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Abstract. The rule governing the mutual position of three
boundary lines meeting at one point in a two-dimensional phase
diagram is derived in a new way using the fact that a boundary
can be extended into the metastable region beyond the point of
its intersection with another line. An improved formulation of
the rule is proposed, which makes it independent of the diagram
axes chosen and suitable for the analysis of two-dimensional
sections of phase diagrams of heterogeneous systems with any
number of components. Conditions for and some aspects of the
application of the rule are considered using phase diagrams of
one-, two-, and three-component systems as examples.

1. Introduction

A joint of three boundary lines is a common element of two-
dimensional phase diagrams and two-dimensional sections of
phase diagrams of a higher dimension. In the construction of
equilibrium phase diagrams and for checking their correct-
ness, a rule is of great utility which in the most general form
can be formulated as follows:

The extension of the boundary line between two phase
regions beyond the point of intersection with the boundaries of
a third region should lie inside this third region.

An equivalent formulation can also be found:

The angles between the boundary lines of three phase
regions meeting at one point should be less than 180°.

Surprisingly enough, we could only retrieve two publica-
tions [1, 2] in which proofs are given for the rule of triple
joints, the proofs being made by two different methods for
two different types of diagrams.

V E Antonov Institute of Solid State Physics,

Russian Academy of Sciences,

142432 Chernogolovka, Moscow region, Russian Federation
Tel. +7(496) 522 40 27. Fax + 7 (496) 522 81 60

E-mail: antonov@issp.ac.ru

National University of Science and Technology ‘MISiS’,
Leninskii prosp. 4, 119049 Moscow, Russian Federation

Received 3 May 2012, revised 8 June 2012

Uspekhi Fizicheskikh Nauk 183 (4) 417—422 (2013)
DOI: 10.3367/UFNr.0183.201304d.0417
Translated by S N Gorin; edited by A Radzig

In Ref. [1] representing one of the most complete and
detailed textbooks on phase diagrams, the rule of triple joints
is proven for the diagrams of eutectic invariant equilibrium in
the temperature—composition (7—X) coordinates in two-
component systems at a constant pressure P. The thermo-
dynamic potential method applied in Ref. [1] also allows one
to prove the rule of triple joints for the 7— X diagrams of
other types of invariant equilibrium in two-component
systems and can be extended to the diagrams of invariant
equilibria in the temperature—volume (7— V') coordinates for
one-component systems. This method, however, is inapplic-
able to the T— P diagrams of one-component systems and for
two-dimensional sections of phase diagrams of systems with
more than two components.

In some textbooks and handbooks (e.g., in textbook [3]),
it is noted that the rule of triple joints for the 7— P diagrams
of one-component systems can be proved based on the
Clausius—Clapeyron equation; however, we have failed to
find such a proof in the literature. A proof of the rule for this
particular but important type of diagrams has been given in
the famous work by Schreinemakers [2], who developed an
original (and used up to date) method for analysis of phase
diagrams. That proof was based on the possibility to extend
each of the three lines of phase equilibria into the metastable
region beyond the point of their intersection.

The present paper will show that the sufficient condition
for the rule of triple joints to be valid is that two of the three
boundary lines have metastable extensions beyond the point
of the joint. This finding permitted us to employ the concept
of metastable extensions of the boundary lines for an analysis
of the applicability of this rule to triple joints in the diagrams
of systems with any number of components.

The proven rule reads as follows:

Let it be a point of a joint of three boundary lines in a two-
dimensional diagram of phase equilibria or in a two-dimensional
section of a diagram. If at least two of these lines allow a
metastable extension beyond the point of the joint, the extension
of each of the three lines should lie in the phase region bounded
by the two other lines.

Proving the rule in this paper is followed by a discussion
of the main types of phase diagrams and phase equilibria
that must obey this rule. Examples of violation of the rule
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are also given and the reasons for the violation are
explained.

2. Proof of the rule of triple joints

The metastable extension of a boundary line describes the
same equilibrium as the very line does because the state of the
system corresponds, as before, to the minimum of the
appropriate thermodynamic potential of the system, but
this minimum is not the deepest one. If a certain phase
composition of the system becomes more stable than another
after crossing the boundary line, this composition will also
be more stable after crossing the metastable extension of the
line.

