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The rule of triple joints has recently been proved for two-dimensional phase diagrams and two-dimen-
sional sections of phase diagrams of a higher dimension (Antonov, 2013). The present paper is extending
this rule to phase diagrams of binary metal–hydrogen systems composed of a metal immersed in a hydro-
gen gas. The rule is shown to be valid for every triple point in the temperature–pressure phase diagrams
of these systems, including the points with the intersecting boundary lines tangent to each other. The
paper also considers the sufficient conditions for the application of the rule to triple points in the
projections of phase diagrams onto the temperature–concentration plane.
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1. Introduction

The rules (or theorems) related to the topology of phase dia-
grams are very few. These include the Palatnik–Landau contact
rule for phase regions [1] and two its consequences, the cross rule
[1] and the Rhines phase rule [2], and also the rule of triple joints.
The paper below will present the part of the talk concerning the
rule of triple joints. This rule places limitations on the mutual posi-
tion of three boundary lines meeting at one point in a two-dimen-
sional phase diagram or in a two-dimensional section of a phase
diagram of a higher dimension. The rule is usually formulated as
follows:

The extension of the boundary line between two phase regions
beyond the point of intersection with the boundaries of a third region
should lie inside this third region.

The rule for triple joints is widely used in constructing equilib-
rium phase diagrams and in the error tests. However, for a very
long time, the rule has only been proved for triple joints in the
T–P diagrams of one-component systems [3]. The proof was based
on the possibility to extend each of the three lines of phase equilib-
ria into the metastable region beyond the point of their intersec-
tion. This condition, however, is never fulfilled for the triple
points in phase diagrams of other types.
It was only recently that we noticed that the rule of triple joints
should already be valid if two out of the three boundary lines can
have a metastable extension beyond the point of their intersection.
This finding allowed us to advance an improved formulation of the
rule [4]:

Let it be a point of a joint of three boundary lines in a two-dimen-
sional diagram of phase equilibria or in a two-dimensional section of a
diagram. If at least two of these lines allow a metastable extension
beyond the point of the joint, the extension of each of the three lines
should lie in the phase region bounded by the two other lines.

The rule in this new form is illustrated by Fig. 1.
For the analysis of some phase equilibria, a more detailed for-

mulation of the rule can be recommended:
Let it be a point of a joint of three boundary lines in a two-dimen-

sional diagram of phase equilibria or in a two-dimensional section of a
diagram. If the boundary between two phase regions can have a meta-
stable extension beyond the point of intersection with the boundaries
of the third phase region, this extension lies between the boundaries of
the third region. If metastable extensions are possible for two bound-
aries, the extension of each of the three boundaries lies in the region
between two other boundaries.

As one can see, the proved rule does not specify the types of the
axes on which the diagram is built (pressure P, temperature T, vol-
ume V, concentrations x, electric field, etc.), or the number of com-
ponents of the system, or the type or variance of the phase
equilibria presented in the diagram. This makes the rule more flex-
ible and applicable to the analysis of two-dimensional sections of
phase diagrams of heterogeneous systems with any given number
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of components. On the other hand, applying the rule in the
improved form requires a more rigorous understanding of the term
‘‘metastable extension’’ of a phase boundary compared to its com-
monly accepted meaning.

Another significant requirement is that the diagram should
unambiguously represent phase compositions of the regions
adjoining the triple joint. This requirement is always fulfilled for
two-dimensional sections of the T–P–x and T–V–x diagrams of het-
erogeneous systems for which the Gibbs phase rule [5] is known to
be valid, i.e., for the systems in which each phase contains all the
components, the pressure is isotropic everywhere, and the effects
due to interfaces between different phases and due to the external
fields are negligible. Before applying the rule to a triple point in a
diagram of other type, one have to make sure that the three phase
regions only meet at this point and do not overlap.

Conditions and some aspects of the application of the rule to the
diagrams of the Gibbs type were considered in Ref. [4]. This paper
will consider a special case of phase diagrams of binary metal–
hydrogen system, in which a metallic sample is brought in thermo-
dynamical equilibrium with a H2 gas surrounding it.
2. Temperature–pressure phase diagrams

There are basically two types of phase equilibria in the metal–
hydrogen systems.

