantum lifetime associated with the thermal energy kBT . This
means that there is a narrow temperature range window in
which a power-law temperature dependence of RD might be
expected, and it is observed experimentally. At temperatures
below TL, when L < LT, the electron coming from the lead
to the wire does not have time to accommodate itself in the
LL. This should result in a weaker drag than the power-law
dependence. The experimental data of figure 9 are consistent
with this analysis. At lower temperatures we do indeed observe
a tendency to a weakening of the drag with respect to the
power-law dependence.

The negative power-law temperature dependence is not
the only experimental feature that cannot be understood in
terms of the FL theory of Coulomb drag. The experimental
value of RD (figure 9(a)) at T = 60 mK is more than
an order of magnitude larger than that given by the FL
theory (equation (19)). That the measured drag is larger
could be explained by the interaction-normalized inter-wire
backscattering probability, which should be larger than the
bare one (equation (34)).

Comparison of figures 9(a) and (b) shows that the
influence of the magnetic field on the temperature dependence
is not significant. This may signify that Zeeman spin splitting
at B � 1 T is not important yet, otherwise the exponent x
should change (equation (35)). Indeed, a clear signature of
spin splitting in the measured conductance staircase was not
observed at this field. The magnetic field, however, increases
vF for the same position of the Fermi level. This makes LT

larger at the same temperature compared to that in zero field.
This can explain why in a magnetic field a deviation from
the power-law dependence occurs at a higher temperature
(figure 9(b)).

We have interpreted above the experimental data in terms
of Coulomb drag only. Considering the large inter-wire
separation for which the drag measurements were made, one
cannot rule out the possibility of an acoustic phonon-mediated
drag (PMD) contribution to the measured drag resistance.
Recent theoretical work [40, 41] on 1D PMD based on Fermi

liquid description predicts that PMD is negligible compared to
Coulomb drag for 2kFd < 5. Also, for a dual-wire sample
shown in figure 5, RD should increase exponentially with
temperature in the range 100–600 mK and does not decrease
exponentially with inter-wire separation d. The data shown in
figures 7 and 9 qualitatively contradict these predictions. This
allows us to conclude that the PMD contribution, if present at
all, is insignificant.

5. Future prospects

It is quite obvious from the content of section 4 that substantial
experimental work remains to be done to gain a comprehensive
understanding of the physics of Coulomb drag between
interacting 1D electron systems and to explore the conditions
under which such systems behave as a Fermi liquid or a
Luttinger liquid. Since the measurement of the Coulomb drag
also provides a new experimental tool to probe the LL state
that cannot be done from the measurement of the conductance
alone, extensive experimental work on the subject is needed
to put the LL model of interacting 1D systems on a firm
footing. Though the theory of Coulomb drag has considerably
outstripped experimental work, many open questions need to
be addressed in the theoretical area as well.

On the experimental side, work should be focused on
measurements that can distinguish between a LL and a FL
state and can provide information about the existence and the
nature of the LL state. This is an extremely important area for
condensed matter physics. The few papers published so far,
claiming to have observed a Luttinger liquid, have not been
convincing. In this respect, it would be highly interesting
to study the drag between spin-polarized systems, since the
LL theory predicts different exponents for spin-polarized and
unpolarized cases and manifestation of the spin effect should
be quite different in the Fermi liquid and the Luttinger liquid
state. Another interesting experimental possibility is to study
drag when the wire length L falls below the thermal length
LT to investigate if the drag resistance RD decays ∝ T 2 as
predicted by LL theory. When the number of electrons in the
wires is very small (section 4), one should expect relatively
large fluctuations of the drag current or voltage, such as shot
noise [42, 43], and possible reversal of the sign of drag leading
to negative drag [44]. Observation of this noise can also
provide valuable information on correlated electron state. One
could also envision a search for 1D spin Coulomb drag [45].
Finally, it is also important to study acoustic phonon-mediated
drag (PMD) [40, 41] since under certain conditions it can be
comparable to and even larger than the Coulomb drag. If such
a PMD is present in the experimental measurements, one has
to find ways to separate it from the Coulomb drag.

The theory of Coulomb drag based on the LL model is far
from mature and many open questions need to be addressed
such as the effect of disorder, the influence of tunnelling
between the wires, etc. Although the power-law temperature
dependence of the drag resistance is a signature of the Luttinger
liquid state, a careful analysis of various limiting cases based
on the Fermi liquid approach should be carried out to make sure
that under no circumstances can it give a similar temperature
dependence. It is equally important to investigate the physical
situations and interactions (within the wires and with the
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reservoirs) that favour transition of the Fermi liquid into the
Luttinger liquid and vice versa.
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[36] Creffield C E, Häusler W and MacDonald A H 2001 Europhys.
Lett. 53 221

[37] Häusler W, Kecke L and MacDonald A H 2002 Phys. Rev. B
65 085104

[38] Klesse R and Stern A unpublished
[39] Luther A and Emery V J 1974 Phys. Rev. Lett. 33 589

Chui S T and Lee P A 1975 Phys. Rev. Lett. 35 315
[40] Raichev O E 2001 Phys. Rev. B 64 035324
[41] Muradov M I 2001 Preprint cond-mat/0107622
[42] Gurevich V L and Muradov M I 2000 Phys. Rev. B 62 1576
[43] Trauzettel B, Egger R and Grabert H 2002 Phys. Rev. Lett. 88

116401
[44] Mortensen N A, Flensberg K and Jauho A-P 2002 Phys. Rev. B

65 085317
[45] D’Amico I and Vignale G 2002 Phys. Rev. B 65 085109

R34