It follows from this, in particular, that if the boundary
line has a metastable extension beyond the point of the joint
with two other boundary lines, these two lines (rays) of the
stable equilibrium should lie on opposite sides of the
extended line.

Indeed, asin Fig. 1a, let the boundary lines 0b and oc lie to
the left of the line oa and of its metastable extension od shown
by a dashed line. Phase state {A} is the most stable state of the
system in the aob sector; state { B}, in the boc sector, and state
{C}, in the entire coa sector, including the cod sector. On the
other hand, since state {A} is more stable than state {C} to
the left of line oa, it should also remain more stable to the left
of the od line, including the cod sector. This contradicts the
initial condition that {C} is the most stable phase state in the
cod sector. Such a sector cannot exist and, therefore, the
oc line should lie to the right of the aod line.

Now, along with the oa line, let one more boundary line,
e.g., the ob line, be extended metastably beyond the point of
the triple joint. In accordance with the proof given above,
the oa and oc lines should lie on opposite sides of the ob line
and its extension oe. In combination with the requirement
that the oc line be located to the right of the aod line, this
allows the oc line to lie only in the doe sector, as in Fig. 1b.
As a result, the extension of of the oc line should be found in
the boa sector irrespective of whether of represents a
metastable equilibrium or not. Thus, we come to a situation
depicted in Fig. Ic, where the extension of each of the three
lines lies in the phase field whose boundaries are the two
other lines.

Figure 1. Boundaries between phase regions (solid lines) and metastable
extensions of these boundaries (dashed lines) near the point o of the triple
joint. The phase states {A}, {B}, and {C} may differ in both the full
number and the set of phases.

Notice that the above-proved rule of the joint of three
boundary lines can be used ‘in parts’. If the boundary between
two phase fields can have a metastable extension beyond the
point of intersection with the boundaries of the third phase
field, this extension should necessarily lie between the
boundaries of the third region. If the metastable extensions
are possible for two boundaries, the extension of each of the
three boundaries lies in the region between two other
boundaries.

3. Applicability conditions of the rule

When proving the rule, it was assumed that one and only one
phase equilibrium state of the system corresponds to each
point in the diagram. Gibbs [4] has shown that this condition
can be fulfilled for heterogeneous systems in which each of the
components is present in each of the phases, the pressure P is
isotropic everywhere, and the effects due to the interfaces
between different phases and due to the applied external fields
(electric, gravitational, etc.) are negligibly small. The phase
state of such systems is determined in a unique fashion by the
choice of the total amount of each component and by the
values of two external parameters. Four different pairs of
external parameters are possible, namely, the entropy S and
the volume V of the system (the equilibrium corresponds to
the minimum of the internal energy E of the system); S and P
(minimum of the enthalpy H = E + PV'); T and V (minimum
of the Helmholtz energy F=E—TS), and 7 and P
(minimum of the Gibbs energy G = E + PV — TS).

When studying phase equilibria, two pairs of external
parameters are usually employed: either T and P or T and V.
Thus, a diagram whose points unambiguously determine all
possible phase states of an n-component system can be
constructed on n + 1 independent axes. Along two of these
axes, the values of the external parameters should be applied,
T and P or T and V; along the other n — 1 axes, the values of
n — 1 concentrations of different components of the system
(e.g., n — 1 molar or weight fractions X;; with the concentra-
tion of the nth component being determined in this case from
the condition X, = 1 — Z?’;l X;). The points of any section
of the complete (n+ 1)-dimensional diagram will also
unambiguously determine the phase states of the system,
but this will only be a certain fraction of the states and not all
of them.

Following the standard practice, we will for brevity call
the sections of phase diagrams merely diagrams in those cases
where it is obvious or insignificant which parameters of the
system were fixed in obtaining the section.

