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Fermi surface properties of the bifunctional organic metal κ-(BETS)2Mn[N(CN)2]3

near the metal-insulator transition
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We present detailed studies of the high-field magnetoresistance of the layered organic metal κ-(BETS)2Mn-
[N(CN)2]3 under a pressure slightly above the insulator-metal transition. The experimental data are analyzed in
terms of the Fermi surface properties and compared with the results of first-principles band structure calculations.
The calculated size and shape of the in-plane Fermi surface are in very good agreement with those derived
from Shubnikov-de Haas oscillations as well as the classical angle-dependent magnetoresistance oscillations. A
comparison of the experimentally obtained effective cyclotron masses with the calculated band masses reveals
electron correlations significantly dependent on the electron momentum. The momentum- or band-dependent
mobility is also reflected in the behavior of the classical magnetoresistance anisotropy in a magnetic field
parallel to layers. Other characteristics of the conducting system related to interlayer charge transfer and
scattering mechanisms are discussed based on the experimental data. Besides the known high-field effects
associated with the Fermi surface geometry, new pronounced features have been found in the angle-dependent
magnetoresistance, which might be caused by coupling of the metallic charge transport to a magnetic instability
in proximity to the metal-insulator phase boundary.
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I. INTRODUCTION

The organic charge transfer salt κ-(BETS)2Mn[N(CN)2]3,
where BETS stands for bis(ethylenedithio)tetraselenafulval-
ene, belongs to the family of hybrid molecular conductors
which can be seen as natural multilayer structures of con-
ducting and magnetic layers alternating on a subnanometer
scale [1–3]. While itinerant π electrons in the BETS donor
layers are responsible for metallic conduction, the magnetic
moment is mainly determined by localized d-electron spins
of Mn2+ ions in the insulating anion layers [4]. On the
other hand, the quasi-two-dimensional (quasi-2D) conduct-
ing system undergoes a metal-insulator transition at TMI �
23 K presumably associated with the Mott instability [4,5].
The insulating ground state is suppressed by a quasihydro-
static pressure of about 1 kbar, giving way to a metallic and
even superconducting state with Tc ≈ 5.5 K. However, the
shape of the “pressure-temperature” phase diagram of this
compound [5] significantly differs from that of archetypi-
cal organic Mott insulators κ-(BEDT-TTF)2X with anions
X− = {Cu[N(CN)2]Cl}− and {Cu2(CN)3}− [6–8]. A reason
for that may lie in the interaction between the conduction π

electrons and localized d-electron spins. The π -d exchange
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coupling is known to be at the core of the metal-insulator
transition of another hybrid organic salt λ-(BETS)2FeCl4

[9,10]. Moreover, in some BETS salts with Fe-containing
tetrahedral anions the π -d coupling is clearly manifest al-
ready in the metallic state, playing, for example, a cru-
cial role in stabilizing superconductivity in a magnetic field
[1,11–15]. In the present material this coupling seems to be
considerably weaker. It has been found to cause changes of
magnetic properties of the Mn2+ subsystem upon entering
the insulating state [16–18]. However, no evidence of its
influence on the conducting system has been reported so
far.

For a better understanding of the mechanisms of the insu-
lating and superconducting instabilities a thorough knowledge
of the Fermi surface properties is indispensable. To that
end, we have carried out a detailed study of the high-field
magnetoresistance of pressurized κ-(BETS)2Mn[N(CN)2]3

supplemented by first-principles band structure calculations.
For most of the measurements the pressure value of p ≈
1.4 kbar was chosen so as to drive the compound into the fully
normal state but not far away from the metal-insulator phase
boundary [5]. In fields above 12 T quantum (Shubnikov-
de Haas, SdH) oscillations have been found, providing di-
rect access to the topology and size of the 2D Fermi sur-
face. Further quantitative information on the size and shape
of the Fermi surface has been obtained from the classical
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angle-dependent magnetoresistance oscillations (AMRO).
Besides the detailed Fermi surface geometry, the SdH data
and classical magnetoresistance yield other important charac-
teristics of the conducting system such as effective cyclotron
masses of the charge carriers, scattering parameters, and
interlayer transfer energy. In particular, by confronting the
effective mass values obtained from the experiment with the
calculated band masses we find a quite strong, momentum-
dependent renormalization effect caused by electron correla-
tions in the proximity to the metal-insulator transition. Finally,
in addition to the “conventional” phenomena determined by
the geometry of the quasi-2D Fermi surface, the classical
magnetoresistance has shown new features, which may be re-
lated to an interaction of the charge carriers with the magnetic
subsystem.

The paper is organized as follows. In the next section the
experimental details are described. Section III presents
the results of the first-principles band structure calculations.
The predicted conducting bands and Fermi surface look simi-
lar to those obtained by the semiempirical extended Hückel
method. However, the density of states and relevant band
cyclotron masses are 40% higher. This rather large differ-
ence, often found in the organics, see, e.g., Ref. [19], is
important to take into account when estimating the strength
of many-body renormalization effects on the experimentally
determined mass. Section IV presents experimental data on
the SdH oscillations and their analysis. In Sec. V the behavior
of the classical component of the interlayer magnetoresistance
as a function of the strength and orientation of magnetic field
is considered. A summary and concluding remarks are given
in Sec. VI.

II. EXPERIMENTAL

The samples used in the experiments were electrochem-
ically grown single crystals [4] with typical dimensions
∼0.5 × 0.3 × 0.02 mm3, the largest dimensions being in the
plane of conducting layers, that is, the crystallographic bc
plane. Electrical leads for four-probe resistance measurements
were made by attaching annealed 20 μm thick Pt wires to
the sample surface using a conducting graphite paste. All
the measurements were done in the interlayer resistance ge-
ometry, which is the most convenient and informative for
layered organic conductors, see, e.g., Ref. [20] for a review.
The resistance was measured by the standard low-frequency
a.c. technique. Field-dependent magnetoresistance with the
focus on the SdH oscillations was measured in the temperature
interval 0.36 to 1.0 K at a current of 1 μA assuring no over-
heating for sample resistance values <3 k�. Angle-dependent
measurements were done in liquid 4He at 1.3–1.4 K with a
current of 10 μA.

Quasihydrostatic pressure was applied using a BeCu clamp
cell with silicon oil as a pressure medium. A calibrated
manganin coil with a resistance of ≈6 � and sensitivity
0.243%/kbar was used as a resistive pressure gauge. All
the measurements, except one run presented at the end of
Sec. IV B, were done at pressure p ≈ 1.4 kbar.

All the field sweeps and most of the angle-dependent
magnetoresistance data presented in the paper were carried
out in a 30 T resistive magnet at the LNCMI-Grenoble. 15 T

angular sweeps and some test measurements were done using
a superconducting solenoid.