Many metals (rare earths, titanium, zirconium, etc.) easily
absorb hydrogen at low pressures and do not lose it in inert media,
even at elevated temperatures. The total hydrogen concentration in
these metals can be varied independently of other parameters that
also govern the phase state of the system (temperature, pressure,
concentrations of different metallic components). Phase diagrams
of the metal–hydrogen systems of this type have no specific fea-
tures compared with the diagrams considered in Ref. [4].

Phase equilibria of another type are observed when a metal
sample (one- or multicomponent) is immersed in an atmosphere
of molecular hydrogen, and the temperature is high enough to
establish the dynamical equilibrium between the hydrogen inside
and outside the sample. In this case, the total concentration of
hydrogen in the metal cannot be varied at will. Instead, the hydro-
gen concentration in each of the pcond phases formed in the sample
is determined by the equality lðiÞH ¼ 1

2 lH2
, where lðiÞH ðT; PÞ is the

chemical potential of hydrogen in the i-th metallic phase (i = 1, 2,
. . ., pcond) and lH2

ðT; PÞ is the chemical potential of molecular
hydrogen.

The line of the liquid–gas equilibrium in molecular hydrogen
terminates at a critical point at Tcr � 33 K and Pcr � 13 bar [6]
and the melting line of molecular hydrogen only rises to room tem-
perature at P � 5 GPa and further to T = 150 �C at P � 10 GPa [7]. In
Fig. 1. Boundaries between phase regions (solid lines) and metastable extensions of
these boundaries (dashed lines) near the point O of the triple joint. The dash-dotted
line in the right-hand diagram represents a formal extension of boundary 3
predicted by the rule of triple joints. The phase states {A}, {B}, and {C} may differ in
both the full number and the set of phases.
a wide T–P range above the critical point and the melting line,
molecular hydrogen behaves as a homogeneous gas (or fluid) and
serves as pressure transmitting medium and a reservoir for loading
the metal phase(s) with hydrogen up to the equilibrium concentra-
tions, which vary with the temperature and pressure in a unique
fashion.

Of special interest is the important case of systems composed of
a one-component metal (or any other condensed substance, solid
or liquid) reacting with H2 gas taken in excess. The total number
of phases in such a system with n = 2 components is p = pcond + 1,
and the Gibbs phase rule gives the variance (number of degrees
of freedom)
f ¼ n� pþ 2 ¼ 2� ðpcond þ 1Þ þ 2 ¼ 1� pcond þ 2;
which looks exactly like that for the usual one-component system.
Particularly, the maximum possible number of coexisting phases,
pcond, is three. This may occur if the number of degrees of freedom
attains its minimum possible value, which is zero.

Correspondingly, the topology of the T–P diagram describing
phase states inside a one-component condensed substance sur-
rounded with a hydrogen gas should be the same as that of a
one-component system: equilibria between two condensed phases
should be represented by curves, and three-phase equilibria by iso-
lated points. The only difference is that the hydrogen concentration
in each condensed phase varies with T and P.

By way of illustration, Fig. 2a shows a T–P diagram of the Mn–H
system characterized by a rather large variety of phase transforma-
tions in the studied range of hydrogen pressures and temperatures.
At atmospheric pressure, there are four modifications of manga-
nese: a-Mn and b-Mn with complex cubic lattices, fcc c-Mn and
bcc d-Mn. The maximum hydrogen solubility in a-Mn and b-Mn
is a few atomic percent [8]. The atomic ratio x = H/Mn of solid
hydrogen solutions in c-Mn reaches x = 0.36 at P = 0.8 GPa and
T = 1000 �C [8] and further increases to x = 0.41 at 2 GPa and
800 �C [9] and to no less than x = 0.72 at 5 GPa and 900 �C [10].
The hydrogen content of the e hydride (hcp metal lattice) at
T = 350 �C varies from x � 0.8 at 1 GPa to x � 0.95 at 4 GPa [8].
The composition of the e0 hydrides (double hcp metal lattice) is
expected to be similar to that of the e hydrides and the hydrogen
content of the Mn–H liquids is not known [10]. The interaction of
high-pressure hydrogen with d-Mn has not been studied. The
boundary lines in Fig. 2a show the conditions of decomposition
of the hydrides, and these conditions should be close to those of
the corresponding phase equilibria (see [11] for discussion and
explanation).

