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Abstract. Slow oscillations (SlO) of the in-plane magnetoresistance with a frequency less than 4 T are
observed in the rare-earth tritellurides and proposed as an effective tool to explore the electronic structure
in various strongly anisotropic quasi-two-dimensional compounds. Contrary to the usual Shubnikov-de-
Haas oscillations, SlO originate not from small Fermi-surface pockets, but from the entanglement of close
frequencies due to a finite interlayer transfer integral, either between the two Te planes forming a bilayer
or between two adjacent bilayers. From the observed angular dependence of the frequency and the phase
of SlO we argue that they originate from the bilayer splitting rather than from the Fermi-surface warping.
The SlO frequency gives the value of the interlayer transfer integral ≈1 meV for TbTe3 and GdTe3.

1 Introduction

The measurement of magnetic quantum oscillations
(MQO) and angular magnetoresistance oscillations
(AMRO) provides a powerful tool to study the electronic
properties of various quasi-two-dimensional (Q2D) lay-
ered metallic compounds, such as organic metals (see,
e.g., Refs. [1–6] for reviews), cuprate and iron-based
high-temperature superconductors (see, e.g., [7–16]), het-
erostructures [17], graphite intercalation compounds [18],
etc.

The Fermi surface (FS) of Q2D metals is a cylinder
with weak warping ∼ 4tz/EF � 1, where tz is the inter-
layer transfer integral and EF = μ is the in-plane Fermi
energy. The MQO with such FS have two close funda-
mental frequencies F0 ± ΔF . In a magnetic field B = Bz

perpendicular to the conducting layers F0/B = μ/�ωc and
ΔF/B = 2tz/�ωc, where �ωc = �eBz/m∗c is the separa-
tion between the Landau levels (LL), m∗ is an effective
electron mass, and c here is the light velocity.

a e-mail: grigorev@itp.ac.ru

The standard 3D theory of galvanomagnetic proper-
ties [19–21] is valid only at tz � �ωc, being derived in
the lowest order in the parameter �ωc/tz. This theory
predicts several peculiarities of magnetoresistance (MR)
in Q2D metals, such as AMRO [22–24] and the beats of
MQO amplitude [20]. One can extract the fine details of
the FS, such as its in-plane anisotropy [25] and its har-
monic expansion [26,27], from the angular dependence of
MQO frequencies and from AMRO.

At tz ∼ �ωc several new qualitative features of MR
appear. At �ωc > tz the strong monotonic growth of lon-
gitudinal interlayer MR Rzz(Bz) was observed in vari-
ous Q2D metals [28–37] and explained recently [37–40].
At tz � �ωc the MR acquires the so-called slow oscilla-
tions [36,41] and the phase shift of beats [41,42]. These
two effects are missed by the standard 3D theory [19–21]
because they appear in the higher orders in �ωc/tz.

These slow oscillations (SlO) originate not from small
FS pockets, but from the finite interlayer hopping, be-
cause the product of oscillations with two close frequen-
cies F0 ± ΔF gives oscillations with frequency 2ΔF . The
conductivity, being a non-linear function of the oscillating
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electronic density of states (DoS) and of the diffusion co-
efficient, has SlO with frequency 2 ΔF ∝ tz, while the
magnetization, being a linear functional of DoS, does not
show SlO [36,41]. The SlO have many interesting and
useful features as compared to the fast quantum oscil-
lations. First, they survive at much higher temperature
than MQO. Second, they are not sensitive to a long-range
disorder, which damps the fast MQO similarly to finite
temperature due to a spatial variation of the Fermi en-
ergy. Therefore, the Dingle factor and the amplitude of
SlO may be much larger than those of usual MQO [36].
Third, the SlO allow to measure the interlayer transfer
integral tz and the in-plane Fermi momentum pF ≡ �kF .
These features make the SlO to be a useful tool to study
the electronic properties of Q2D metals [36,41]. Until now,
the SlO were investigated only for the interlayer conduc-
tivity σzz (B), when the current and the magnetic field are
both applied perpendicularly to the 2D layers, and only in
organic compounds [5,36,41]. At the same time, the most
of Q2D compounds, including pnictide high-temperature
superconductors, as a rule, have the shape of very thin
flakes for which correct measurements of the intralayer
conductivity are reliable, especially in the case of good
metallic properties of studied compounds.

Very often the crystal consists of a stack of bilayers.
In this case there are two types of interlayer hopping inte-
grals: the larger, tb, is between adjacent layers inside one
bilayer, and the smaller one, tz, is between bilayers. Corre-
spondingly, one may expect two types of SlO originating
from the bilayer and interbilayer electron hopping. The
SlO from bilayer splitting have not yet been studied.

