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� Model of solid solutions PdeH with a symmetric two-well mixing energy is considered.

� The model explains the linear dependence lnP (1/T) for formation of palladium hydride.

� The formation pressure is determined by the reaction Pd þ (z/2)H2 ¼ PdHz at z ¼ 0.63

� Deviation of lnP (1/T) from linearity in this approximation is 1% at 194.5 � T � 565 K.

� Similar results are obtained for the systems Pd-D, NieH, and Ni-D.
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It is shown that the T-x projection of the miscibility gap in solid interstitial MeHx solutions

will be symmetric and the pressure vs. temperature dependence of the corresponding

isomorphic phase transformation will be determined by the reaction Me þ (z/2)H2 ¼ MeHz

with a fixed z value attained at T / 0 K, if the mixing Gibbs energy of the solutions is a

symmetric two-well function of the H content with a maximum at z/2. Based on these

findings and using the literature data for the pure metal Me and the hydride MeHz, it is

explained why the experimental dependences of the standard Gibbs energy for the

isomorphic transformation between two solid phases of variable composition in the PdeH

and Pd-D systems (z ¼ 0.63) and in the NieH and Ni-D systems (z ¼ 1) are close to linear in

the entire investigated temperature range.

© 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

A large number of metal-hydrogen systems exhibit a linear

dependence ln P(1/T) in wide ranges of temperature (T) at low

hydrogen pressures (P) where hydrogen can be considered as

ideal gas for phase transformations occurring between solid
te Physics RAS, 142432,
Antonov).

ons LLC. Published by Els
phases with different hydrogen concentrations. Formally,

such a dependence could be observed for the transformation

Me þ (z/2) H2 ¼ MeHz, where z ¼ const, if the standard

(referred to P0 ¼ 1 atm) enthalpy DH0 and entropy DS0 of this

transformation did not depend on temperature, since in this

case
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lnðP=P0Þ ¼ 2
�ðzRTÞ�G0

MeHz � G0
Me � G0

H2

� ¼ 2
�ðzRTÞDG0

¼ 2
�ðzRÞ�DH0

�
T� DS0

�
; (1)

where DG0 is the standard Gibbs energy of transformation and

R is the universal gas constant.

We were unable to find in the literature a discussion of the

question of why the values of DH0 and DS0 for the formation of

a hydride with fixed hydrogen content H/Me ¼ z are weakly

temperature dependent. Instead, a more mysterious problem

has been discussed for several decades: why the linear

dependence ln P(1/T) is observed in the most widely used and

best studied PdeH system (see Fig. 1a), in which the hydride is

formed by an isomorphic transition between phases of vari-

able composition e depleted in hydrogen (primary solid so-

lution) and enriched in hydrogen (hydride). The compositions

of these phases approach each other with increasing tem-

perature until they coincide at the critical point, and this can

be depicted on the T-x projection of the T-P-x phase diagramas

a dome of the miscibility gap in the solid PdeH solutions

(Fig. 1b).

The problem was considered in most detail in Refs. [6,7].

Both papers, however, only analyzed the behavior of DH0(T)

derived from the slope of ln P as a function of the reciprocal

temperature. In Ref. [6], the following expression was ob-

tained for the three-phase equilibrium Me1eyHy þ ½(xey)

H2 ¼ Me1exHx:

d
�
ln P1=2

�
dð1=TÞ ¼ ð1� xÞð1� yÞ�H'

m �Hm

�þ xy
�
HH � H

'
H

�
ðx� yÞR

þy
�
H

''
H �HH

�þ x
�
H

'
H � H

''
H

�
ðx� yÞR
Fig. 1 e Compilation of experimental data available in the litera

pressures of palladium hydrides (open red symbols) and deuteri

[2] (L€asser83), and [3] (Wicke81). The open stars show the positio

PdeH phase diagram: the literature data compiled in Ref. [5]. (F

legend, the reader is referred to the Web version of this article.
In this expression, the symbols H denote the partial molar

enthalpies of the phases participating in the reaction. The

unprimed symbols refer to the primary solid solutionMe1eyHy,

the single-primed symbols to the non-stoichiometric hydride

Me1exHx, and the double-primed symbols to the gaseous

hydrogen. The enthalpies of the primary solution and hydride

are unknown functions of the temperature and hydrogen

concentration. As noted in Refs. [6,7], the obtained expression

is “not amenable to facile quantitative interpretation.”