The significant differences and variations of hydrogen concen-
trations in the Mn–H phases have no impact on the applicability
of the rule of triple joints to the T–P diagram because the temper-
ature and pressure are the same in these phases. Moreover, the rule
must be valid for each triple point in the diagram, because every
boundary line representing a two-phase equilibrium can be
extended metastably (remains thermodynamically feasible)
beyond the point of its intersection with the boundaries of the sta-
bility region of a third phase. This can be demonstrated in the same
way as with the usual one-component systems [4].

Indeed, let us consider triple point 1 in Fig. 2a and imagine that
the c phase fails to form for some reasons (e.g., for kinetic ones). In
the absence of this phase, both a and e phases can exist in the c
region of the diagram and be in equilibrium with each other and
this equilibrium will be represented by a metastable extension of
the a/e boundary. Similarly, the absence of the e phase allows
the extension of the a/c boundary in the e region, and the e/c
boundary will have a metastable extension in the a region if the
a phase does not form.
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Fig. 2. (a) Experimental T–P phase diagram of the Mn–H system. The lines of the
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3. Clapeyron’s equation

As can easily be shown, in the binary Me–H systems with excess
hydrogen there is an analog of Clapeyron’s equation derived for
one-component systems. In the most general form, a two-phase
equilibrium in the Me–H system can be written as MeHx þ y�x

2

H2 ¼ MeHy. Differentiating the corresponding equation GMeHxþ
y�x

2 GH2 ¼ GMeHy for the Gibbs energies along the line of equilibrium
between the MeHx and MeHy phases in the T–P phase diagram and
taking into account that ð@G=@PÞT ¼ V and ð@G=@TÞP ¼ �S, we
arrive at:

dT=dP ¼ DV=DS; ð1Þ

where DV and DS are the total volume and entropy change of the
system undergoing the above reaction.

If applied to the T–P diagram of the Mn–H system shown in
Fig. 2a, this analog of the Clapeyron equation demonstrates, in
particular, that DV = 0 for the phase transformations at the mini-
mum of the melting line of the c phase at �3.5 GPa and 900 �C
and at the shallow maximum of the e M e0 equilibrium line at
�7 GPa and 750 �C, because dT/dP = 0 in both cases.

Results of the in situ X-ray measurements [10] allow estimating
the maximum possible difference DVe?e0 = |Ve0 � Ve| 6 0.1 Å3/atom
Mn � 0.06 cm3/mol Mo between the volumes of the e0 and e phases
near the maximum of the e M e0 line. In order that the total volume
effect of the e ? e0 transition be zero, this transition should be
accompanied by a change of DVgas = �DVe?e0 in the volume of
the molecular hydrogen surrounding the sample. The H2 gas com-
pressed to 7 GPa at 750 �C has Vgas = 8.85 cm3/mol H2 [12] there-
fore the difference between the hydrogen contents of the e0 and
e phases should not exceed D(H/Mn) = 2DVe?e0/Vgas 6 0.015. Since
the composition of the e hydride is known to be close to MnH at a
pressure of 7 GPa [8], using Eq. (1) thus predicts that the composi-
tion of the e0 hydride is close to MnH, too.

The usefulness of Eq. (1) for error tests of T–P phase diagrams
can be illustrated via the analysis of volume effects accompanying
the a ? c transition in the Cr–H system studied earlier by in situ
X-ray diffraction [13]. As seen from Fig. 3, the line of the a ? c
transition passes through a minimum at P � 2.3 GPa and
T � 755 �C. Near this point, the dilute a solution of hydrogen in
bcc chromium has xa = H/Cr � 0.03 and Va � 12.23 Å3/atom Cr,
while the c phase with an fcc metal lattice has Vc � 15.05 Å3/atom
Cr [13]. The authors of Ref. [13] assumed the c phase to be a
hydride with the composition close to CrH throughout the T–P
range labeled ‘‘c’’ in Fig. 3. However, from the condition DVa?c +
DVgas = 0 at the point of minimum and from DVa?c = Vc � Va
� 2.82 Å3/atom Cr = 1.70 cm3/mol Cr and Vgas = 13.87 cm3/mol H2

[12] at this point it follows that the hydrogen content of the c
phase should be xc = xa + 2DVa?c/Vgas � 0.03 + 0.41 = 0.44.