Below we investigate the possibility and usefulness
of SlO in the intralayer electrical transport, choosing
the non-organic layered Q2D rare-earth tritelluride com-
pounds RTe3 (R = Y, La, Ce, Nd, Sm, Gd, Tb, Ho,
Dy, Er, Tm) as an example. Rare-earth tritellurides have
an orthorhombic structure (Cmcm) in the normal state
and exhibit a c-axis incommensurate charge-density wave
(CDW) at high temperature, which was recently a sub-
ject of intense studies [43–48]. For the heaviest rare-earth
elements, a second a-axis CDW occurs at low temper-
ature. In addition to hosting incommensurate CDWs,
magnetic rare-earth ions exhibit closed-spaced magnetic
phase transitions below 10 K [49,50] leading to coexistence
and competition of many ordered states at low tempera-
tures. Therefore, any information about the Fermi sur-
face on such small energy scale beyond the ARPES reso-
lution [45,51] is very important. An accurate measurement
of tz as function of temperature, provided by SlO, is also
useful in these compounds. For the possible observation
of the SlO the rare-earth tritellurides are very promising,
because they have the appropriate anisotropy and good
metallic conductivity up to low temperatures. These com-
pounds well illustrate our goal: in addition to good metal-
lic properties, their available single crystals have a very
flat shape, allowing correct measurements of the intralayer
conductivity [43]. Note that the RTe3 compounds have a
doubled bilayer crystal structure, since there are two non-
equivalent Te bilayers in one elementary cell. Hence, this

compound is a promising candidate for the observation of
SlO from bilayer splitting.

2 Experiment

For experiments we have chosen GdTe3 and TbTe3. Sin-
gle crystals of these compounds were grown by a self-
flux technique under purified argon atmosphere as de-
scribed previously [46]. Thin single crystal samples with
a thickness typically 0.1–0.3 μm were prepared by mi-
cromechanical exfoliation of relatively thick crystals glued
on a sapphire substrate. The quality of selected crys-
tals and the spatial arrangement of crystallographic axes
were controlled by X-ray diffraction. From high-quality
[R(300 K)/R(10 K) > 100] untwinned single crystals
we cut bridges with a length 200–500 μm and a width
50–80 μm in well defined, namely [100] and [001], orien-
tations. Contacts for electrical transport measurements in
four-probe configuration have been prepared using gold
evaporation and cold soldering by In. The resistivity of
the TbTe3 samples typically 0.03 mΩcm at room temper-
ature was the same as reported in reference [47]. Mag-
netotransport measurements were performed at different
orientations of the magnetic field in the field range up
to 9 T using a superconducting solenoid. The field orien-
tation was defined by the angle θ between the field di-
rection and the normal b-axis to the highly conducting
(a, c) plane. We used a homemade rotator with an angu-
lar accuracy better than 0.1◦, having previously allowed to
demonstrate the two dimensionality behavior of Bismuth
Strontium Calcium Copper Oxide (BSCCO) high Tc su-
perconductors [52]. A great care was made to get rid off
any backlash in the rotation.

The magnetoresistance R(B) and its derivative
dR(B)/dB as a function of the magnetic field up to
B = 8.2 T applied along the b-axis and with the cur-
rent applied in the (a, c) plane at T = 4.2 K are drawn in
Figure 1a for GdTe3 and in Figure 2a for TbTe3. For both
compounds, oscillations with a very weak amplitude are
detectable. At B > 2 T pronounced Shubnikov-de-Haas
(SdH) oscillations with a frequency F ≈ 55−58 T are
observed in dR/dB as seen in the inset of Figure 1a for
GdTe3. At high field (B � 7 T) new oscillations with high
frequency (F ≈ 0.7−0.8 kT) appear in TbTe3, indicating
the existence of several types of pockets on the partially
gapped Fermi surface (FS). De Haas-van Alphen oscilla-
tions were previously observed [53] from a.c. susceptibility
and torque measurements in LaTe3 with three distinct fre-
quencies α ∼ 50 T, β ≈ 520 T and γ ∼ 1600 T. The β
frequency was attributed to small FS pockets around the
X point in the Brillouin zone, unaffected by the CDW,
while the α frequency was assigned to a portion of the re-
constructed FS. We can attribute the observed frequency
F ≈ 56 T of SdH oscillations above 2 T in GdTe3 and
TbTe3 similarly to the α frequency in LaTe3 [53].

However, the more striking result, shown in Figures 1a
and 2a, is that, in addition to the rapid SdH oscillations,
at low magnetic field (B < 2 T) the magnetoresistance
exhibits prominent slow oscillations (SlO) with a very low
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Fig. 1. (a) Magnetoresistance R(B) (red curve) and
dR(B)/dB (blue curve) dependencies at 4.2 K of GdTe3

demonstrating rapid Shubnikov-de-Haas-type oscillations
which appear at B > 2 T. Inset shows the Fourier transform of
Shubnikov-de-Haas oscillations. (b) Variation of dR(B)/dB as
a function of the inverse magnetic field, B−1, in the low field
range B < 2 T demonstrating slow oscillations (SlO). Inset
shows the corresponding Fourier transform of SlO.

frequency Fslow � 4 T. In Figures 1b and 2b, we have plot-
ted the derivative dR(B)/dB as a function of inverse mag-
netic field with its Fourier transform (FFT) in the insets.
The FFT of slow oscillations and of usual quantum oscil-
lations was done in different magnetic field ranges. There-
fore, two peaks of FFT at about 3.5 and 56 T in the spec-
trum appear only on different plots in Figures 1a and 1b.
Below we focus specifically on these slow oscillations.