For the angle-dependent studies, which will be presented
in Sec. V B, the samples were mounted on a two-axes rotating
stage. Continuous rotations in different planes perpendicular
to the plane of conducting layers were done at a fixed field
strength. The sample orientation was defined by polar angle
θ between the field direction and the normal to the layers
and by azimuthal angle ϕ between the field projection on
the layer plane and the crystallographic (in-plane) c axis, see
Fig. 9 (upper panel) for illustration. The angular resolution
was <0.1◦ and ≈0.5◦ for θ and ϕ, respectively. The initial
orientation of the sample was set with an error bar of � ± 3◦
for both θ and ϕ. However, by using the center of the dip in the
R(θ ) dependence as a reference point for the exact in-plane
field direction (|θ | = 90◦), the θ error bar was reduced to
<0.5◦.

Three high-quality samples were used in the experiments,
all showing consistent data both on quantum oscillations and
on the classical magnetoresistance. In what follows, we will
present detailed data obtained on two different samples, re-
spectively, from field sweeps in the orientation perpendicular
to the layers and from the angular sweeps at a fixed field
strength.

III. FIRST-PRINCIPLES CALCULATION
OF THE CONDUCTION BANDS

Calculations of the low-temperature band structure were
carried out using a spin-polarized numerical atomic orbitals
density functional theory (DFT) approach [21] in the gener-
alized gradient approximation (GGA) [22]. Only the valence
electrons were considered in the calculations with the core
being replaced by norm-conserving scalar relativistic pseu-
dopotentials [23] factorized in the Kleinman-Bylander form
[24]. We have used a split-valence double-ζ basis set includ-
ing polarization orbitals with an energy shift of 10 meV for
all atoms [25]. The energy cutoff of the real space integration
mesh was 350 Ry. The Brillouin zone was sampled using a
grid of (5 × 20 × 20) k points [26] in the irreducible part
of the Brillouin zone. The experimental crystal structure at
15 K [5] was used in the calculations. The calculated bands
near the Fermi level are shown in Fig. 1. They contain only
contributions from the highest occupied molecular orbitals of
BETS and have shapes typical of strongly dimerized κ salts of
BEDT-TTF and BETS.

The width of the bands crossing the Fermi level is 0.46 eV.
This value is lower than that obtained by the extended Hückel
method, 0.65 meV [5], as it is often found for organic charge
transfer salts. As discussed below, the weaker dispersion
leads to higher values of the density of states and cyclotron
masses. On the other hand, comparing to the values 0.40 ±
0.02 eV obtained by first-principles calculations [27–30] for
κ-(BEDT-TTF)2X salts, exhibiting the Mott-insulating insta-
bility, the present value is very similar, just slightly higher.
Along the interlayer direction (	-X) the dispersion is below
the resolution of our calculations.

The calculated 2D Fermi surface is shown in Fig. 2. It
is a cylinder crossing the Brillouin zone boundary along
Z-M. As expected, it shares all features of the Fermi surface
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FIG. 1. Calculated band structure of κ-(BETS)2Mn[N(CN)2]3

based on the 15 K crystal structure [5]. The result of the full
calculation is shown with solid lines, whereas the result of the
calculation where the anions were replaced by a uniform background
of charge is shown with dashed lines. The energy is counted from
the Fermi level. 	 = (0, 0, 0), X = (1/2, 0, 0), Z = (0, 0, 1/2), and
M = (1/2, 0, 1/2) in units of the monoclinic reciprocal lattice
vectors.

obtained by the extended Hückel method [5], in particular, the
presence of a rhombuslike portion around point Z with quite
flat (however, slightly more rounded near 	) sides. The area
of this rhombuslike part is 25.2% of the Brillouin zone cross
section.

Due to the crystal symmetry, the calculated two upper
bands in Fig. 1 are degenerate along Z-M, which causes
crossing of the adjacent Fermi surfaces on the Brillouin zone
boundary. It should be noted, however, that our DFT calcu-
lations do not take into account a statistical disorder of the
dicyanamide groups of the anion along the crystallographic b
axis [4]. This disorder barely affects the electronic structure of
the donor layer, however the associated random potential lifts
the double degeneracy of the crystal orbitals along the Z-M
boundary of the Brillouin zone. As a result, small gaps arise
between the rhombuslike Fermi pocket and the open sheets
extended along the Y-M direction. As will be shown in the
next section, the presence of the gaps is confirmed by mag-
netic quantum oscillations. The oscillations reveal a classical

Z

Y M

FIG. 2. 2D Fermi surface of κ-(BETS)2Mn[N(CN)2]3. Thin
lines indicate the principal directions of the reciprocal lattice and
the first Brillouin zone boundary. The arrows show the directions of
the cyclotron motion on the classical (blue) and magnetic-breakdown
(red) orbits in a magnetic field.
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FIG. 3. Calculated DOS per spin per unit cell for
κ-(BETS)2Mn[N(CN)2]3 at (a) T = 200 K and (b) T = 15 K.
The energy is counted from the Fermi level. The contribution from
the lower lying band, associated with the rhombuslike Fermi pocket
around point Z in Fig. 2, is shown in blue. The contribution from the
higher lying band is shown in purple. The total DOS is represented
by the red line.

cyclotron orbit on the rhombuslike pocket (conventionally
labeled as α orbit) and a large magnetic-breakdown orbit (β
orbit) caused by tunneling through the gaps and encircling the
entire Fermi surface, as illustrated in Fig. 2.

Shown in Fig. 3 is the density of states (DOS) calculated
for two temperatures. The blue curve is the contribution of the
lower-lying partially filled band, which forms the rhombuslike
portion of the FS, and the purple curve corresponds to the
upper band associated with the open sheets extended along the
Y-M direction. The total DOS is given in red. Interestingly,
by contrast to other κ-type salts, the upper part of the DOS
exhibits two pronounced peaks and the Fermi level occurs
very near the top of one of them. Qualitatively the same
result was obtained by the extended Hückel method [5] and
attributed to a significant in-plane anisotropy of the present
salt: The coupling between chains of dimers, running along
the crystallographic b axis, is weaker than the intrachain
interactions. This anisotropy causes a flattening of the lower
partially filled band around point 	, near the Fermi level. The
resulting peak in the DOS shifts even more close to the Fermi
energy at decreasing temperature, as one can see from Fig. 3.