In Ref. [7], the authors considered separately the equilibrium

with hydrogen of single-phase solid solutions and hydrides

near the transformation line. After some simplifications and

assumptions, the following expression was obtained:

d
�
lnP1=2

�
dð1=TÞ ¼DHcalc

�H

R
¼DH�H

R
þT2

�
1

�
nð1�nÞ�24

	
2nu'�u'�b

b2þb�2nb

þ1

�
2



1�n

��
þ 1
RT



vDmeðnÞ

vn

�
T



dn
dT

;

where n ¼ H/Pd;b¼ ½1�4nð1�nÞð1�expð�u=RTÞÞ�1=2;u0 ¼1�exp

ð�u=RTÞ; u is the pairwise interaction energy between the two

hydrogen atoms, and Dme(n) has been attributed to a filling-in of

the d-band of palladium by electrons from the hydrogen atoms.

The authors of Ref. [7] came to the conclusion that the

factors leading to the constancy of d(ln P1/2)/d(1/T) in the above

equationwere largely fortuitous, but they did not specify what

those factors were. The authors also considered it quite

possible that for systems other than PdeH, d(ln P1/2)/d(1/T)

may have significant temperature dependence.

At the same time, linear dependences ln P vs. 1/T and/or

DG0/T vs. 1/T were also observed for isomorphic trans-

formations in the NbeH system [8] (Fig. 2a) and the NieH

system [9] (Fig. 3a). This is already a regularity that cannot

be attributed to random coincidences. A common feature of
ture for the PdeH and Pd-D systems. (a) Decomposition

des (solid black symbols) determined in Refs. [1] (Wicke64),

ns of the critical point [4] (Wicke78). (b) T-x projection of the

or interpretation of the references to color in this figure

)
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Fig. 2 e Decomposition pressures of niobium hydrides (a) and T-x projection of the phase diagram of the NbeH system (b)

determined in Ref. [8]. P0 ¼ 1 bar ¼ 0.1 MPa.

Fig. 3 e (a) Available experimental values of the standard Gibbs energy DG0/T as a function of 1/T for the reactions Ni þ ½H2

/ NiH (open red symbols) and Ni þ ½D2 / NiD (solid black symbols) compiled and corrected in Ref. [9]. (Phase

transformations in the NieH and Ni-D systems occur at pressures of the order of 1 GPa when hydrogen can no longer be

considered an ideal gas, therefore the ln P vs. 1/T dependences are substantially nonlinear.) (b) T-x projection of the phase

diagram of the NieH system [10]. (For interpretation of the references to color in this figure legend, the reader is referred to

the Web version of this article.)
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all three systems PdeH [5], NbeH [8], and NieH [10] is the

symmetry of the miscibility gap of the MeeH solid solutions

with respect to the critical concentration xcr ¼ z/2, where z is

the atomic ratio H/Me for the hydride phase at T / 0 K (see

Figs. 1b, 2b and 3b, respectively).

This paper proposes possible solutions to two problems:

i) Assuming that the mixing Gibbs energy of the interstitial

MeeH solid solution is a two-well function symmetric

with respect to the hydrogen content xcr ¼ z/2, leads to a

symmetric miscibility gap and shows that the tempera-

ture dependence of the pressure of the corresponding

isomorphic phase transformation is determined only by

the temperature dependences at a fixed pressure of

P0 ¼ 1 atm of the thermodynamic properties of the pure

metal and its hydride with the fixed composition MeHz

attained at T / 0 K.

ii) Using the available literature data on the P(T) dependences

for the isomorphic phase transformation and temperature
dependences of the heat capacities of pure metal Me and

hydride (deuteride) with an invariable composition MeHz

(MeDz), gives negligible deviations from linearity for the

temperature dependences of the standard Gibbs energy

DG0(T) ¼ DH0(T) e T∙DS0(T) of transformations in the PdeH,

Pd-D, NieH, and Ni-D systems. The changes in DG0(T) are

much less than the changes in DH0(T) and T∙DS0(T),
because these terms mostly have the same sign and

partially compensate each other.
Thermodynamics of solid solutions with a
symmetric energy of mixing

