УДК 669.293,295:537.312.62

ДЕГРАДАЦИЯ ВТОРОГО КРИТИЧЕСКОГО МАГНИТНОГО ПОЛЯ В МНОГОСЛОЙНЫХ КОМПОЗИТАХ С НАНОРАЗМЕРНЫМИ СЛОЯМИ НИОБИЯ И СВЕРХПРОВОДЯЩЕГО СПЛАВА Nb-Ti

© 2010 г. В. П. Коржов¹, М. И. Карпов¹, В. Н. Зверев¹, А. В. Никулов²

E-mail: korzhov@issp.ac.ru

Исследованы многослойные ленты, содержащие слои из сверхпроводящих сплавов ниобия с 30 и 31 мас. %Ті, разделенные слоями ниобия. Толщина слоев – от ~140 до ~10 нм. Ленты получали трехэтапной прокаткой многослойных пакетов. Эффективное зацепление сверхпроводящих вихревых нитей происходило на межслойных границах Nb–NbTi. Установлено, что второе критическое магнитное поле H_{c2} уменьшалось с уменьшением толщины слоев. При малой толщине слоев его величина зависела от ориентации плоскости прокатки ленты относительно внешнего магнитного поля. Результаты объясняются эффектом близости.

ВВЕДЕНИЕ

В смешанном состоянии сверхпроводников второго рода магнитное поле проникает в образец в виде квантовых вихревых нитей, имеющих нормальную сердцевину радиусом порядка длины когерентности ξ и вытянутых вдоль направления магнитного поля. Вокруг нитей течет незатухающий сверхпроводящий ток в области радиусом порядка глубины проникновения магнитного поля λ, которая может существенно превышать ξ.

При пропускании электрического тока через сверхпроводник на нити действует сила Лоренца. В сверхпроводниках без структурных дефектов вихревые нити должны начать двигаться при сколь угодно малой силе Лоренца, что приводит к диссипации энергии, и сверхпроводник теряет возможность проводить ток. Но в реальных сверхпроводниках всегда имеются разного рода структурные дефекты, на которых нити зацепляются. Эффективность зацепления зависит от размеров и характера дефектов. Наиболее эффективными центрами зацепления (пиннинга), способными обеспечить большую величину критической плотности тока *j* в сверхпроводнике, являются включения нормального металла с размерами порядка ξ. Более мелкие дефекты, такие как вакансии, одиночные примесные атомы и др., не являются эффективными центрами пиннинга.

Теоретическое рассмотрение взаимодействия вихревых нитей с плоской поверхностью сверхпроводника второго рода показало, что границы сверхпроводящих пластин являются эффективными центрами пиннинга [1], поэтому слоистая структура, в которой сверхпроводящие слои чередуются со слоями диэлектрика или нормального металла, способна в смешанном состоянии нести большой сверхпроводящий ток $\sim 10^5 \, A \cdot cm^{-2}$.

Такая слоистая структура была реализована в многослойных композитах Cu/Nb [2], в которых слои из ниобия, являющегося сверхпроводником второго рода, разделялись слоями меди. Измерения критического тока в полях 0.5-0.6 Тл показали, что при параллельной ориентации магнитного поля по отношению к плоскости ленты величина j_c в 410 раз больше, чем в случае перпендикулярной ориентации [2]. Большая анизотропия критической плотности тока свидетельствовала о зацеплении вихревых линий на протяженных плоских границах медь—ниобий. Аналогичные результаты получены в многослойных композитных лентах со слоями из сверхпроводящих сплавов ниобий—титан [3, 4].

Величина критической плотности тока *j*_c многослойных композитных лент увеличивалась с уменьшением толщины слоев вследствие возрастания плотности границ, за которые вихревые нити зацеплялись. Однако в композитах с очень малой толщиной слоев *d* ≤12 нм *j_c* превышала критическую плотность тока композитов с большей толщиной слоев только в относительно небольших магнитных полях *H* < 6 Тл. В полях более 6 Тл величина j_c композитов с $d \le 12$ нм резко уменьшалась (рис. 1б) и становилась меньше критической плотности тока композитов с толщиной слоев 80-140 нм (рис. 1а). Наблюдаемое резкое уменьшение критической плотности тока в композитах с очень малыми толщинами слоев в полях H > 6 Тл может быть связано с уменьшением их второго критического магнитного поля H_{c2}. Для

¹ Учреждение Российской академии наук Институт физики твердого тела РАН, Черноголовка.