Knowing the DOS, one can evaluate the cyclotron mass mc

on the Fermi surface. For a quasi-2D metal there is a simple
relation between the two quantities [19]:

mc = 2π h̄2D0/(bc), (1)

where D0 is the 2D DOS (per spin per unit cell) at the
Fermi level, and b = 8.35 Å and c = 11.83 Å are the unit
cell parameters in the plane of conducting layers [5]. Substi-
tuting in Eq. (1) the calculated values D0,β = 5.94 eV−1 and
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FIG. 4. Interlayer resistance of κ-(BETS)2Mn[N(CN)2]3 under a
pressure of 1.4 kbar, at T = 0.36 K, as a function of magnetic field
normal to layers.

D0,α = 3.98 eV−1 for the total DOS and for the contribution
from the rhombuslike Fermi pocket, respectively, we ob-
tain the cyclotron masses mc,β = 2.89me and mc,α = 1.93me,
where me is the free electron mass. These values are 1.4
times larger than the masses (2.03me and 1.39me, respec-
tively) following from the extended Hückel calculations [5].
However, the ratio mc,α/mc,β = 0.67 is almost the same. Note
that this ratio is 30% higher than what one usually obtains,
both theoretically and experimentally, for κ salts [19,31]. The
reason for this obviously lies in the fact that the enhancement
of the DOS at the Fermi level originates solely from the band
responsible for the α pocket.

IV. MAGNETIC QUANTUM OSCILLATIONS

Figure 4 shows the general behavior of the interlayer
resistance of pressurized κ-(BETS)2Mn[N(CN)2]3 at a tem-
perature T = 0.36 K, in a magnetic field perpendicular to
layers. Besides superconductivity at very low fields, the mag-
netoresistance exhibits a few features which will be addressed
in the following. We start with a detailed consideration of
the Shubnikov-de Haas (SdH) oscillations observed at fields
B � 12 T.

A. SdH spectrum and the Fermi surface topology

An example of the oscillatory part of magnetoresistance is
presented in Fig. 5. It is dominated by rapid SdH oscillations;
the fast Fourier transform (FFT) spectrum, shown in the inset,
has a peak at a frequency Fβ = 4225 T. The relevant cyclotron
orbit β in k space covers the area Sβ = 40.31 nm−2. This
coincides, within an accuracy of 1%, with the first Brillouin
zone area calculated from the 15 K crystallographic data [5].
In addition, weak slower oscillations can be resolved in the
envelopes of the main oscillations (red lines in Fig. 5). The
corresponding peak in the FFT spectrum is at Fα = 1135 T,
revealing a cyclotron orbit area of 10.83 nm−2 or 27.1% of the
Brillouin zone area. This agrees fairly well with the size of the
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FIG. 5. Oscillatory component of the field-dependent resistance
in Fig. 4 normalized to the nonoscillating background. Red lines
are envelopes of the rapid β oscillations originating from magnetic
breakdown, to emphasize weak slow oscillations associated with the
classical cyclotron orbit α, see Fig. 2. Inset: the corresponding FFT
spectrum.

rhombuslike part of the calculated 2D Fermi surface centered
at point Z on the Brillouin zone boundary, see Fig. 2. The
presence of this oscillatory component indicates that there is
no band degeneracy at the zone boundary: The Fermi surface
consists of a pair of open sheets and a cylinder separated from
each other by a small gap. The slow oscillations originate from
the classical orbit α on the Fermi cylinder indicated by the
blue arrows in Fig. 2, whereas the fast oscillations are a result
of magnetic breakdown (MB) through the gaps (red arrows in
Fig. 2).

While not predicted by band structure calculations, a small
MB gap between the open sheets and cylindrical Fermi sur-
face has also been found in SdH experiments on several other
κ-type salts of BETS and BEDT-TTF with a center-symmetric
layer structure [32–39]. One can consider a weak, �1 meV,
spin-orbit interaction as a possible source of the gap [40].
However, as pointed out in Sec. III, in the present case a gap
should already arise due to the disorder in the anion layer
along the b axis.

In the earlier study [5] performed at similar pressures no
SdH oscillations with the frequencies Fα and Fβ were ob-
served, but instead a very low frequency Fγ = 88 T has been
found and attributed to a very small Fermi pocket. The latter
could be formed due to folding the original Fermi surface
caused by the superstructure transition at about 100 K [5]. In
that scenario the orbits α and β can also be realized, but now
both would additionally require magnetic breakdown through
the superstructure gap. The absence of the relevant frequen-
cies could be attributed to the lower field range, B � 15 T, and
higher temperatures, T � 1.4 K, used in the experiment [5].
On the other hand, the reason for the absence of Fγ in
our present data is not quite clear. It is possible that the
discrepancy is caused by different pressurizing procedures
applied in the two experiments. In the work [5] the sample
was cooled at ambient pressure down to low temperatures
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FIG. 6. Temperature dependence of the FFT amplitudes of the α

(filled symbols) and β (open symbols) oscillations. The lines are fits
to the Lifshitz-Kosevich temperature dependence given by Eq. (2)
with the normalized cyclotron mass μα(β ) = mc,α(β )/me as a fitting
parameter.

and pressures of ∼1 kbar were applied below 20 K using the
helium gas pressure technique. In the present experiment the
sample was first pressurized at room temperature in the clamp
cell and then cooled down under pressure. One can speculate
that the 100 K transition responsible for the Fermi surface
reconstruction is suppressed under these conditions, which
would explain the absence of the slow oscillations in our data.
To verify this scenario, it would be interesting to perform
low-temperature X-ray studies at different pressures.

B. Effective cyclotron masses

The effective cyclotron masses corresponding to the α and
β orbits can be evaluated in the standard way from the tem-
perature dependence of the oscillation amplitude. The latter
is described by the Lifshitz-Kosevich temperature damping
factor RT,α(β ) [41,42]:

RT,α(β ) = Kμα(β )T/B

sinh(Kμα(β )T/B)
, (2)

where

K = 2π2kBme/h̄e ≈ 14.69 T/K, (3)

kB is the Boltzmann constant, e the elementary charge, and
μα(β ) = mc,α(β )/me, the cyclotron mass on the α(β) orbit
expressed in free electron mass units. Figure 6 shows the FFT
amplitudes of the α and β oscillations obtained in the field
window from 14 to 17 T at different temperatures. Fitting
the experimental data by the Lifshitz-Kosevich temperature
dependence yields the effective cyclotron masses μα = 5.6 ±
0.1 and μβ = 7.0 ± 0.05.