In contrast to the usual SdH oscillations, the amplitude
of which decreases rapidly as temperature increases, the
SlO of MR are observable up to T � 40 K, as can be seen
from Figure 3 where we show the temperature evolution
of SlO for GdTe3 and TbTe3. If one extracts the electron
effective mass from such weak temperature dependence of
SlO amplitude, one obtains m∗ ≈ 0.004me, which is unrea-
sonably small. This suggests that the observed SlO origi-
nate not from small FS pockets, but from the FS warping
due to tz, similarly to the SlO of interlayer MR in the or-
ganic superconductor β-(BEDT-TTF)2IBr2 [36], or due to
the bilayer splitting tb. If so, the observed SlO give an ex-
cellent opportunity to measure the values of tb or tz and
kF at low temperature in rare-earth tritellurides TbTe3

and GdTe3. To discriminate between the two possible ori-
gins of SlO, in the next section we consider them in more
detail.

0 1 2 3

0,24

0,27

0,30

0 5 10 15 20
0

1

2 FFT (arb.u.)

F (T)

d
R

/d
B

 (
O

h
m

/T
)

1/B (T-1)

0 2 4 6 8

0,20

0,25

0,30

d
R

/d
B

 (
O

h
m

/T
)

B (T)

0,0

0,5

1,0

1,5

2,0

R
 (

O
h

m
)

a)

b)

Fig. 2. The same as in Figure 1 for TbTe3.

3 Theoretical description

3.1 Slow oscillations of intralayer magnetoresistance
due to interlayer dispersion

According to equation (90.5) of reference [54], the in-
tralayer conductivity at finite temperature is given by

σyy = e2

∫
dε [−n′

F (ε)] g (ε)Dy (ε) , (1)

where the derivative of the Fermi distribution function
n′

F (ε) = −1/{4T cosh2 [(ε − μ)/2T ]}, g (ε) is the DoS and
Dy (ε) is the diffusion coefficient of electrons along y-axis.
Below one only needs the first terms in the harmonic ex-
pansion for the oscillating DoS, which in Q2D metals at
finite tz ∼ �ωc are given by [41,55–57]

g (ε) ≈ g0

[
1 − 2 cos

(
2πε

�ωc

)
J0

(
4πtz
�ωc

)
RD

]
, (2)

where g0 = m∗/π�
2d is the DoS at the Fermi level in

the absence of magnetic field per two spin components1,
J0 (x) is the Bessel’s function, the Dingle factor [61,62]
RD ≈ exp [−πk/ωcτ0], τ0 is the electron mean free time
without magnetic field.

1 Due to the renormalization of electron spectrum by a CDW
even in the mean-field approximation the DoS at the Fermi
level may change not so strongly as the FS geometry [58], as
observed in ErTe3 and HoTe3 [59,60].
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Fig. 3. Temperature evolution of slow oscillations in magne-
toresistance for GdTe3 (a) and TbTe3 (b).

To calculate the diffusion coefficient2 Dy (ε), we con-
sider only short-range impurities, described by a δ-
function potential: Vi (r) = Uδ3 (r − ri). The matrix
element of impurity scattering is given by Tmm′ =
Ψ∗

m′ (ri)UΨm (ri), where Ψm (r) is the electron wave func-
tion in the state m. During each scattering, the typical
change Δy = ΔPxc/eBz of the mean electron coordi-
nate y0 perpendicular to B is of the order of Larmor ra-
dius RL = pF c/eBz [63,64]3. The diffusion coefficient is

2 The calculation of the diffusion coefficient Dy (ε) is less
trivial than of the DoS and requires to specify the model of
disorder. At μ � �ωc the quasi-classical approximation is ap-
plicable. In an ideal crystal in a magnetic field B the electrons
move along the cyclotron orbits with a fixed center and the
Larmor radius RL = pF c/eBz. Without scattering the elec-
tron diffusion in the direction perpendicular to B is absent.
The scattering by impurities changes the electronic states and
leads to the electron diffusion.

3 For a short-range disorder the 2D electron wave function
in magnetic field decays exponentially at distance larger than
the Larmor radius [63,64]. Therefore, for Δy � RL the ma-
trix element Tmm′ is exponentially small resulting from the
small overlap of the electron wave functions Ψ∗

m′ (ri) Ψm (ri) ∼
Ψ∗

m (ri + Δy)Ψm (ri).

approximately given by:

Dy (ε) ≈
〈
(Δy)2

〉
/2τ (ε) , (3)

where τ (ε) is the energy-dependent electron mean scat-
tering time by impurities, and the angular brackets in
equation (3) mean averaging over impurity scattering
events. In the Born approximation, the mean scatter-
ing rate 1/τ (ε) = 2πniU

2g (ε), where ni is the impu-
rity concentration. This scattering rate has MQO, pro-
portional to those of the DoS in equation (2). The MQO
of

〈
(Δy)2

〉
≈ R2

L are, usually, weaker and in 3D metals

they are neglected [54]. Then Dy (ε) ≈ R2
L/2τ (ε) ∝ g (ε).