3.1 One-component systems

To begin the discussion of the applicability of the above-
proved rule to various two-dimensional phase diagrams and
two-dimensional sections of phase diagrams of a higher
dimension, it is convenient to start with the 7— P diagram of
water in the vicinity of the triple point (solid + liquid + gas),
which is given schematically in Fig. 2a. A distinctive feature of
the phase diagram of this one-component system is a decrease
in the equilibrium melting temperature 7;, with increasing
pressure, which is due to the smaller specific volume of the
liquid phase compared to that of the solid phase (upon
melting, AS > 0, and in combination with the inequality
AV < 0, the Clausius—Clapeyron equation gives dTy,/dP =
AV/AS < 0). Because of a decrease in Ty, under pressure,
some regions of the P— IV diagram of water (Fig. 2c) represent
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Figure 2. Schematic diagram illustrating phase equilibria in water in various coordinates: (a) 7 and P; (b) T and V, and (c) P and V. In each diagram,
S labels the solid phase (ice); L, the liquid phase; G, the gas phase (water vapor), and K, the critical point. Dashed lines depict the metastable extensions of

phase boundaries beyond the points of triple joints.

the state of the system ambiguously, which permits us, at the
end of this section, to discuss the related limitations on the
application of the rule of triple joints.

As to the T— P diagram (Fig. 2a), it should be noted, first
of all, that neither the Gibbs energy nor any physical
properties of the phases of water have singularities at the
boundaries between regions {S}, {L}, and {G}. At the
intersection of the boundary, the Gibbs energy of one phase
of water becomes higher than the energy of the other phase;
however, the atomic configuration of the first phase continues
corresponding to the minimum Gibbs energy, but this
minimum is not the deepest now. The conversion of one
aggregate state of a substance into another one occurs
through the formation of intermediate states that are none-
quilibrium and therefore possess a higher Gibbs energy,
producing a potential barrier between the initial and final
states. The barrier may be very small, but due to its presence
each phase of water can exist for a finite time in a metastable
state in a certain range outside the region of its absolute
stability in the T— P diagram and, in particular, can be in
equilibrium with some other metastable phase.

Experimentally, the metastable equilibria are usually
observed if the formation of a new phase proceeds via a
homogeneous nucleation and growth of nuclei. For this to
occur, the nuclei should acquire, as a result of thermal
fluctuations, additional energy necessary for the formation
of an interface with the old phase. For example, in the absence
of heterogeneous nucleation of particles of the solid phase
(ice), the liquid state of water admits strong undercooling,
and a metastable equilibrium between the liquid L and gas G
can really be observed (including natural water reservoirs) in
the stability region of the solid phase S, as is indicated by a
dashed line in Fig. 2a.

The overheating of ice, as of most other crystalline
phases, is only possible by employing some special meth-
ods, since the liquids (with rare exceptions) completely wet
the surface of a solid phase of the same substance, and the
formation of a liquid layer on the surface of a melting body
does not require the expenditure of energy for the formation
of a new interface [5]. For example, aluminum single crystals
can be overheated in a shock wave by 60 K above the
equilibrium melting point [6], and polycrystalline selenium
can be overheated by 5 K by creating a specific micro-
structure [7]. Ice single crystals can be overheated by 0.3 K
applying a high-frequency electric field [8], and by 5 K using
a jumpwise increase in pressure [9]. However, for the rule of

triple joints to be operative, it is unessential precisely which
method was utilized to delay the transition of the system to
the equilibrium state, and how far beyond the triple point the
metastable line of equilibrium could be extended in experi-
ment.

In order to determine whether or not, in principle, the line
of equilibrium between two phases admits extension beyond
the point of intersection with the boundaries of the stability
region of a third phase, let us imagine that this third phase, for
some reasons (e.g., for kinetic ones), fails to form. If the
absence of the third phase does not disturb the phase
equilibrium described by the line of interest, then the
metastable extension of this line is possible. In the absence
of the liquid L phase, as is seen from Fig. 2a, nothing prevents
the establishment of the equilibrium between the solid and gas
phases of water beyond the triple point in the {L} region. The
absence of the gas phase allows the establishment of an
equilibrium between the liquid and solid phases in the {G}
region. Thus, all three equilibrium lines in Fig. 2a can be
extended metastably beyond the point of intersection; there-
fore, their disposition in the vicinity of this point should obey
the rule of triple joints.