² Учреждение Российской академии наук Институт проблем микроэлектроники и особо чистых материалов РАН, Черноголовка.

проверки данного предположения были проведены измерения H_{c2} композитов, содержащих минимальное и максимальное число слоев.

ОБЪЕКТ ИССЛЕДОВАНИЯ

Объектом исследования были многослойные ленты Cu/Nb/NbTi, в которых слои из сплавов Nb-30 и 31 мас. %Ti наноразмерной толщины разделялись слоями ниобия. Медь в композите содержалась в виде двух наружных слоев.

Ленты получали методом поэтапной прокатки [5]. Этап включал сборку многослойного пакета, горячую прокатку пакета и прокатку его при комнатной температуре. На первом этапе пакет собирался из фольг ниобия и сплава. Чтобы получить набор композитных лент с различной толщиной отдельных слоев, исходные пакеты формировали из различного количества фольг ниобия и сплава ниобий-титан. Например, для композита Cu/Nb/Nb31Ti с минимальным числом слоев (675 – ниобия, 540 – сплава), а значит, с максимальной их толщиной, число Nb-фольг было равно 5, число фольг сплава – 4. Для ленты с максимальным числом слоев (7440 – Nb, 6975 – сплава) и минимальной их толщиной исходное количество Nb-фольг равнялось 16, число фольг сплава – 15. На втором этапе пакет собирался соответственно из 9 и 31 многослойных фольг толщиной 0.3 мм, полученных после первого этапа; на третьем этапе – из 15 многослойных фольг, полученных после второго этапа, и фольг меди, для обоих композитов. Чтобы довести толщину слоев ниобия и сплава соответственно до ~5 и ~2.5 нм, композит Cu/Nb/Nb31Ti с максимальным числом слоев дополнительно прокатывали до толщины 0.15 и 0.075 мм.

На рис. 2а показана микроструктура поперечного сечения композитной ленты, которая содержала 2730 слоев из ниобия и 2340 слоев из сплава Nb-31%Ti. Исследуемое сечение расположено вдоль направления прокатки. В растровом электронном микроскопе слои ниобия выглядели светлыми полосами, слои сплава – темными. Фото микроструктуры (рис. 2б и в), полученное с помощью просвечивающей электронной микроскопии, свидетельствует об отсутствии смешения слоев после холодной деформации и низкотемпературного отжига. По оценкам толщина слоев в этой ленте не превышала 100 нм, а в большинстве случаев составляла 50-60 нм, что хорошо соответствовало расчетным значениям толщины слоев ниобия и сплава.

ИЗМЕРЕНИЕ ВТОРОГО КРИТИЧЕСКОГО МАГНИТНОГО ПОЛЯ

Второе критическое магнитное поле H_{c2} определяли из экспериментов по измерению H_{c2} вбли-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 74 № 11 2010

Рис. 1. Зависимости $j_c(H)$ при 4.2 К для композитов Cu/Nb/Nb31Ti, при параллельной и перпендикулярной ориентации плоскости прокатки ленты и направления магнитного поля: *а* и δ – толщины слоев ниобия и сплава равны ~91 и ~138 нм, ~8 и ~12 нм соответственно.

Рис. 2. Микроструктура поперечного сечения многослойных лент Cu/Nb/Nb31Ti: *a* – растровая электронная микроскопия, без отжига; *б* и *в* – просвечивающая электронная микроскопия, после отжига при 360°С в течение 3 ч.

зи критической температуры T_c [6]. Эксперимент заключался в измерении температуры перехода в сверхпроводящее состояние при фиксированных значениях напряженности магнитного поля H, создаваемого сверхпроводящим соленоидом. Измерительный ток был ~1 мА. Величина температуры перехода измерялась по положению резистивных переходов, показанных на рис. 3. Второе критическое поле при нулевой температуре $H_{c2}(0 \text{ K})$ вычислялось

Рис. 3. Кривые сверхпроводящего перехода для композита Cu/Nb/Nb31Ti в магнитном поле 0, 0.5, 1, 1.5, 2, 2.5 и 3 Tл (справа налево) при перпендикулярной ориентации плоскости прокатки и направления *H*. Измерительный ток ~1 мА. Отжиг: 360°С, 3 ч.