However, in Q2D metals, when tz ∼ �ωc, the MQO of〈
(Δy)2

〉
can be of the same order as the MQO of the

DoS, and at RD � 1

Dy (ε) ≈ D0

[
1 − 2α cos

(
2πε

�ωc

)
J0

(
4πtz
�ωc

)
RD

]
, (4)

where D0 ≈ R2
L/2τ0, and the number α ∼ 1. Combining

equations (1), (2) and (4) after the integration over ε we
obtain

σyy(B)
e2g0D0

≈ 1 + 2αJ2
0 (4πtz/�ωc)R2

D

− 2 (α + 1) cos
(

2πμ

�ωc

)
J0

(
4πtz
�ωc

)
RDRT ,

(5)

where the temperature damping factor of the MQO is

RT =
(
2π2kBT/�ωc

)
/ sinh

(
2π2kBT/�ωc

)
. (6)

The temperature damping factor (6) in the second MQO
term in equation (5) arises from the integration over en-
ergy ε of the rapidly oscillating function ∝ cos(2πε/�ωc)
with the derivative of Fermi distribution function n′

F ac-
cording to equation (1). The SlO term arises from the
ε-independent product J2

0 (4πtz/�ωc), and its integration
over ε in equation (1) does not produce the tempera-
ture damping factor (6). Hence, the SlO, described by the
first line of equation (5), are not damped by temperature
within our model, similarly to references [36,41].

Approximately, one can use the asymptotic expansion
of the Bessel function in equation (5) for large values
of the argument: J0(x) ≈ √

2/πx cos (x − π/4) , x � 1.
Then, after introducing the frequency of the SlO, Fslow =
4tzB/�ωc = 4tzm

∗c/e�, the first line in equation (5) sim-
plifies to:

σslow
yy (B)
e2g0D0

≈ 1 +
α�ωc

2π2tz
sin

(
2πFslow

B

)
R2

D. (7)

In tilted magnetic field at constant |B|, ωc ∝ cos θ and the
angular dependence of interlayer transfer integral is [65]

tz (θ) = tz (0)J0 (kF d tan θ), (8)
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where d is the interlayer distance. Then the frequency of
the SlO must depend on the tilt angle θ as:

Fslow (θ) /Fslow (0) = J0 (kF d tan θ) / cos (θ) . (9)

Equations (8) and (9) assume a single value of the in-
plane Fermi momentum kF . If there are several different
FS pockets, the slow oscillations are given by a sum of
the contributions from each pocket. Then the simple an-
gular dependence in equation (9) is smeared out, and the
deep minima of the SlO frequency Fslow (θ) at the Yamaji
angles, observed in reference [36], become weaker or even
disappear, being only seen as a splitting or just as a broad-
ening of the Fourier transform peak at certain angles θ.
The similar smearing of the simple dependence in equa-
tion (9) occurs when the FS pockets are elongated and
oriented differently. On the other hand, if the product of
interlayer transfer integral tz and cyclotron mass m∗ is the
same for all FS pockets, all FS pockets contribute to SlO
with the same frequency, which additionally enhances the
SlO amplitude as compared to MQO amplitudes. More
probable is the case when the SlO frequencies from dif-
ferent FS pockets are close but do not coincide exactly,
which enhances but broadens the SlO peak in the Fourier
transform of magnetoresistance.

3.2 Slow oscillations due to bilayer splitting

Another possible origin of the slow oscillations comes from
the entanglement of two close frequencies due to the bi-
layer splitting. The elementary crystal cell of RTe3 in the
interlayer z-direction has two conducting Te bilayers sep-
arated by insulating RTe slabs (see Fig. 1 in Refs. [51,53]).
The interlayer distances are well know for the close com-
pound NdTe3 [66]. In NdTe3 the Te layers within one bi-
layer are separated by a distance of only d� ≈ 3.64 Å,
and the bilayers are separated by h ≈ 9.26 Å [66]. As a
result the lattice constant b� = 2(h + d�) ≈ 25.8 Å in the
interlayer z-direction in RTe3 is very large. We take these
values of d�, b� and h for our study of TbTe3 and GdTe3.