The experimentally determined cyclotron masses signifi-
cantly exceed the theoretical values given in Sec. III. This
apparent discrepancy is often observed for the κ-type salts
and attributed to many-body effects [19,31]: Electron-electron
and electron-phonon interactions lead to a renormalization
of the effective mass μ entering Eq. (2) by a factor r > 1

as compared to the “band” mass μb obtained from the band
structure calculations (here we defined μb as the mass ob-
tained from Eq. (1) and normalized to the free electron mass)
[42]. However, usually the renormalization is uniform over
the Fermi surface, i.e., the factor r is the same for the α and
β orbits [19,31]. By contrast, in our case the renormalization
factor for the α orbit, rα ≡ μα/μb

α = 2.9, is notably higher
than for the β orbit, rβ ≡ μβ/μb

β = 2.4. Keeping in mind
that the β orbit contains all the states on the Fermi surface,
including those on the α pocket (see Fig. 2), the difference
between the many-body renormalization on the α orbit and on
the rest of the Fermi surface must be even stronger.

The reason for the enhanced many-body effects on the α

pocket may be qualitatively understood by taking into account
the proximity of the electronic system to the metal-insulator
transition. As shown in Sec. III, the band associated with
the α pocket is partially flattened around the Fermi level
(which already causes an increase of the one-particle band
mass μb

α). It is reasonable to expect that the effective reduction
of the bandwidth places this part of the conduction system
more close to the Mott-insulating state, resulting in a rela-
tive enhancement of electron correlation effects. Additionally,
the rhombuslike shape of the α pocket is suggestive of the
so-called “nesting” instability, that is, a strongly enhanced
scattering at the wave vector connecting the opposite flat
segments of the pocket [43–45]. This may further contribute
to the many-body renormalization factor for the effective
mass.

To check the role of the proximity to the Mott-insulating
state, we have repeated the SdH experiment at an ele-
vated pressure, p = 4.1 kbar, moving the material far away
from the metal-insulator phase boundary. Expectedly, the cy-
clotron masses become considerably smaller at this pressure:
μα (4.1 kbar) = 3.4 ± 0.1 and μβ (4.1 kbar) = 5.2 ± 0.1, in-
dicating weakening of the many-body effects. But an impor-
tant result is that, within the experimental accuracy [46], the
mass enhancement factor is now the same for both orbits, rα =
rβ = 1.78 ± 0.05. This provides a strong support for the sug-
gested above momentum- or band-dependent enhancement
of electronic correlations near the metal-insulator transition
in κ-(BETS)2Mn[N(CN)2]3. It is worth noting that even at
this pressure the mass values are relatively high compared
to the other κ salts [35,47–49]. This can be at least par-
tially attributed to the peak in the one-particle DOS near the
Fermi level predicted by the band structure calculations, see
Sec. III.

C. Field dependence of the SdH amplitudes

As one can see in Fig. 5, the oscillation amplitude increases
in a monotonic manner with no traces of beating. The absence
of beats suggests that the Landau level separation near the
Fermi energy, h̄ωc (where ωc = eB/mc is the cyclotron fre-
quency), is larger than the interlayer bandwidth, 4t⊥, in the
whole field range where the oscillations are observed. There-
fore we apply the 2D Lifshitz-Kosevich-Shoenberg formula
[42,50–52],

Ai(B) = A0,iRT,iRD,iRMB,i, i = α, β, (4)

125136-5



V. N. ZVEREV et al. PHYSICAL REVIEW B 99, 125136 (2019)

0.04 0.05 0.06 0.07 0.08

3

4

5

6

7

(b)

ln
(A

β/R
T,

β)

1/B (T-1)

1.5

2.0

ln
(A

α/
R
T,

α)

(a)

FIG. 7. Dingle plots for the amplitudes of the α oscillations
(a) and the β oscillations (b), see text. The dashed lines are fits based
on Eqs.(4)–(6).

which is valid for weak oscillations in a 2D system for
analyzing the magnetic field dependence of the oscillation
amplitudes. Besides the temperature factor introduced above,
this formula contains the Dingle damping factor RD, deter-
mined by scattering, and the MB factor. The prefactor A0,i

is proportional to the contribution from the carriers on the
ith orbit to the zero-field conductivity, A0,i ∝ σ0,i. It does not
depend on B, but we have included it in Eq. (4) since it has
to be taken into account when comparing the amplitudes of
the α and β oscillations. The Dingle factor is conventionally
considered in the form [42,53,54]:

RD = exp

(
− π

ωcτ

)
= exp (−KμTD/B), (5)

where K is defined by Eq. (3), and the Dingle temperature
TD = h̄/2πkBτ is associated with the scattering rate 1/τ . The
MB factors for orbits α and β are readily expressed in the
form (see, e.g., Ref. [55]):

RMB,α = [1 − exp(−BMB/B)], (6a)

RMB,β = exp (−2BMB/B) (6b)

with the characteristic field related to the energy
gap �MB at the MB junction [42]: BMB ∼ (�2

MB/εF)
(mc/h̄e).

Figure 7 shows the Dingle plot for the oscillations pre-
sented in the main panel of Fig 5: the experimentally ob-
tained SdH amplitudes, divided by the temperature damping
factors (which are known from the above analysis of the T
dependence), are plotted in logarithmic scale against inverse

magnetic field. The amplitudes were taken from FFT spectra
made in 3 T-wide field windows. The horizontal positions
of the points correspond to the midpoints of the respective
windows in the 1/B scale.

Before starting with the fitting procedure, it should be
noted that a precise evaluation of the MB field from our
experiment can hardly be done. On one hand, the functional
B dependence of the MB factor for the β oscillations is the
same as the B dependence of the Dingle factor, cf. Eqs. (5)
and (6b). Therefore, one cannot extract separately the values
BMB and TD from the β oscillations only. On the other hand,
the influence of MB on the shape of the Aα (B) dependence
is very weak. Indeed, despite the higher cyclotron mass, the
β oscillations strongly dominate in the whole field range in
Fig. 5, implying that the MB field is well below this range.
Hence, the expression in Eq. (6a) for the MB factor for the
α oscillations can be approximated as RMB,α ≈ BMB/B. This
dependence is much weaker than the exponential dependence
of the Dingle damping factor. Therefore, the influence of
MB on the α oscillations is basically reduced to that on the
absolute amplitude. Further, the prefactors A0,i can hardly
be directly evaluated, as they depend on numerous details
of interlayer charge transfer and scattering. However, tak-
ing into account that the β orbit comprises roughly twice
as many states as the α orbit, one can tentatively assume
A0,α/A0,β ∼ 1/2.

In spite of the mentioned issues affecting the accuracy of
BMB, our analysis yields some interesting qualitative results.
We begin with fitting the amplitude of the β oscillations. In
the Dingle plot coordinates we obtain a linear fit [dashed
line in Fig. 7(b)] with the y-intercept ln(A0,β ) = 10.51 ± 0.02,
in the units of the graph, and the slope contributed by both
the Dingle and MB factors, Gβ = −(KμβTD,β + 2BMB) =
−96.9 ± 0.3 T.