Рис. 4. Зависимости $H_{c2}(T)$ композитов Cu/Nb/Nb30Ti при параллельной (3 и 4) и перпендикулярной (1 и 2) ориентации плоскости прокатки композита и направления магнитного поля: 1 и 3 – после холодной деформации; 2 и 4 – после холодной деформации и отжига при 250°C, 295 ч. Толщина ленты – 0.15 мм. См. таблицу, п. 6 и 7.

по формуле $H_{c2}(0) = 0.69 T_c (-dH_{c2}/dT)_{T=T_c}$, где $(-dH_{c2}/dT)_{T=T_c}$ – наклон линейной зависимости $H_{c2}(T)$ вблизи T_c , построенной по результатам измерений. Второе критическое поле H_{c2} , как и критический ток, измерялось при параллельной (3 и 4) и перпендикулярной (1 и 2) ориентациях плоскости прокатки композита и направления магнитного поля (рис. 4).

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Результаты измерений $(-dH_{c2}/dT)_{T=T_c}$ и H_{c2} (4.2 K) приведены в таблице. Величина второго критического поля при температуре кипения жидкого гелия H_{c2} (4.2 K) равна примерно ~95% от H_{c2} (0 K).

Рис. 5. Зависимости $H_{c2}(T)$ композитов Cu/Nb/Nb31Ti со слоями сплава толщиной 138 (*a*) и 12 нм (*б*) при параллельной (*1*) и перпендикулярной (2) ориентации плоскости прокатки композита и направления магнитного поля. Отжиг: 360°C, 3 ч.

В верхних трех строках таблицы сравниваются результаты измерений композитов Cu/Nb/Nb31Ti с разной толщиной слоев. В следующих строках приведены данные для "однослойной" ленты сплава Nb-31%Ti (4), композита Cu/Nb31Ti/Nb31Ti, не содержащего Nb-слои (5), и композитов Cu/Nb/Nb30Ti с различными термообработками (6–10). Число слоев сплава Nb-31%Ti толщиной 9.6 нм в композитной ленте Cu/Nb31Ti/Nb31Ti, равное 27791, примерно соответствовало общему числу слоев ниобия и сплава в композите Cu/Nb/Nb31Ti.

Для композита Cu/Nb/Nb31Ti со слоями сплава минимальной (11.8 нм) толщины наблюдалась анизотропия второго критического поля H_{c2} относительно ориентации слоев во внешнем магнитном поле H. Наклон зависимости H_{c2} (T), а следовательно, и H_{c2} (4.2 K), при перпендикулярной ориентации плоскости прокатки композита относительно направления H был заметно меньше, чем для параллельной ориентации (рис. 5 δ). Для композита с максимальной (137.6 нм) толщиной слоев такая анизотропия не наблюдалась (рис. 5a).

Измерения подтвердили высказанное выше предположение об уменьшении величины второ-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 74 № 11 2010

Результаты измерения H_{c_2} вблизи T_c

Характеристика образца	$(-dH_{c2}/dT)_{T = T_c}, T\pi \cdot K^{-1}$		<i>H</i> _{c2} (4.2 K), Тл	
	<i>Н</i> ⊥ плоскости прокатки	Н плоскости прокатки	<i>Н</i> ⊥ плоскости прокатки	Н плоскости прокатки
1. 9100/91/138 нм Cu/Nb/Nb31Ti 360°С, 2 ч	2.17	2.21	13.8	14.2
2. 9400/8/12 нм Cu/Nb/Nb31Ti без отжига	1.50	1.82	9.7	11.8
3. То же 360°С, 3 ч	1.46	1.78	9.4	11.5
 Лента из сплава Nb–31%Ті толщиной 0.3 мм без отжига 	2.34	2.27	15.2	14.8
5. ~27800 слоев 9.6 нм Cu/Nb31Ti/Nb31Ti 300°С, 2 ч	2.39	2.36	15.4	15.3
6. 8600/3.6/5.4 нм Cu/Nb/Nb30Ti без отжига	1.60	1.88	10.0	11.8
7. То же 250°С, 295 ч	1.54	1.87	9.6	11.8
8. То же 600°С, 5 ч	1.57	1.68	9.9	10.7
9. То же 600°С, 5 ч + 250°С, 295 ч	1.57	1.71	9.9	10.9
10. То же 350°С, 285 ч	1.44	1.75	9.0	11.0
11. 8600/7/10.5 нм Cu/Nb/Nb30Ti 350°С, 285 ч	1.51	1.75	9.4	10.7