Assume that the coupling tz between the bilayers, lead-
ing to the interlayer kz energy dispersion, is negligibly
weak, and consider only one bilayer. The interlayer hop-
ping tb between adjacent layers within one bilayer leads
to the so-called bonding and anti-bonding energy states,
respectively corresponding to the even and odd electron
wave functions in the z-direction. The energy of bonding
(even) state is lower than the energy of antibonding (odd)
state by the value Δε ≈ 2tb. This bilayer splitting is very
common also in high-temperature cuprate BSCCO and
Yttrium Barium Copper Oxide (YBCO) superconductors,
where it has been extensively studied [67–69]. For us it is
important only that the in-plane Fermi energy of bond-
ing states is higher than the Fermi energy of antibonding
states by this energy splitting Δε ≈ 2tb. This results in
the corresponding splitting of the basic frequency F0 of
MQO: F0 → F0 ±ΔF . Then the DoS is given by a sum of
the bonding and antibonding states, and instead of equa-

tion (2) for the DoS we then obtain

g (ε)
g0

≈ 1 − RD cos
(

2π
ε + tb
�ωc

)
− RD cos

(
2π

ε − tb
�ωc

)
,

(10)
where g0 is DoS for two layers (one bilayer). Similarly, in-
stead of equation (4) for the diffusion coefficient we obtain

Dy (ε)
D0

≈1−αRD

[
cos

(
2π

ε+tb
�ωc

)
+cos

(
2π

ε−tb
�ωc

)]
. (11)

Instead of equation (5) for the intralayer conductivity from
equation (1) one then obtains

σyy(B)
e2g0D0

≈ 1 + α cos
(

4πtb
�ωc

)
R2

D

− (α+1) cos
(

2πμ

�ωc

)
cos

(
2πtb
�ωc

)
RDRT . (12)

The SlO, described by the first line of equation (12), are
not damped by temperature within our model again, simi-
larly to references [36,41] and equation (5). However, there
are several important differences of SlO arising from FS
warping and from bilayer splitting. In contrast to the
case of FS warping due to kz dispersion, the frequency
of the SlO in the case of bilayer splitting is given by
Fslow = 2tbB/�ωc not only at 4πtb � �ωc but at any
ratio tb/�ωc. Also, contrary to equation (7), the SlO am-
plitude in equation (12) for the case of bilayer splitting
does not have the small factor J2

0 (4πtz/�ωc) ∼ �ωc/4π2tz.
The phase of slow oscillations due to bilayer splitting tb in
equation (12) is shifted by π/2 as compared to the phase
in equation (7) of SlO due to kz dispersion.

Probably, most evident difference between the SlO due
to bilayer splitting and due to kz dispersion is in the
angular dependence of the SlO frequency. This SlO fre-
quency Fslow (θ) does not necessarily obey equation (9)
but may have standard cosine dependence Fslow (θ) =
Fslow (0)/cos (θ) 4,5. Even if one assumes that equation (9)
is valid also for the SlO frequency from the bilayer split-
ting, the interlayer distance d� in this dependence for

4 When SlO originate from the FS warping along z-axis, the
angular dependence in equation (9) has an evident geomet-
rical interpretation [23]. This dependence was also confirmed
quantum-mechanically using the perturbation theory in the
first order in the small parameter tz/�ωc � 1 [65], and us-
ing the double-layer approach and the Feynman diagram tech-
nique [70,71]. Hence, by analogy one may assume that equa-
tion (9) is also valid for the bilayer splitting. However, this
analogy fails in the opposite weak-field regime tb/�ωc > 1 when
the SlO appear. The geometrical interpretation similar to ref-
erence [23], valid in the weak-field regime tb/�ωc > 1, is not
applicable for bilayer splitting or even gives the standard cosine
dependence Fslow ∝ 1/ cos θ. Therefore, the problem of the an-
gular dependence of bilayer splitting at arbitrary tz/�ωc and
ωcτ needs further theoretical investigation, which is beyond
the scope of this paper.

5 Equations (8) and (9) assume the spatially uniform inter-
layer hopping, when the interlayer hopping amplitude tz does
not depend on 2D coordinate within the layer and on in-plane
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bilayer splitting is several times smaller than the lat-
tice constant in interlayer z-direction. For example, for
RTe3 compounds the lattice constant in z-direction is
b� = 25.8 Å, while the interlayer distance within one bi-
layer is only d� = 3.64 Å, i.e. 7 times less. Therefore,
even according to equation (9), the angular dependence of
the frequency Fslow(θ) of SlO originating from the bilayer
splitting tb should be much weaker than that form inter-
bilayer coupling tz and should start from much higher tilt
angle θ.

If there are both types of interlayer coupling, i.e. the
transfer integral tb = tb(k‖) between adjacent layers sep-
arated by distance d� within one bilayer and the hopping
tz = tz(k‖) between adjacent equivalent bilayers, sepa-
rated by distance h, where k‖ is the intralayer momen-
tum, the resulting electron energy spectrum is given by
(see, e.g., Eq. (6) of Ref. [68])

ε±
(
kz, k‖

)
= ε‖

(
k‖

) ±
√

t2z + t2b + 2tztb cos [kz (h + d�)].
(13)

For tz � tb this equation just gives the double bilayer
splitting to bonding and antibonding states. Note, that the
derivation of equation (13) assumes [68] that all bilayers
are equivalent, i.e. that the lattice constant in z-direction
b� = h+d�. If the bilayers are nonequivalent, as in the case
of RTe3 compounds where b� = 2(h + d�), equation (13)
needs further modification, which is the subject of sep-
arate publication. However, we should notice that if the
observed slow oscillations in RTe3 are due to the coupling
tz between bilayers, in the angular dependence in equa-
tions (8) and (9) the distance h + d� = b�/2 between
adjacent bilayers rather than the total lattice constant b�

enters as the interlayer distance d.