Next, we turn to the α oscillations. The slope of the
fitting curve in Fig. 7(a) is mainly determined by the Dingle
factor, yielding TD,α = 0.48 ± 0.02 K. As mentioned above,
the effect of MB on the shape of the field dependence is
very weak. It leads to a barely visible nonlinearity of the
Dinlge plot in Fig. 7(a). Obviously, this nonlinearity cannot
be unambiguously evaluated within the present experimental
accuracy.

Nevertheless, the MB field can be estimated from the
absolute value of the α-oscillation amplitude provided the
coefficient A0,α is known. Setting, as suggested above A0,α =
A0,β/2 and using for A0,β the value found by fitting the β

amplitude, we obtain a very low MB field: BMB = 0.057 T.
For instance, the corresponding energy gap, �MB ∼ 0.3 meV,
is more than an order of magnitude lower than in κ-(BEDT-
TTF)2Cu(NCS)2 [55–57]. But the large difference between
the two cases is not surprising. Indeed, the lack of the inver-
sion symmetry of the crystal structure in the latter compound
is expected to produce a much larger gap than the subtle
mechanisms discussed above in relation to our material, see
Secs. III, IV A. However, it should be kept in mind that the
present estimation of BMB crucially depends on the assumed
ratio A0,α/A0,β . A decrease of this ratio would lead to a
proportional increase of the estimated MB field. Thus, the
obtained value of BMB should only be considered as a very
rough estimate.
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Coming back to the β oscillations, we see that the term
associated with MB provides a negligibly small contribu-
tion to the slope of the B-dependence. Even a tenfold in-
crease of the given above BMB value would only lead to
a change of ∼1% in Gβ . So the evaluation of the Din-
gle temperature is robust against the uncertainty in the
MB field. Using the cyclotron mass μβ = 7.0, we find
TD,β ≈ Gβ/Kμβ = 0.94 K.

The obtained values of TD,α and TD,β differ from each
other by a factor of ≈2. This apparently comes at odds
with momentum-independent scattering commonly assumed
for our materials at low temperatures. The difference can
be somewhat reduced by a more accurate consideration of
many-body renormalization effects. Strictly speaking, both
the cyclotron mass and the Dingle temperature in the ex-
pression for RD in Eq. (5) are renormalized. It was shown
both theoretically [58–60] and experimentally [61] that the
effects of electron-phonon interactions on μ and TD compen-
sate each other in a broad field and temperature range. The
influence of electron-electron interactions is less studied in
this respect. However, it was argued [62] that at least for a
2D Fermi liquid the same compensation should be valid for
any inelastic process, including electron-electron scattering,
as long as the oscillations are weak, i.e., RT , RD 	 1. These
conditions are obviously fulfilled in our case. Therefore we
can consider the Dingle temperature in Eq. (5) to be free
of many-body renormalization but simultaneously replace
the renormalized mass μ, by the band mass μb. By doing
that, we come to new values for the Dingle temperatures
in our fits: TD,α = 1.4 ± 0.05 K and TD,β = 2.28 ± 0.005 K.
One can see that the relative difference between them has
reduced however is still quite large and cannot be explained
by the experimental error or uncertainties in the fitting
procedure.

Thus, the assumption of a momentum-independent scatter-
ing time τ seems to be inappropriate in our case. As men-
tioned in Sec. IV B, the nesting property of the rhombuslike
α orbit may cause enhanced scattering on this part of the
Fermi surface. However, this should lead to a relative increase
of TD,α ∝ 1/τα , whereas our estimated value is considerably
lower than TD,β .

Another possibility is to consider a momentum-
independent mean free path � instead of τ as a characteristic
parameter of scattering for different states on the Fermi
surface [63]. This may be a realistic scenario, for example, if
scattering is mainly determined by a 2D dislocation network
[42]. In Eq. (5) the scattering time can be replaced by the
mean free path with the help of the approximate relation
� ≈ τ pF/mc, where pF � √

2eh̄F is the relevant “averaged”
Fermi momentum estimated from the SdH frequency F .
Then, using the given above estimations of TD,α and TD,β , we
obtain �α � 97 nm and �β � 77 nm for the α and β orbits,
respectively. These two values are much closer to each other
than TD,α and TD,β . This is because the relatively large τα

is partially compensated by the strongly enhanced effective
cyclotron mass mc,α , see Sec. IV B. Of course, these are
only rough estimates, taking into account the approximations
made above. However, one can consider this result as a hint
to an important role of dislocations in the damping of SdH
oscillations in the present material.
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FIG. 8. (a) Closeup of the field-dependent resistance data from
Fig. 4 for fields B < 7 T. The star marks the crossover between
different magnetoresistance regimes, see text. (b) The nonoscillating
resistance component plotted against the square root of magnetic
field. Starting from ∼10 T the resistance acquires the
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dence. The dashed straight line is a guide to the eye.

V. SEMICLASSICAL MAGNETORESISTANCE

A. Field perpendicular to layers: Effects of magnetic
breakdown and field-induced dimensional crossover

Apart from the quantum oscillations, the magnetoresis-
tance of κ-(BETS)2Mn[N(CN)2]3 exhibits several other fea-
tures, which can be seen in detail in Fig. 8. At zero field
the material is superconducting. However, the zero-resistance
superconducting state is very rapidly suppressed in this field
geometry: The normal-state resistance is already restored at
B ≈ 0.5 T. The resistive transition is followed by a small
sharp peak. This anomaly is better pronounced at liquid 4He
temperatures [5] and has been observed on a number of other
layered organic superconductors [38,64,65]. Its origin is most
likely associated with a specific influence of superconduct-
ing fluctuations on the interlayer conduction in a strongly
anisotropic, quasi-2D superconductor [66–68].

In the fully normal state the resistance begins to increase
rapidly with the field. However, already starting from ∼1.2 T
it gradually flattens out, shows a broad maximum around
4 T, and slightly, by ∼1%, decreases as the field is further
increased to ≈5.5 T.

One can qualitatively explain this behavior in terms of
the MB effect. Generally speaking, at low fields, B 	 BMB,
there are two distinct types of electron orbits on the Fermi
surface: closed orbits on the α pockets and the orbits on
the open Fermi sheets. The contribution of the carriers on
the closed orbits to the interlayer conductivity only weakly
depends on magnetic field, whereas the contribution from the
open orbits decreases proportionally to 1/B2 [69–71]. Thus,
in the absence of MB, the open orbits are “freezing out” and
magnetoresistance rapidly increases with field, asymptotically
approaching a value solely determined by the closed cyclotron
orbits. When the field becomes comparable to BMB, tunneling
of carriers through the MB gap gives rise to new closed
orbits and reduces the relative weight of the classical open
orbits. Finally, at B � BMB almost all the carriers execute
the large closed β orbit, equally contributing to the interlayer
conductivity. This leads to a significant increase of interlayer
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conductivity, hence, decrease of resistivity in comparison to
what it would be without MB.