The most likely explanation of the resulting discrepancy is that
the a ? c line presented in Fig. 3 is not constructed correctly,
because the c phase with Vc � 15.05 Å3/atom Cr cannot have
xc = 0.44 if it is composed of chromium and hydrogen. First, a chro-
mium hydride with the fcc metal lattice and H/Cr � 1 can be pre-
pared by cathodic electrodeposition of chromium, and the atomic
volume of such a hydride is 14.31 Å3/atom Cr at T = 8 K and ambi-
ent pressure (see [14] and references therein). The existence of
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another fcc hydride, the c phase, with a similar (and even larger)
atomic volume and approximately two times less hydrogen con-
tent is very unlikely, because the high pressure would stabilize
the denser phase. Second, hydrogenation of 3d-metals is known
to increase their atomic volume at a rate varying from �2.0 Å3/
atom H for cobalt [15] to �3.0 Å3/atom H for nickel [16]. Assuming
that the increase DVa?c in the atomic volume of chromium is due
to the absorption of Dx = 2DVa?c/Vgas of hydrogen suggests an
incredibly high value of DVa?c/Dx = 2.82/0.41 � 6.9 Å3/atom H.

4. Additive relations and degenerate triple points in the
temperature–pressure diagrams

In full analogy with usual one-component systems, one can also
use the additive relations for the three changes in volume, DVi, and
three changes in entropy, DSi, accompanying phase transitions
around the triple point:

DV1 þ DV2 þ DV3 ¼ 0 and DS1 þ DS2 þ DS3 ¼ 0 ð2Þ

Using Eqs. (1) and (2), it can be demonstrated that triple joints
cannot appear as a smooth line crossed by another line at a finite
angle, which is rather often found in experimental phase diagrams.
As an example, Fig. 4a shows on a larger scale a vicinity of triple
point 3 in the Mn–H system. The c/e and c/e0 boundary lines inter-
secting at this point make a common line without a break, and the
e/e0 line crosses it.

Let us consider a triple joint shown in Fig. 4b, where lines 1 and
2 have equal slopes (dT/dP)1 = (dT/dP)2 at the point O of their inter-
section with line 3. Using Eq. (1) gives DV1/DS1 = DV2/DS2 at point
O. Solving this equation together with Eq. (2) under the assumption
that DS3 – 0 leads to DV3/DS3 = DV1/DS1 = DV2/DS2. Using Eq. (1)
again, we get:

ðdT=dPÞ3 ¼ ðdT=dPÞ1 ¼ ðdT=dPÞ2: ð3Þ

This suggests that point O should be a tangency point of all
three boundary lines.

Metastable extensions of lines 1, 2, and 3 can only intersect at
point O and do not coincide with any of these stable lines or among
Fig. 4. (a) T–P diagram of the Mn–H system in the vicinity of triple point 3 (see
Fig. 2a). The dashed line is an extension of the e M e0 boundary beyond the triple
point. (b and c) Triple point O of the adjacent T–P stability regions of phases A, B and
C in the case of boundary lines 1 and 2 making a common line without a break.
Stable boundaries 1, 2 and 3 are shown by the solid lines and metastable extensions
1e, 2e and 3e of these boundaries by the dashed lines.
themselves. For example, if the extension of line 1 representing
equilibrium between phases A and B had another common point
with line 2 representing equilibrium between phases B and C, then
this would be a second point of the three-phase equilibrium
A + B + C. At the same time, the Gibbs phase rule only allows one
such point. Similar considerations are also valid for the intersec-
tions of all other pairs of stable and metastable boundaries near
point O. Since all these boundaries have one and only one common
point O, the rule of triple joints is fully applicable to it. A possible
arrangement of the metastable boundaries near the triple joint is
shown in Fig. 4c.