4 Discussion

To clarify the origin of the observed SlO, we have ex-
perimentally studied the angular dependence of the SlO
frequency. The evolution of the SlO in GdTe3 with the
change of the tilt angle θ of magnetic field at T = 4.2 K is
shown in Figure 4, where the derivative dR/dB is plotted
as a function of the perpendicular-to-layers component of
the magnetic field B⊥ = B cos(θ). Note that the magnetic
field rotation in the (b, c) and (b, a) planes demonstrated
the same results for TbTe3.

In Figure 5 we show the θ-dependence of the SlO
frequency Fslow at T = 4.2 K for TbTe3 (a) and for
GdTe3 (c). The solid curves give the cosine dependence
F (θ) = F (0)/ cos(θ) typical for MQO. According to equa-
tion (9), Fslow (θ) differs from this standard cosine depen-
dence, especially at high tilt angle. In Figure 5b we plot
the angular dependence of the product Fslow(θ) cos(θ) in
TbTe3. If the origin of the SlO was due to small FS pock-
ets, the product Fslow(θ) cos(θ) would be independent of

electron momentum. If the overlaping atomic orbitals are not
uniform but confined within spatial region in the crystalline el-
ementare cell, the simple dependence in equations (8) and (9)
may violate, as e.g. in YBCO high-Tc superconductor [68,72].
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Fig. 4. Slow oscillations observed in GdTe3 at T = 4.2 K for
different tilt angles θ between the magnetic field B and the
normal to the conducting layers. B⊥ = B cos(θ).
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Fig. 5. (a), (c) The frequency of the slow oscillations (SlO)
Fslow as a function of tilt angle θ at T = 4.2 K for TbTe3 and
GdTe3. Solid curves show the function F (θ) = F (0)/ cos(θ).
(b), (d) The angular dependence of the SlO frequency Fslow(θ)
in the intralayer magnetoresistance in TbTe3 and GdTe3 cor-
respondingly, multiplied by cos(θ). The experimental data are
shown by blue filled circles, and the theoretical prediction
according to equation (9) with kF d = 0.12 for TbTe3 and
kF d = 0.11 for GdTe3 is shown by solid red lines.

the tilt angle θ. The experimental data, shown by blue
filled circles, clearly indicate the deviation from the hor-
izontal line. These experimental data can be reasonably
fitted by equation (9) with kF d = 0.12 for TbTe3 and
kF d = 0.11 for GdTe3, shown by solid red lines in Fig-
ures 5b and 5d. This supports our assertion that the ob-
served slow oscillations originate not from small FS pock-
ets as usual SdH oscillations, but from the entanglement
of close frequencies due to a finite interlayer hopping tz
or tb. Another argument in favor of this origin of the
observed SlO is the very weak temperature dependence
of their amplitude. To our knowledge, the data obtained
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are the first observation of such SlO in the intralayer mag-
netotransport.

The third argument, supporting the proposed origin
of SlO as due to the interlayer hopping rather than due
to very small ungapped FS pockets, is that the frequency
of the observed SlO is independent of temperature. In-
deed, if the observed SlO originated from very small un-
gapped FS pockets, their frequency would strongly de-
pend on temperature on the scale of the CDW transition
temperature, because the size of the ungapped FS pock-
ets depends on the temperature-dependent CDW energy
gap. For TbTe3 the second CDW transition temperature
is [73] Tc2 = 41 K, but we do not observe any change in
the frequency of SlO up to 35 K (see Fig. 2), which is
inconsistent with the small FS-pocket origin of SlO. On
contrary, the interlayer transfer integrals tz or tb are not
sensitive to the in-plane electronic phase transitions and
to the in-plane Fermi-surface reconstruction. The inter-
layer transfer integrals tz and tb are determined mainly
by the strong (∼1 eV) crystalline potential in the inter-
layer direction, which is not affected by the CDW or other
in-plane electronic orderings.