го критического поля в композитах с малой толщиной слоев. Для ленты с толщиной слоя $d \approx 12$ нм при параллельной ориентации плоскости ленты и магнитного поля $H_{c2}(4.2 \text{ K}) = 11.8 \text{ Тл}$, что заметно меньше, чем для "однослойной" ленты из сплава Nb-31%Ti (14.8 Tл) и ленты с толщиной слоя (Nb-Ti), равной 138 нм (14.2 Tл). Отжиг при 360°C, в результате которого в слоях сплава выделялась α -фаза, практически не изменял величину H_{c2} (4.2 K). В случае перпендикулярной ориентации плоскости прокатки и магнитного поля уменьшение второго критического магнитного поля было еще больше: $H_{c2}(4.2 \text{ K}) = 13.8 \text{ Тл}$ при $d \approx 138$ нм и $H_{c2}(4.2 \text{ K}) = 9.7 \text{ Тл}$ при $d \approx 12$ нм.

Критическая плотность тока композита Cu/Nb31Ti/Nb31Ti в магнитных полях 5-6 Tл (рис. 6) была на порядок меньше, чем в лентах с Nb-слоями (см. рис. 1δ). Это можно объяснить тем, что в этом композите вихревые нити зацеплялись на менее эффективных границах между

двумя сверхпроводниками NbTi–NbTi. Но резкое падение j_c , начиная с 6.5 Tл, не наблюдалось. Зависимости $H_{c2}(T)$ ленты Cu/Nb31Ti/Nb31Ti (рис. 7*a*) при разной ориентации плоскости ленты в магнитном поле имели практически одинаковые наклоны $(-dH_{c2}/dT)_{T=T_c}$, равные 2.36–2.39 Tл · K⁻¹, и, следовательно, одинаковые критические поля: H_{c2} (4.2 K) = 15.3–15.4 Tл. Эти значения $(-dH_{c2}/dT)_{T=T_c}$ и H_{c2} (4.2 K) композита Cu/Nb31Ti/Nb31Ti не отличались от значений аналогичных параметров "однослойной" ленты из сплава Nb–31%Ti (рис. 7*b*) толщиной 0.3 мм.

Таким образом, наши измерения подтвердили, что второе критическое поле многослойных лент Cu/Nb/Nb31Ti, в которых есть слои Nb, уменьшается при малой толщине слоев, сравнимой с длиной когерентности сверхпроводника $\xi(T)$ [1]. Очевидно, это связано с наличием слоев ниобия, который в больших магнитных полях находится в

 $j_c, A \cdot cM^{-2}$

Рис. 6. Зависимости $j_c(H)$ при 4.2 К для композитной ленты, не содержащей Nb-слои, при перпендикулярной (1) и параллельной (2 и 3) ориентациях плоскости прокатки и H в состоянии после прокатки (2) и после прокатки и отжига 300°С, 2 ч (1 и 3).

Рис. 7. Зависимости $H_{c2}(T)$ при перпендикулярной (1) и параллельной (2) ориентации плоскости прокатки и H для композита, не содержащего Nb-слои, после холодной деформации и отжига при 300°C в течение 2 ч (a), и "однослойной" ленты из сплава Nb-31%Ti (δ).

нормальном (несверхпроводящем) состоянии, так как измерения показали, что H_{c2} композита Cu/Nb31Ti/Nb31Ti, содержащего только слои из сплава Nb-31%Ti, сверхпроводящего в больших магнитных полях, совпадает с H_{c2} массивной лен-