In a special case of DS3 = 0 and DS1 = �DS2 – 0, solving the
equation (dT/dP)1 = (dT/dP)2 together with Eqs. (1) and (2) gives
DV3 = 0. The condition that both DS3 and DV3 are zero is fulfilled
if line 3 terminates at a critical point coinciding with triple point
O in the T–P diagram. If this happens, the value of (dT/dP)3 at point
O will be uncertain and line 3 will have no metastable extension
beyond this point. We can, however, consider the situation with
line 3 passing through point O, so that the critical point appears
beyond it. Now, even if the critical point is infinitely close to point
O, the three boundary lines must obey Eq. (3) and be tangent to
each other at the point of intersection. Correspondingly, the joint
will look like that in Fig. 4b irrespective of whether line 3 termi-
nates at a critical point or not. Further, if lines 1 and 2 allow meta-
stable extensions beyond point O, the extensions of all three lines
will obey the rule of triple joints, though the extension of line 3
will not describe any phase equilibrium.
5. Projections of phase diagrams onto the temperature–
concentration plane

If an independent axis of the overall hydrogen concentration in
the metal is added to a T–P phase diagram of a binary Me–H
system, the resultant T–P–x diagram will consist of curved surfaces
located above the single-phase regions in the T–P diagram. These
surfaces will be connected with each other by ruled two-phase sur-
faces perpendicular to the T–P plane and projecting onto the
boundary lines in it. Most T–x and P–x sections of such a three-
dimensional phase diagram are not very informative, and it is cus-
tomary to present T–x and P–x projections of the curved and ruled
surfaces constructed in a certain interval of, respectively, hydrogen
pressures and temperatures. At low and moderate hydrogen pres-
sures, the projections of different surfaces do not often overlap
because the increase DVcond in the volume of a metal sample due
to the hydrogen absorption is much lower than the resulting
decrease DVgas in the volume of gaseous hydrogen.

In fact, consider the reaction MeHx þ y�x
2 H2 ¼MeHy. At constant

temperature, the pressure-induced gain in the Gibbs energy of this
reaction is DG ¼

R P
P0 DVdP and it is therefore fully determined by

the negative volume effect of the reaction DV ¼ ðVMeHy � VMeHx Þ�
y�x

2 VH2 ¼ DV cond þ DVgas < 0:
As a result, the increase in the H2 pressure leads to the increase

in the hydrogen solubility in metallic phases and to the formation
of new Me–H phases with a higher hydrogen concentration. This
provides a one-to-one correspondence between the scales of pres-
sure and concentration.

For example, no overlap of phase regions meeting at the triple
points is observed in the T–x projection (Fig. 2b) of the T–P–x phase
diagram of the Mn–H system. The rule of triple joints should there-
fore be valid for each of these points if not less than two of the
three intersecting lines have metastable extensions.

Let us consider triple point a(1) of the contact of phase regions
{a}, {a + e} and {a + c}. Similar to what was said in Ref. [4] about
triple points in the T–V diagrams of one-component systems, imag-
ine that phase c does not form. In this case, both a and e phases
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can exist in the {a + c} region, the boundary between regions {a}
and {a + e} can therefore be extended metastably beyond point
a(1) and, in accordance with the rule of triple joints (its more
detailed version), this extension will be projected into region
{a + c} as shown by the dashed line in Fig. 2b. If the e phase fails
to form, then the boundary between regions {a} and {a + c} can
be extended beyond point a(1) and the resulting line will reside
in region {a + e}, which is also shown in Fig. 2b by a dashed line.

The boundary between regions {a + e} and {a + c} is formed by
two superimposed tie-lines, a(1)–c(1) and a(1)–e(1). The position of
points a(1), c(1), and e(1) is uniquely determined by the conditions
of the invariant equilibrium a + c + e and therefore the {a + e}/
{a + c} boundary cannot be extended metastably beyond point
a(1). Nevertheless, the formal extension of the {a + e}/{a + c}
boundary beyond point a(1) should fall into region {a}, in accor-
dance with the rule of triple joints, since the existence of the meta-
stable extensions for the other two boundaries meeting at point
a(1) ensures the fulfillment of this rule for all three boundaries.
Analogous considerations lead to a conclusion on the validity of
the rule of triple joints for all other five triple points in Fig. 2b as
well (these are points labeled e(1), a(2), c(2), c(3), and e(3)).