According to equation (9), the angular dependence of
the frequency Fslow (θ) of SlO allows to estimate the value
of the Fermi momentum of the open FS pockets [36].
Fitting the experimental data of Fslow (θ) shown in Fig-
ure 5 to equation (9) gives kF d ≈ 0.11 for GdTe3 and
kF d ≈ 0.12 for TbTe3. As we showed before, there are two
possible origins of the observed SlO in RTe3: the bilayer
splitting tb and the inter-bilayer coupling tz . The first dou-
ble splits the Fermi energy, while the latter leads to the
kz energy dispersion and to the FS warping. Correspond-
ingly, there are two interlayer distances: d� ≈ 3.64 Å and
b�/2 = h + d� ≈ 12.9 Å. With d = d� = 3.64 Å we obtain
kF ≈ 3.3×106 cm−1, and with d = b�/2 = h+d� ≈ 12.9 Å
we obtain kF ≈ 9.3× 105 cm−1. If one assumes that these
small FS pockets are not elongated6 but almost circular,
the corresponding FS cross section areas are Sext ≈ πk2

F .
For the obtained value kF ≈ 3.3 × 106 cm−1 for bi-
layer splitting (d = d�) this gives the MQO frequency
F0 = Sext�c/2πe ≈ 36 T, a value close to the frequency
55–58 T of oscillations we have measured (inset of Fig. 1a).
The difference between the estimated 36 T and the exper-
imental value 55–58 T can be accounted by considering
the elongation or another non-circular shape of the FS
pockets6. Thus, the scenario of the bilayer-splitting ori-
gin of SlO looks self-consistent. On the other hand, for
the FS warping origin of SlO, taking d = h + d� and
kF ≈ 9.3 × 105 cm−1 gives only F0 ≈ 3 T. Such a small
fundamental frequency of MQO was not measured. Thus
the observed angular dependence of SlO frequency sug-
gests that the observed SlO originate from bilayer splitting
tb rather than from FS warping due to tz .

6 Probably, the pockets of the reconstructed FS are elongated
and oriented along various directions. Their total contribution
to the SlO, being a sum of the contributions from all individual
FS pockets, has a smeared angular dependence of the SlO fre-
quency Fslow (θ) as compared to the case of only one elliptical
FS pocket observed in β-(BEDT-TTF)2IBr2 [36].

Fig. 6. The measured positions 1/Bmin of the minima in the
derivative dR/dB for GdTe3 (black squares) and TbTe3 (red
circles) at T = 4.2 K as function of the number n of these
minima. The experimental data are taken from Figures 1 and 2.
The solid lines are the best linear fits. Insert figure shows the
region around n = 0 in a larger scale to emphasize that the
fitting lines intersect abscissa axis at ±1/4.

To further clarify the origin of the observed SlO, we
now analyze their phase, which depends on the origin
of SlO. In the first scenario, when the SlO originate
from the FS warping and interbilayer coupling tz, the
SlO are described by equation (7). At small magnetic
field B < 2 T, when SlO are observed, the Hall conduc-
tivity σxy � σyy, and the diagonal magnetoresistance
Ryy = σxx/

(
σxxσyy − σ2

xy

) ≈ 1/σyy. Then from equa-
tion (7) one obtains that the derivative dR/dB, shown in
Figures 1b and 2b, is approximately given by:

dRslow
yy (B)
dB

∝ 1 +
α�ωcFslow

πtzB2
cos

(
2πFslow

B

)
R2

D, (14)

and the position Bmin,W (n) of the nth minimum of SlO
of dR(B)/dB for the warping scenario of SlO is given by

Fslow/Bmin,W (n) = n − 1/2. (15)

In the second scenario, when SlO originate from the bi-
layer splitting tb, one should apply equation (12) in-
stead of equation (7), which gives Ryy(B) ∝ 1 −
α cos (2πFslow/B)R2

D and

dRyy(B)
dB

∝ 1 − α
2πFslow

B2
sin

(
2πFslow

B

)
R2

D. (16)

The position Bmin,b (n) of the nth minimum of dR(B)/dB
in equation (16) is given by

Fslow/Bmin,b (n) = n + sign (α) /4. (17)

The experimental data on the phase of SlO are shown
in Figure 6 and can be well fitted by equation (17),
corresponding to the bilayer-splitting origin of SlO. On
contrary, these data cannot be fitted by equation (15),
corresponding to the FS-warping scenario of SlO, origi-
nating from the interbilayer coupling tz. However, it is
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not clear why the phase offset 1/4 in Figure 6 for GdTe3

and TbTe3 has different sign, formally corresponding to
the different sign of the coefficient α. This difference may,
in principle, appear if the reconstructed FS or the parame-
ter ωcτ is considerably different for these two compounds.
Therefore, a more rigorous calculation of α in terms of
the initial parameters ωcτ and tb/�ωc and detailed exper-
imental data on MQO in these two compounds are needed
for understanding this difference.

The observed angular dependence of the frequency
Fslow (θ) and the phase of SlO are both in favour of the
bilayer-splitting origin of SlO. There is a third argument,
supporting this conjecture. If the observed SlO with fre-
quency F ≈ 4 T were due to FS warping and inter-bilayer
hopping tz, one would expect to observe another SlO with
larger frequency, corresponding to the bilayer splitting and
the transfer integral tb > tz . According to equations (7)
and (12), the SlO from bilayer splitting should have larger
amplitude than SlO from FS warping because of the extra
factor �ωc/2π2tz in equation (7) as compared to equa-
tion (12). Thus, the second SlO would have even larger
amplitude than the observed SlO. However, in experi-
ments there is no any signature of the second SlO, which
supports our assertion that the observed SlO originate
from the bilayer splitting tb rather than from FS warp-
ing tz. To our knowledge, the reported results are the first
experimental and theoretical study of the slow oscillations
of MR originating from the bilayer splitting. However, this
phenomenon is expected to be rather general and should
be observable in many other bilayered materials.