While the above description is only qualitative, one could
try to roughly estimate the MB field, ascribing it to the field
at which the magnetoresistance considerably curves down
from its initial slope. According to Fig. 8(a), it happens in
the interval between 1.5 and 3 T, which would imply a MB
gap �MB � 1.3–2 meV. This is much higher than 0.3 meV
obtained from the analysis of the quantum oscillations. How-
ever, as pointed out in Sec. IV C, the latter value is also only
a very rough estimation. Therefore, the obtained discrepancy
should not be considered as a severe contradiction between
two methods but rather as an illustration of subtlety of such
kind of estimations.

At high enough fields, B � BMB, the large closed orbit
β dominates. However, the magnetoresistance does not keep
saturating, as the standard magnetotransport theory [69–71]
predicts, but rather grows notably starting from Bcr � 6 T
all the way up to the highest field. Above 10 T it precisely
follows a

√
B dependence, as illustrated in Fig. 8(b). The

same field dependence has recently been reported for another
highly anisotropic layered conductor and explained in terms
of a field-induced dimensional crossover to a “weakly coher-
ent” interlayer transport regime [72]. The latter is defined as
coherent interlayer charge transfer under a strong magnetic
field, when the cyclotron frequency ωc significantly exceeds
both the zero-field intralayer scattering rate 1/τ0 and the inter-
layer tunneling rate ∼t⊥/h̄. At such conditions the impact of
scattering on pointlike defects on charge transport is enhanced
similarly to the case of a purely two-dimensional system [73].
As a result, the scattering rate and hence interlayer resistance
are predicted [52,73,74] to grow proportionally to

√
B.

Assuming that bending of the R(B) dependence at Bcr is en-
tirely caused by the crossover to the weakly coherent regime,
one can evaluate the upper limit for the interlayer trans-
fer integral: 2t⊥ � h̄ωc,cr ≡ h̄eBcr/mc,β = 0.1 meV (here we
used the value for the cyclotron mass mc,β = 7.0me obtained
from the SdH data). Estimating, further, the Fermi energy
as εF ∼ h̄eFβ/mc ≈ 70 meV, we obtain the anisotropy ra-
tio, εF/2t⊥ � 700. The information on t⊥ in known BETS
salts is very scarce. Comparing with better studied κ-type
BEDT-TTF salts, similar values have been reported for the
most anisotropic compounds κ-(BEDT-TTF)2X with X =
Cu(NCS)2 [75] and I3 [76]. The very low value of t⊥ is fully
consistent with the absence of beats in the SdH oscillations
and thus further justifies the use of the 2D Lifshitz-Kosevich-
Shoenberg formula (4) for the oscillation amplitude.

In Figs. 4 and 8, the bending of magnetoresistance at
Bcr may look somewhat too sharp for what one would
generally expect from a gradual crossover. However, a
similar sharp bending has been found on pressurized α-
(BEDT-TTF)2KHg(SCN)4 at �1 T [72]. Moreover, the recent
numerical calculations of the interlayer magnetoresistance
in a quasi-two-dimensional metal [77] made in the self-
consistent Born approximation have reproduced a relatively
sharp crossover from a nearly constant value to a

√
B depen-

dence in a field when the Landau level separation becomes
larger than their width 2	0 = h̄/τ0. Note that in this case the
crossover is determined by scattering rather than by interlayer
charge transfer: The condition h̄ωc � 2t⊥ is supposed to be

fulfilled already at lower fields. If we adopt the same crossover
criterion, h̄ωc,cr � 2	0, for our case, we can estimate the
transport scattering time, τ0 � mc,β/eBcr ≈ 6.5 ps. This value
is much higher than the scattering time derived from the Din-
gle factor of the SdH oscillations, τD = h̄/2πkBTD ≈ 0.6 ps.
Such a large difference is not uncommon for organic metals
[72,78,79] and is caused by different scattering mechanisms
dominating in the charge transport and quantum oscillation
damping. In particular, as argued in Sec. IV C, the Dingle
factor in our material is mainly determined by scattering on
dislocations, which usually plays only a minor role in the
charge transport, especially in the interlayer direction.

B. Angle-dependent magnetoresistance
and the Fermi surface geometry

The main panel of Fig. 9 shows examples of the resistance
recorded at rotating the sample in a constant magnetic field,
B = 28 T. The resistance was measured as a function of polar
angle θ at different fixed azimuthal angles ϕ; a sketch of the
measurement geometry is given in the upper panel of Fig. 9.
The measurements were done in the range −36◦ � ϕ � 144◦.
For most of the azimuthal orientations clear oscillations peri-
odic in tan θ have been detected.

In Fig. 9 the relevant local maxima are marked by ar-
rows. These angle-dependent magnetoresistance oscillations
(AMRO), also known as Yamaji oscillations, originate from
periodic geometric resonances of the interlayer charge trans-
port in a quasi-2D metal in a tilted magnetic field [80–85].
They are frequently observed in organic metals and utilized
for exploring the Fermi surface geometry [20].

To determine the shape of the Fermi-surface in-plane cross
section, we follow the procedure proposed in Ref. [86] for the
general case of a low-symmetry layered system. First, for each
θ sweep the AMRO period is evaluated from the linear fit of
the N th local maximum positions plotted in the tan θ scale
against N , according to the condition:

|tan θN | = �0(|N + γ | − 1/4), N = ±1,±2, ..., (7)

where the offset γ (−1 < γ < 1) is determined by the in-
plane projection of the interlayer hopping vector [86]. An
example of such fitting for ϕ = 54◦ is shown in Fig. 9(b).
In the figure, the positive and negative indices are shifted by
−1/4 and +1/4, respectively, in order to include data for both
positive and negative angles in a common fit.

