Supplementary Material: Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn

A. I. Kolesnikov,^{1,a)} A. Podlesnyak,² R. A. Sadykov,^{3,4} V. E. Antonov,⁵ M. A. Kuzovnikov,^{5,6} G. Ehlers,² and G. E. Granroth⁷

¹Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

²Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

³Institute for High Pressure Physics, RAS, 108840, Moscow, Troitsk, Russia ⁴Institute for Nuclear Research, RAS, 117312 Moscow, Russia.

⁵Institute of Solid State Physics, RAS, 142432 Chernogolovka, Moscow Region, Russia ⁶Institute of Physical Chemistry, PAS, 01-224 Warsaw, Poland

⁷Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

^{a)} Corresponding author. Electronic address: kolesnikovai@ornl.gov

FIG. S1: (Q,E) contour plots of S(Q,E) spectra of α -MnH_{0.07} measured at a 22 kbar pressure and *T*=6 K using the SEQUOIA spectrometer with E_i =25, 160 and 225 meV shown in the top, middle and bottom pictures, respectively.

FIG. S2: Raw INS spectra of α -MnH_{0.07} measured at a 16 kbar pressure at *T*=1.5 K and 30 K using the CNCS spectrometer with E_i =12 meV. The black curve shows the spectrum of the pressure-cell with fluorinert in the cryostat at ambient pressure and *T*=1.5 K. The peak at ~2.5 meV is a spurious peak from the pressure-cell; overall the spectra show a good signal (tunneling peak between 5 and 8 meV) to background ratio. The leftmost peak (between -5 and -8 meV, on the neutron energy gain side) in the spectrum of α -MnH_{0.07} at *T*=30 K is due to transition from the upper to lower split ground states of tunneling hydrogen (the upper state is temperature populated at 30 K).

FIG. S3: Raw INS spectrum of α -MnH_{0.07} measured at a 22 kbar pressure and *T*=6 K using the SEQUOIA spectrometer with E_i =160 meV. The black curve shows the spectrum of the pressurecell with fluorinert at ambient pressure and *T*=6 K. The data show a good signal to background ratio in the energy range of interest (hydrogen optical modes at about 73, 106 and 131 meV).

FIG. S4: INS spectrum of α -MnH_{0.07} measured at 23 K and ambient pressure (without a pressure cell) using the TFXA spectrometer at ISIS (the data are taken from Ref. 13). The curve with the red points shows the experimental spectrum; the pink solid line is a fit with the two Gaussian functions and the sloped liner background, which are shown separately as the blue, green and black curves, respectively. The ratio of the areas under the 2nd Gaussian and the 1st Gaussian is about 2, which agrees with the supposed tetragonal distortion in the arrangement of the Mn atoms on the 24g₂ sites (the nearest neighbors of the hydrogen atom) in the antiferromagnetic state.