In general, we cannot rule out the possibility that the
critical point in the line of liquid—gas equilibrium, which is
labelled by the letter K in Fig. 2a, will lie close to the triple
point or even coincide with it. The entropy and the volume are
functions of the state of the system; therefore, when going
around the triple point, the sums of the jumps in the entropy
and volume at the boundary lines between the stability
regions of the liquid, gas, and solid phases should be equal
to zero:

AS1 G +ASGgs + ASst. =0 and AVig +AVgs +AVsy =0.
(1)

At the critical point, the distinctions between the liquid and
gas disappear, and for the transition between these phases we
have AS g = 0 and AV g = 0. If the critical point coincides
with the triple point, conditions (1) transform into
ASgs = —ASsL and AVgs = —AVsL, and, according to the
Clausius—Clapeyron equation, the slopes of the ‘gas—solid’
and ‘solid-liquid’ boundary lines become identical:
dTGs/dP = AVas/ASGS = (—AVSL)/(—ASSL) = dTSL/dP.
Thus, the closer the critical point in the ‘liquid + gas’
equilibrium line to the triple point, the closer the angle
between the two other equilibrium lines to 180°.
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Based on the same property of the critical point—
equality of the entropy and volume jumps to zero—we can
find in a similar way that if the line of equilibrium between
two crystalline phases is terminated at the critical point ! lying
in the melting curve or in the curve of transition to some other
crystalline phase, then no bending will be observed on this
curve at the point of the joint.

In the T—V diagram of water (Fig. 2b), the two-phase
invariant equilibria are represented by two-dimensional
regions, while the three-phase invariant equilibrium by
superposing tie-lines /-2, 2-3, and /-3, where the points 1,
2, and 3 represent the equilibrium values of the volumes of the
liquid, solid, and gas phases, respectively. At point 3, three
phase regions meet: {G}, {S + G}, and {L + G}. If we inhibit
the formation of the L phase, the boundary between regions
{G} and {S + G} can be extended metastably beyond point 3
and, in accordance with the rule of triple joints, this extension
will be projected into region {L + G} (dashed line in Fig. 2b).
If the S phase fails to form, then the boundary between
regions {G} and {L + G} can be extended beyond point 3
and the resulting line will reside in region {S + G}, which is
also shown in Fig. 2b by a dashed line.

The boundary between regions {S+ G} and {L + G}
cannot be extended metastably beyond point 3, since this
boundary is pinned to points /, 2, and 3, and the position of
these points is uniquely determined by the conditions of the
invariant equilibrium. Nevertheless, the formal extension of
the {S + G}/{L + G} boundary beyond point 3 should fall
into region {G}, in accordance with the rule of triple joints,
since the existence of the metastable extensions for the other
two boundaries meeting at point 3 ensures the fulfillment of
this rule for all three boundaries. Analogous considerations
lead to a conclusion on the validity of the rule of triple joints
for point 7 as well.

Equilibria that include liquid and gas phases in one-
component systems are frequently illustrated in P—V dia-
grams. At the same time, P and V' do not belong to the pairs of
external parameters that unambiguously determine the phase
state of the system. In those places of the P— V' diagram where
one and only one phase state corresponds to each point of the
plane (e.g., in the vicinity of point 3 in Fig. 2a), the rule of
triple joints is fulfilled. However, places can exist where such
an unambiguous correspondence is violated. For example,
two-phase regions {S + L} and {L + G}, referring to differ-
ent temperatures, overlap in the curvilinear triangle /-2—4 in
Fig. 2c. The rule of triple joints for point / is not fulfilled.

3.2 Two-component systems
The application of the rule of triple joints to the phase
diagrams of two-component systems can be considered for

! In some studies (see, e.g., monograph [5], Ch. 8), it is stated that the line of
equilibrium between the crystalline phases cannot terminate at a critical
point, since the different crystalline modifications of a substance differ
qualitatively between themselves because of the different internal symme-
try. This statement, however, does not take into account the existence of
transformations between isomorphic phases, whose crystal structures
have the same symmetry and differ only in the values of their lattice
parameters. An example of a substance with such a transformation is given
by cerium, in which a transition between two modifications with a face-
centered cubic structure is observed under pressure. At room temperature,
the transition is accompanied by a jumpwise decrease in volume reaching
8%. With increasing temperature and pressure, the thermal and volume
effects of the transition weaken, and at 7~ 550 K and P ~ 1.9 GPa these
both simultaneously decrease to zero— the line of the phase equilibrium
terminates at a critical point [10, 11].