The SlO of intra- and interlayer electron transport,
studied above and in references [36,41], are qualitatively
similar and have only some minor quantitative differences
in amplitude and phase (compare Eq. (7) above with
Eq. (4) of Ref. [36]). On the other hand, the SlO origi-
nating from FS warping and from bilayer splitting have
qualitative differences, e.g. in the angular dependence of
SlO frequency.

The frequency of the SlO at θ = 0 can be used
to estimate the value tb of the interlayer transfer inte-
gral. According to equation (7), with the effective elec-
tron mass m∗ ≈ 0.1me determined from the tempera-
ture dependence of the amplitude of SdH oscillations [74],
and Fslow ≈ 3.5 T (see Figs. 5b and 5d), one obtains
tb ≈ 1 meV. These small values of the interlayer transfer
integral tb in comparison to much larger intralayer trans-
fer integrals t‖ ≈ 2 eV along the chains and t⊥ ≈ 0.37 eV
perpendicular to the chains in the (a, c) plane, as ob-
tained by the band structure calculations [45], illustrate
the quasi-2D character of these rare-earth tritellurides and
justify that the dispersion along the b-axis is neglected in
ARPES measurements7. The value of interlayer transfer

7 Note that the ARPES measurements do not have a suf-
ficient energy resolution to determine a Fermi-surface recon-
struction due to the second low-Tc CDW [45,51]. Therefore,
in ARPES data there is no evidence of such small FS pockets.
The transport measurements, on contrary, are very sensitive to
fine FS details, which is their big advantage as complementary
to ARPES technique.

integral tb is very important for various physical properties
of strongly anisotropic compounds. The quantum correc-
tions to conductivity [75,76] rapidly decrease with increas-
ing of tb, being much stronger in 2D electronic systems.
The quantum Hall effect also requires an exponentially
small value of interlayer hopping integral [77]8.

The proposed technique to measure the electronic
structure, namely, the interlayer electron hopping rate
and the in-plane Fermi momentum, may be very useful
to many other layered materials, including the cuprate
and Fe-base high-temperature superconductors. Probably,
the quantitative theory of slow oscillations in these ma-
terials must include the effects of strong electronic cor-
relations, which are missed in the present one-electron
approach9. However, the reported first observation and
simplified qualitative description of the slow oscillations of
the in-plane electronic magnetotransport, as well as their
application to extract the electronic-structure parameters
of the studied materials, may stimulate further applica-
tion of this promising technique. The MQO observed in
layered high-Tc superconducting materials, usually, have
very small amplitudes even in the strongest available mag-
netic fields, which impedes their application as a tool to
study the electronic structure in these materials. The FS
reconstruction due to an electronic ordering at finite wave
vector, e.g. a density-wave or antiferromagnetic ordering,
is known to additionally suppress the MQO because of
magnetic breakdown between different FS parts. The SlO,
being almost a classical type of magnetoresistance oscil-
lations, do not have these damping factors and can be
clearer observed, which enhances their potential use to
investigate the electronic structure of various strongly-
correlated electronic systems.

To summarize, we report the first observation and
qualitative theoretical description of slow oscillations
(SlO) of the intralayer magnetoresistance in quasi-2D
metallic compounds. These SlO are observed in rather
weak magnetic field B < 2 T and at rather high tem-
perature up to T ≈ 40 K, contrary to the usual mag-
netic quantum oscillations, which are strongly damped by
temperature, especially in such weak field. The phase and
the angular dependence of the SlO frequency suggest that
the observed SlO originate from the bilayer splitting tb
rather than from the FS warping and inter-bilayer hop-
ping tz, contrary to their origin in the organic metal in
reference [36]. Such SlO due to bilayer splitting have not
been studied before. The SlO allow to measure the inter-
layer transfer integral and the in-plane Fermi momentum
kF , which are difficult to measure by other means. We ob-
tained the values tb ≈ 1 meV in the rare-earth tritelluride

8 A very small interlayer hopping violates the 2D electron
localization in the conducting planes by disorder in magnetic
field [77], thus preventing the quantum Hall effect.

9 Our study raises several important questions, which need
further experimental and theoretical investigation. For exam-
ple, the damping of SlO and of usual MQO amplitudes by the
e-e interaction and by critical fluctuations near an electronic
phase transition may strongly differ. If so, it may serve as an
additional tool to measure these many-particle effects.
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compounds TbTe3 and GdTe3. This method is useful to
many other layered conductors.
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