The period �0 is given by the ratio of the reciprocal
lattice period Kz in the interlayer direction and the maximum
in-plane Fermi wave vector projection kmax

B on the field rota-
tion plane: �0(ϕ) = 1/2[Kz/kmax

B (ϕ)]. Thus, using the exper-
imentally determined AMRO periods and substituting Kz =
3.24 nm−1 taken from the low-temperature crystallographic
data [5], we evaluate kmax

B for different azimuthal orientations
ϕ. The result, in polar coordinates, is shown in Fig. 10. Here,
the filled circles represent the data obtained directly from the
experiment, while the open circles are the same data translated
by 180◦, taking into account the inversion symmetry of the
Fermi surface. Further, through each point kmax

B (ϕ) a straight
line perpendicular to the direction ϕ is drawn (thin dashed
lines in Fig. 10) and the in-plane Fermi surface (thick green
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FIG. 9. Upper panel: Schematic of the sample orientation in a
magnetic field defined by the polar angle θ and azimuthal angle
ϕ, as introduced in Sec. II. Lower panel: Examples of the angular
dependence of the resistance in a magnetic field of 28 T at different
azimuthal orientations ϕ indicated on the right-hand side. The curves
are vertically shifted for clarity. The arrows point to the positions
of AMRO maxima, see text. The stars mark the −1st and +1st
maxima corresponding to additional oscillations dominating near
ϕ � 90◦. Insets: (a) high-θ part of the R(θ ) dependence at ϕ = 54◦ in
an enlarged scale, showing high-order AMRO maxima; (b) AMRO
positions plotted in the tan θ vs N scale, for ϕ = 54◦. The positive
and negative indices N are shifted, respectively, to the left and to
the right by 1/4, in order to enable a common linear fit according to
Eq. (7).

line) is constructed as a contour inscribed in the whole set of
these straight lines.

The size of the obtained Fermi surface is close to that of the
first Brillouin zone, in agreement with the large Fermi surface
predicted by the band structure calculations and with the
frequency of the fast quantum oscillations presented above.
No AMRO associated with the small α pockets of the Fermi
surface have been found. This is obviously a consequence of
the strong MB regime which governs the magnetoresistance

0°

45°

90°

135°

180°
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270°

315°

kb

1 nm-1

kc

FIG. 10. In-plane cross section of the Fermi surface determined
from the AMRO data as described in the text. The red symbols are
the values of kmax

B (ϕ) in polar coordinates. Filled symbols are the
data obtained directly from the R(θ ) curves at the corresponding
angles ϕ; open symbols are the same data shifted by 180◦. For a
comparison with the theoretical predictions the Fermi surface from
Fig. 2 is shown by the thick dashed line.

behavior at B = 28 T even at relatively high tilt angles, at least
up to �70◦.

As to the shape of the Fermi surface, it is also quite similar
to the theoretical one, which is indicated in Fig. 10 by the
thick dashed line. It also has relatively flat segments inclined
by � ± 40◦ with respect to the kc axis and a sharp “nose”
along kc. The dimension along kc appears to be slightly
smaller and along kb slightly larger than calculated. However,
the difference does not exceed the experimental error bar.
Therefore we can speak about very good quantitative agree-
ment between the theoretical predictions and the experimental
results.

Surprisingly, at azimuthal orientations in a narrow interval
of � ± 5◦ around the kb direction the conventional AMRO
vanish. In this interval the R(θ ) dependence is governed
by other, nonperiodic oscillations, see the ϕ = 87◦ curve in
Fig. 9. The new features seem to compete with the AMRO.
Outside the mentioned ϕ range they only persist at low tilt an-
gles, |θ | < 30◦. At the same time the AMRO maxima, which
are expected at the positions pointed by dotted arrows in
Fig. 9, are completely suppressed. By contrast, at higher θ the
conventional AMRO are restored, whereas the new features
disappear. Thus, there seems to be no angular range where
both kinds of oscillations coexist. It should be noted that at the
angles, at which switching between the two kinds happens, no
change in the cyclotron orbit topology is expected.

Similarly to the AMRO and other geometrical effects of
the Fermi surface in a quasi-2D metal [20], the new features
appear to keep their angular positions at changing the field
strength. This is illustrated in Fig. 11 where the R(θ ) depen-
dence is shown for two azimuthal orientations at B = 28 and
15 T. On the other hand, the influence of the field strength on
the amplitude of the features is relatively weak: Figure 11(a)
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FIG. 11. θ sweeps at B = 15 and 28 T, at: (a) ϕ = −36◦ and
(b) ϕ = 93◦. Arrows point to the AMRO positions. Dashed vertical
lines illustrate the independence of the positions of the additional,
“non-AMRO” features on the field strength.

shows that at decreasing the field to 15 T the usual AMRO
practically vanish, whereas the peak around θ = 5.5◦ only
becomes slightly lower and more smeared.

All in all, the new features are unlikely a pure effect of the
Fermi surface geometry. One may look for their origin in cou-
pling between charge and spin degrees of freedom. Indeed, the
magnetoresistance, especially in the interlayer direction, may
be sensitive to the magnetic state of Mn2+ ions in the anion
layer. The ambient-pressure magnetic experiments [16–18]
have revealed a dramatic slowing of the spin dynamics in the
manganese subsystem at low temperatures and considerable
interactions with antiferromagnetically ordering π -electron
spins in the Mott-insulating state. However, at present we do
not have enough data to establish a direct link between the
magnetoresistance behavior and magnetic properties. A fur-
ther study, for example, combined angle-resolved resistance
and magnetic measurements in the metallic state should be
helpful for clarifying the situation.

Finally, we discuss the dependence of magnetoresistance
on the in-plane field orientation. Figure 12 shows the re-
sistance values corresponding to θ = 90◦, taken from the
R(θ ) curves recorded at different ϕ. The notable variation
of the resistance, as the field is turned in the layer plane, is
generally associated with coherent interlayer charge transport
in a layered system with an anisotropic in-plane cross section
of the Fermi surface [87,88].

The shape of the R(ϕ) dependence resembles that observed
on materials with open Fermi sheets such as Bechgaard
salts (TMTSF)2X [89–91] or (DMET)2X [92,93]. The mag-
netoresistance is at a maximum when the field is directed
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FIG. 12. Angular dependence of the resistance in a field parallel
to the conducting layers, at B = 15 and 28 T. Dotted lines are guides
to the eye.

along the plane of the sheets, in our case ϕ = 0◦ (i.e., B‖c),
and decreases towards ϕ = 90◦, exhibiting two minima at
ϕ ≈ 90◦ ± 30◦. As shown in Fig. 12, a change of the field
strength by almost a factor of two only affects the absolute
value of magnetoresistance; the shape of the ϕ dependence
remains largely unchanged. Most importantly, the angles of
the resistance minima stay the same, suggesting that they are
associated with the Fermi surface geometry. At first glance,
they can be ascribed to the “third angular effect”at the field
directions perpendicular to inflection points on the Fermi
surface [89,90]. However, our Fermi surface contains, besides
the open sheets, a cylindrical α pocket. Moreover, since the
gaps between the sheets and the pocket are very small, it
is the large closed Fermi surface cross section delineated in
Fig. 10, which basically determines the magnetoresistance
behavior. Assuming a momentum-independent scattering rate,
one would expect minima of R(ϕ) at a field perpendicular to
the parts of the Fermi surface with the smallest curvature [20],
that is, perpendicular to the flat segments of the α pocket.
According to Figs. 2 and 10, these directions are tilted by
≈40◦ from the b axis, i.e., 10◦ away from the positions of
the detected resistance minima. This discrepancy definitely
exceeds the experimental error bar and the uncertainty in the
Fermi surface shape.