It should be noted, however, that the increase in the hydrogen
concentration in all Me–H phases with increasing pressure is not
a sufficient condition for the absence of overlaps in the T–x projec-
tion of a T–P–x diagram. Particularly, there should be an interval of
pressures with overlapping phase states around a point of maxi-
mum or minimum of the boundary curve in the T–P diagram (see
the appearance of the {e + e0} region in Fig. 2b).

Different phase regions will also overlap in the T–x projections
of phase diagrams of the systems, in which hydrides have high-
pressure modifications with the same H/Me ratio, but different
crystal structures. The Mg–H system with MgH2 dihydride experi-
encing a series of transformations at increasing pressure (see [17]
and references therein) can serve as an example.

Besides, the one-to-one correspondence between the scales of
pressure and hydrogen concentration in the condensed phases,
which is usually observed at low and moderate pressures, can no
longer hold true at higher pressures. This happens when a negative
DVcond of the transition to a phase with smaller hydrogen content
can overweight the resulting positive DVgas, rapidly decreasing
with pressure due to the large compressibility of molecular hydro-
gen. The effect like this has already been observed in the binary
H2O–H2 system, in which the sII phase (hydrogen clathrate
hydrate) with a very loose crystal structure and the molecular ratio
H2/H2O � 0.4 transforms at P � 0.35 GPa to the C0 phase with a
similar hydrogen content, and the C0 phase further decomposes
at P � 0.8 GPa to a mixture of the denser C1 phase with a smaller
ratio of H2/H2O � 0.1 and H2 gas [18,19]. Because of the resulting
overlaps of different phase regions in the T–x projection of the T–
P–x phase diagram of the H2O–H2 system, some triple points in this
projection do not obey the rule of triple joints, though the rule still
remains applicable to every triple point in the T–P diagram.

6. Conclusions

Proving the rule of triple joints [4] allowed us to ascertain the
sufficient conditions for its application to many types of phase dia-
grams of many different systems. The present paper considers
phase diagrams of binary metal–hydrogen systems with the
molecular hydrogen taken in excess. It is shown that as long as
the hydrogen around the sample remains a homogeneous gas-like
substance and undergoes no phase transitions, the T–P diagrams of
such systems will look as networks of triple points connected with
lines of two-phase equilibria, and the position of the lines near
each point will obey the rule of triple joints. It is worth noting,
too, that the rule will also be valid in the very large T–P range
below the melting curve of molecular H2. The reason is that hydro-
gen does not experience any phase transitions in the solid state at
pressures up to 300 GPa or even higher (see [7,20] and references
therein). The crystalline hydrogen will therefore serve as homoge-
neous pressure transmitting medium and a reservoir for loading
the metal samples with hydrogen up to the equilibrium concentra-
tions, in full analogy with the gaseous hydrogen at lower pressures.

Regarding the domain of applicability of the rule and equations
discussed in Sections 2–4, it seems also worth mentioning that the
one-component metal (or other substance) does not necessarily
consist of one chemical element. This can be a compound – say,
LaNi5 – and as long as the compositions of its hydrogenated phases
can be written as LaNi5Hx, the LaNi5 ‘‘molecule’’ should be consid-
ered as a single component, and the LaNi5–H system as a binary
system.

Moreover, even non-stoichiometric alloys can interact with
hydrogen as one-component substances, though the lines of their
phase transformations can only be interpreted as metastable ones
and the equilibrium phase states of the hydrogenated alloys may
be quite dissimilar. For example, at high hydrogen pressures and
temperatures above 250 �C, hydrides of disordered fcc Pd–Cu alloys
form superstructures composed of alternating Cu and PdH layers
[21,22] and hydrides of disordered fcc Pd–Ni alloys irreversibly
decompose to a hydride of nearly pure Ni and a hydride of Pd with
a few atomic per cent Ni [23]. Nevertheless, if two or more hydro-
genated phases have the same composition of the metal sublattice,
the equilibrium among them and the surrounding hydrogen gas
should obey every rule for binary metal–hydrogen systems irre-
spective of whether the equilibrium is stable or metastable.
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