L+a

o o+ p

A B

Figure 3. 7—X diagram of a two-component system with a peritectic
equilibrium L + = o, where L stands for liquid, and o and B are two
different crystalline phases.

the example of a T— X diagram of a system with peritectic
equilibrium, shown in Fig. 3 (to be exact, this diagram
represents a T— X section of the full 7— P— X diagram of the
system cut by the plane P = const). The peritectic equilibrium
L + B = o shown in Fig. 3 is invariant; the positions of the
points /, 2, and 3 representing the equilibrium compositions
of the liquid L, phase o, and phase B cannot change; therefore,
the horizontal boundary /-2-3 cannot be metastably
extended either to the left (beyond point /) or to the right
(beyond point 3).

Point / is the meeting point of the boundaries of three
phase regions: {L}, {L + a}, and {L + B}. Upon transition
near point / from region {L} to region {L + B}, crystals of the
B-phase with the composition of point 3 should begin to
precipitate from a liquid with the composition of point /.
Upon transition near point / from region {L + a} to region
{L + B}, the crystals of the a-phase with the composition of
point 2 should disappear, by converting into a mixture of the
liquid with the composition of point / and the B-phase with
the composition of point 3. In addition to the potential
barriers for the formation and growth of nuclei of new
phases in all these processes, a diffusive redistribution of the
components between the phases should also occur, since their
compositions are different. Consequently, the process of the
formation of the B-phase can, in principle, be delayed, and
then the boundary between regions {L} and {L + o} will be
extended metastably beyond point / into the region {L + B}.
Quite similarly, the formation of the a-phase can also be
delayed in region {L + o}, and the {L}/{L + B} boundary
can be extended into this region metastably. The existence of
the metastable extensions of these two phase boundaries
ensures the fulfillment of the rule of triple joints for point /;
therefore, the extension of the horizontal boundary 1—2—3
should lie in region {L}.

An analogous consideration indicates that the rule of
triple joints should be fulfilled for point 3 of the peritectic
diagram given in Fig. 3. In the same way, it can be proven that
the rule of triple joints is fulfilled at the endpoints of the
horizontal lines of the invariant equilibrium in the T—X
diagrams of two-component systems with an eutectic,
monotectic, synthectic, metatectic, and other types of invar-
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A,,B,+B
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Figure 4. 7—X diagram of a two-component system without solid
solutions. Horizontal line /-2 represents the eutectic equilibrium
L = A + A,,B,; horizontal line 3—4 represents the peritectic equilibrium
L + B = A,,B,,. Dashed lines show the metastable extensions of the lines
of liquidus of the B component and of the stoichiometric A,, B, compound
beyond the point of intersection with the horizontal 3—4.

iant equilibria. The condition that warrants the validity of the
rule for these 7—X diagrams is the presence of each
component in each phase involved in the equilibria under
consideration.

In the systems with two or more components, however,
there can be phases in which one or several components are
absent. If such a phase resides in the region of the diagram
adjacent to the point of a triple joint, two of the three
boundaries that meet at this point can be extensions of each
other, and the joint will acquire a T-like shape. As an
example, Fig. 4 displays a T—X section of a T—P—X
diagram of a two-component system in which the A and B
components and A,,B, compound forms no solid solutions.
As is seen from this figure, the rule of triple joints is fulfilled
only for point 3, while the joints at points /, 2, and 4 have
a degenerate, T-like shape.

3.3 Three-component systems

It should be noted that the variety of phase boundaries
admitting a metastable extension beyond the point of a triple
joint is not limited with the curved lines or sections of curved
boundary surfaces, considered above. These may also be
sections of ruled surfaces formed by tie-lines; correspond-
ingly, the rule of triple joints can be applied to two-
dimensional sections of phase diagrams with three or more
components.

As an example, Fig. 5a presents a vertical (‘polyther-
mal’) section of a three-dimensional 7— X — X, diagram (to
be exact, this is an isobaric section of a four-dimensional
T—P—X;—X, diagram) of a three-component system with
an invariant eutectic equilibrium L =a+ pf+v. In this
section there are two triple joints of boundary lines at points
1 and 3. The /-2-3 line represents a section of the horizontal
plane of invariant equilibrium; therefore, as in the preceding
cases, this line cannot be extended either to the right or to the
left.