ты из того же сплава. Сам же факт уменьшения H_{c2} композита Cu/Nb/Nb31Ti c $d \approx 12$ нм попробуем объяснить эффектом близости. Слои Nb с малой величиной второго критического поля и поэтому находящиеся в нормальном состоянии в больших магнитных полях, подавляют сверхпроводимость в слоях сплава Nb-31% Ті на глубину порядка длины когерентности [1]. Это не может привести к уменьшению измеряемого значения H_{c2} при толщине слоев сплава d, которая больше двойной длины когерентности $\xi(T)$: $d > 2\xi(T)$, так как в этом случае сверхпроводимость будет оставаться неподавленной внутри слоя. Но при $d \approx$ $\approx 2\xi(T)$ сверхпроводимость подавляется во всем слое и поэтому H_{c2} уменьшается. Величину ξ при данной температуре можно определить из результатов измерения H_{c2} по формуле $\xi(T) = (\Phi_0/2\pi H_{c2})^{1/2}$ [1], где $\Phi_0 \approx 2.07 \cdot 10^{-15}$ Тл · м² – квант магнитного потока. При максимальном значении $H_{c2} \approx 4$ Тл, которое мы могли измерить, и температуре измерения *T*, равной ~7.5 K, $\xi(T) \approx 9$ нм. Для композита Cu/Nb/Nb31Ti с минимальным числом слоев толщина слоев d, равная 138 нм, много больше $2\xi(T) \approx 18$ нм, в то время как в композитах, содержащих максимальное число слоев, $d \approx 12$ нм < $< 2\xi(T) \approx 18$ нм. Следовательно, уменьшение H_{c2} в композитах Cu/Nb/Nb31Ti с толщиной слоев ≤12 нм может быть объяснено подавлением сверхпроводимости вследствие эффекта близости.

Резкое падение критической плотности тока j_c , измеряемой при T = 4.2 K, в композитах Cu/Nb/Nb31Ti с $d \le 12$ нм от высоких (~ 10^5 A · см⁻²) значений при H = 5 Tл до ~ 10^3 A · см⁻² в полях более 6.5 Tл происходит из-за уменьшения H_{c2} (4.2 K), которое, как мы определили, равно ~11 Tл. При этих значениях H_{c2} и T двойная длина когерентности $2\xi(T) \approx 10$ нм, что примерно совпадает с толщиной слоев ~12 нм.

Анизотропию H_{c2} можно объяснить увеличением критического магнитного поля с уменьшением толщины пластины [1], за которую в композитах можно принять толщину слоев сплава. Причем эффект увеличения H_{c2} работает только при параллельной ориентации внешнего магнитного поля и плоскости пластины, а эффект близости, понижающий H_{c2} , не зависит от ориентации пластины в магнитном поле. Для ленты толщиной $d \approx 12$ нм второе критическое поле имело анизотропию ($H_{c2\parallel}/H_{c2\perp}=1.22$), но значения второго критического поля как для параллельной (11.5–11.8 Тл), так и для перпендикулярной ориентации (9.4–9.7 Тл) заметно меньше, чем для лент без слоев Nb.

выводы

1. Измерения второго критического магнитного поля вблизи T_c подтвердили предположение о падении критической плотности тока многослойных лент Cu/Nb/Nb31Ti с наноразмерными слоями из сплава Nb-31%Ti в полях более 6.5 Tл из-за уменьшения H_{c2} при толщине слоев ≤ 12 нм.

2. Уменьшение H_{c2} композитных лент с максимальным числом слоев объясняется эффектом близости несверхпроводящих в больших магнитных полях ниобиевых слоев и сверхпроводящих слоев сплава, в результате которого при уменьшении толщины слоев наступает такой момент, когда сверхпроводимость будет частично подавляться во всем объеме слоя сплава. При этом двойная длина когерентности становится примерно равной толщине слоя: $2\xi(T) \approx d$.

3. При малой толщине слоев величина *H*_{c2} зависела от ориентации плоскости прокатки ленты относительно направления внешнего магнитного

поля. Значение анизотропии $H_{c2\parallel}/H_{c2\perp}$ составляло 1.22 и объяснялось увеличением H_{c2} с уменьшением толщины пластины, за которую можно принять толщину слоев сплава, при параллельной ориентации направления внешнего магнитного поля и плоскости пластины.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шмидт В.В. Введение в физику сверхпроводников. М.: Наука, 1982. 240 с.
- 2. *Карпов М.И., Коржов В.П., Внуков В.И. и др. //* Материаловедение. 2005. № 1. С. 43.
- 3. *Карпов М.И., Коржов В.П., Внуков В.И. и др.* // Материаловедение. 2008. № 6. С. 35.
- Карпов М.И., Коржов В.П., Зверев В.Н. и др. // Физика и техника высоких давлений. 2008. Т. 18. № 4. С. 70.
- 5. Карпов М.И., Коржов В.П., Внуков В.И. и др. Деформация и разрушение материалов. 2008. № 6. С. 18.
- 6. Hake R.R. // Appl. Phys. Lett. 1967. V. 10. № 6. P. 189.