A shift of the resistance minimum positions from the
directions given by the Fermi surface geometry may occur if
the carrier mobility significantly depends on momentum. For
example, Sugiwara et al. [94,95] used the apparent mismatch
between the R(ϕ) dependence and the Fermi surface shape to
evaluate the k dependence of scattering rate in some BETS
and BEDT-TTF salts. In our case, the shift of the resistance
minima towards the direction of the b axis can be explained
by a suppressed mobility on the α Fermi pocket. This seems
to be a likely scenario, keeping in mind the particularly strong
enhancement of the effective mass mc,α revealed in the SdH
experiment.

As mentioned above, the significant ϕ dependence of mag-
netoresistance associated with the Fermi surface geometry is
evidence of a coherent interlayer charge transport. On the
other hand, a broad dip observed in all θ sweeps around θ =
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±90◦, see, e.g., Fig. 9, reveals the presence of an incoherent
conduction channel [88,96]. Thus, the total interlayer con-
duction includes both the coherent and incoherent channels.
However, the small amplitude of the dip (<10% of the total
magnetoresistance) indicates that only a minor fraction of the
total conductivity is incoherent.

Despite the dominant contribution of the coherent conduc-
tion channel, we were unable to detect a sharp peak in the
angle-dependent magnetoresistance around θ = 90◦ [97,98],
which is often considered as a fingerprint of the coherent
interlayer transport regime. The reason for that is most likely
the very high anisotropy. Indeed, besides the effective field-
strength parameter ωcτ , the magnitude of such a “coherence
peak” depends on the anisotropy ratio [98]. The peak is partic-
ularly strong in clean quasi-2D metals with a moderately high
anisotropy, εF/2t⊥ ∼ 100–200 [86,98–100], but diminishes in
more anisotropic materials [75,76,88]. In a clean sample of
κ-(BEDT-TTF)2Cu(NCS)2, showing an anisotropy similar to
our compound, the peak height was found to be only a few
percent of the total resistance in fields 42–45 T [57,75]. In
our experiment the highest field was 1.5 times lower and the
Dingle temperature about 4 times higher (TD � 2 K against
0.5 K in Ref. [57]), which explains the absence of the peak in
the present data.

VI. SUMMARY

We have studied the Fermi surface properties of
κ-(BETS)2Mn[N(CN)2]3 both theoretically and experimen-
tally. The experiment was done under a moderate pressure, in
order to stabilize the metallic ground state. The large cylindri-
cal Fermi surface predicted by the calculations is found to be
split into a pair of open sheets extended in the kakc plane and
a cylinder with a rhombuslike in-plane cross-section area of
≈27% of the first Brillouin zone. The sheets and the cylinder
are separated from each other by small, of the order of 1 meV,
gaps on the Brillouin zone boundary caused by a disorder of
the dicyanamide groups in the anion layers and, possibly, by
a weak spin-orbit interaction. The predicted size and shape
of the Fermi surface are confirmed by the SdH oscillations
as well as by the classical AMRO. In particular, the SdH
spectrum shows two fundamental frequencies corresponding,
respectively, to the classical cyclotron orbit α on the small
Fermi cylinder and to the large β orbit caused by magnetic
breakdown through the gaps. While the topology of the Fermi
surface is typical of the κ-type salts of BEDT-TTF and BETS,
there are a few interesting features specific to the present
compound.

The effective cyclotron masses determined from the T de-
pendence of the SdH oscillations show a strong enhancement
which can only partially be attributed to the peak in the calcu-
lated one-particle DOS near the Fermi level. The main reason
for the enhancement is the renormalization effect of electron
correlations in the vicinity of the Mott-insulating transition.
The effect clearly exhibits a momentum dependence, being
especially strong on the α pocket of the Fermi surface. A
likely reason for the momentum-selective enhancement of
correlations is a partial flattening of the conducting band,
associated with the α pocket, which places this part of the
system closer to the metal-insulator transition. Additionally,

the nesting property of this pocket could contribute to the
instability of the metallic state. The heavier effective mass
leads to a lower mobility of the carriers on the α pocket.
Indeed, a close examination of the ϕ dependence of the
classical magnetoresistance in conjunction with the shape of
the in-plane Fermi surface indicates a suppressed contribution
of these carriers to the interlayer conductance. Further experi-
ments at different pressures are required in order to understand
how the insulating instability develops on different parts of
the Fermi surface upon approaching the metal-insulator tran-
sition.

The field dependence of the SdH amplitude reveals a
considerable difference between the Dingle temperatures cor-
responding to the α and β orbits. The apparent contradiction
can be solved by suggesting a constant mean free path instead
of scattering time to be the relevant parameter in the Dingle
factor. This is a realistic scenario if the Landau level broaden-
ing responsible for damping of the oscillations is mainly deter-
mined by scattering on a 2D dislocation network. By contrast
to the quantum oscillations, the classical magnetoresistance is
largely insensitive to dislocations. As a result, the scattering
time estimated from the crossover in the magnetoresistance
field dependence is considerably longer than that inferred
from the quantum oscillations.

The crossover field also sets the upper limit for the inter-
layer transfer energy, 2t⊥ � 0.1 meV, which is �700 times
lower than the Fermi energy. Despite the weak coupling be-
tween the layers, the interlayer charge transport is dominated
by the coherent conduction channel. This is indicated both by
prominent AMRO and by the considerable ϕ dependence of
the magnetoresistance in a field parallel to layers.

Besides the well-known AMRO effect, an additional series
of pronounced nonmonotonic features has been found in the
θ -dependent magnetoresistance. These features are unlikely a
pure effect of the Fermi surface geometry. Keeping in mind
the proximity to the insulating state with nontrivial magnetic
properties, they might be a result of charge-spin coupling
in the presence of a magnetic instability. Ideally, combined
resistive and magnetic studies under pressure should clarify
this point. This is, however, a difficult experimental task due
to the very small size of the samples. On the other hand, one
could gain additional information from a magnetoresistance
study of the mixed salt κ-(BETS)2Co0.13Mn0.87[N(CN)2]3.
This sister compound displays very similar phase diagram
and zero-field resistive properties but a considerably different
magnetic anisotropy as compared to the present salt [101].
Confronting the magnetoresistance behaviors of the two salts
may be helpful for understanding the origin of the new oscil-
lations.
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