The boundaries of the phase regions {L+B+v}, {B+v},
and {o+p+7v} meet at point 3. Both the {L+B+v}/ {B+v}
and {B+v}/{a+ P+ v} boundaries are sections of ruled
surfaces separating the corresponding bulk phase regions in
the three-dimensional 7— X — X, diagram. As is seen from
the phase composition of the regions, the boundary
{L+B+7v}/{B+7v} line can be extended metastably

A D

Figure 5. Vertical (‘polythermal’) section through a three-dimensional
T—X;—X, diagram of a three-component system with an invariant
eutectic equilibrium L = o+ B + y at the temperature 7. The point D
lies on the BC side of the concentration triangle ABC. The symbol T,
marks the point of intersection of the horizontal line of the eutectic
equilibrium L = § + v in the constituent binary BC system.

beyond point 3 into the region {a + B+ v} if the a-phase
fails to appear. The boundary {B + v}/{o+ B + v} line can
be metastably extended beyond point 3 into region
{L+B+7v} if no phase L forms. Since two boundaries
admit a metastable extension beyond the intersection point,
the rule of triple joints is valid for point 3, and the extension of
the horizontal boundary /-2-3 should lie in region {p + vy}.

It follows from analogous considerations that the disposi-
tion of the phase boundary lines in the vicinity of point 7 also
obeys the rule of triple joints.

4. Conclusions

The finding that the rule of triple joints should already be
valid if only two out of three boundary lines can have a
metastable extension beyond the point of intersection allowed
us to formulate this rule in a form applicable to the analysis of
a large variety of the types of diagrams of phase equilibria in
the systems with an unlimited number of components. The
flexibility of the rule is to a significant extent due to the fact
that it does not specify exactly which coordinate axes are
utilized for constructing the phase diagram.

At the same time, the application of the rule in the
suggested formulation requires a more rigorous understand-
ing of the term ‘metastable extension’ of a phase boundary
compared to its commonly accepted meaning. A necessary
condition for the existence of such an extension is that the
phase equilibrium described by the boundary line remain
thermodynamically feasible beyond the point of its intersec-
tion with another boundary line. To the best of our know-
ledge, the possibility of the absence of a metastable extension
for phase boundaries of one type or another has not been
discussed previously in the literature (most likely because of
the absence of practically important consequences). Never-
theless, some phase boundaries cannot certainly be extended,
e.g., no metastable extension is possible for the horizontal
lines of invariant equilibria in the above-considered 7—X
diagrams. Moreover, except for the T— P diagrams of one-
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component systems, we have found no example of phase
diagrams with a joint of three boundary lines in any two-
dimensional section such that all these three lines could have
metastable extensions beyond the point of the joint. Our
paper gives recommendations of how to determine whether
the boundary line admits a metastable extension or not.

The rule of the joint of three boundary lines proved in this
paper can be used ‘in parts’. If the boundary between two
phase fields allows a metastable extension beyond the point of
its intersection with the boundaries of a third region, the
extension should lie between the boundaries of this third
region.

The rule is only applicable to the diagrams which uniquely
represent the phase compositions of the regions adjoining the
triple joint. This condition is always fulfilled for the T— P—X
and T—V—X diagrams of heterogeneous systems for which
the Gibbs phase rule [4] is known to be valid, i.e., for the
systems in which each phase contains all the components, the
pressure is isotropic everywhere, and the effects due to
interfaces between different phases and due to the external
fields are negligible. If a diagram is constructed on other
coordinate axes, it can describe the state of the system
ambiguously in the vicinity of some triple joints, and the
rule that has been proved in this paper cannot be applied to
these joints (as an illustration, the paper considered the
violation of the rule for one of the triple joints in the P—V
diagram of water presented schematically in Fig. 2c). Notice
also that in the case if one or several components is missing in
a phase or phases presented in the region of the diagram
adjoining the point of the triple joint, then two of the three
phase boundaries meeting at this point can be the extensions
of one another, and the joint acquires a degenerate T-shape
(see Fig. 4).
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