The condition for the equilibrium of two phases at a given

temperature and pressure in any two-component system is

the presence of a common tangent line to the concentration

dependences of the Gibbs energy of these phases. If

https://doi.org/10.1016/j.ijhydene.2022.03.034
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Fig. 4 e Graphical illustration of the common tangent rule

for two-phase equilibrium in solid solutions.
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components A and B form a solid solution, then all phases are

described by one common potential G(T,P,c), and the common

tangent rule turns into

8>><
>>:

vG
vc

ðc1Þ ¼ vG
vc

ðc2Þ
vG
vc

ðc2Þ ¼ Gðc2Þ � Gðc1Þ
c2 � c1

¼ DG
Dc

(2) and (3)

where c1 and c2 are the concentrations of component A in the

two phases in equilibrium with each other [11]. The rule is

illustrated in Fig. 4.

Substitutional solid solutions

Consider a substitutional solid solution with components A

and B and write its Gibbs energy in the form

GðT; P; cÞ ¼ c,GAðT; PÞ þ ð1� cÞ,GBðT;PÞ þ DGmixðT;P; cÞ;
where GA and GB are the Gibbs energies of crystals of pure

components, and DGmix is the mixing energy, the sign of

which determines whether the formation of solid solution is

energetically favorable (DGmix < 0) or unfavorable (DGmix > 0).

Now let DGmix represent a double-well potential as a function

of the concentration c at temperatures and pressures below

critical, and let it be symmetric with respect to the replace-

ment of c by 1ec, i.e., DGmix(с) ¼ DGmix (1eс). As can easily be

shown, the derivative v(DGmix)/vc should be an antisymmetric

function of c, i.e., v(DGmix(с))/vc ¼ ev(DGmix (1eс))/vc (for

example, introducing a new variable t ¼ ce1/2, the problem

can be reduced to the well-known lemma that the derivative

of an even function G(t) must be odd).

To make further formulas look simpler, let DGmix(с) ¼ f(c)

and v(DGmix(с))/vc ¼ 4(с). For fixed values of T and P, we then

get

GðcÞ¼ c ,GA þð1� cÞ ,GB þ fðcÞ (4)

vG=vc¼ðGA �GBÞ þ 4ðcÞ (5)
Substitution of these expressions into conditions (2) and (3)

for the existence of a common tangent line gives

4ðc1Þ¼4ðc2Þ (6)

4ðc2Þ¼ ½fðc2Þ� fðc1Þ� = ðc2 � c1Þ (7)

Next, replacing c2 by 1ec2 in Eq. (7) and using the symmetry

of f(c) and antisymmetry of 4(c) for the inverse replacement

1ec2 / c2 results in

4ð1� c2Þ¼ ½fð1� c2Þ� fðc1Þ� = ð1� c2 � c1Þ
�4ðc2Þ¼ ½fðc2Þ� fðc1Þ� = ð1� c2 � c1Þ (8)

Adding (7) and (8), we finally obtain

½fðс2Þ � fðс1Þ�ð1� 2c1Þ
ðс2 � с1Þð1� с2 � с1Þ ¼0

Possible solutions:

a) с1 ¼ ½ e the point of maximum in G(c) and an extraneous

root.

b) f (c1) ¼ f (c2) e a binodal, i.e., a boundary of the dome of the

miscibility gap on the T-c diagram of the solid solution.

On the binodal:

From (7) and (6): 4(c2) ¼ [f (c2) e f (c1)]/(c2ec1) ¼ 0 ¼ 4(c1).

From (5): vG/vc ¼ (GA e GB) þ 4(c) ¼ GA e GB.

Thus, Eqs. (2) and (3) of the common tangent line turn into

8>><
>>:

vðDGmixÞ
vc

¼ 4ðc1;T;PÞ ¼ 4ðc1;T;PÞ ¼ 0

vG
vc

¼ GAðT; PÞ � GBðT;PÞ
(9) and (10)

This is the main result for two-phase equilibrium in the

model with the mixing energy in the form of a two-well po-

tential symmetric with respect to the replacement of c by 1ec,

or, which is the same, symmetric with respect to the point

ccr ¼ ½. As seen from Eq. (9), the concentrations c1 and c2 of the

phases inside the two-phase region are determined by posi-

tions of theminima on the concentration dependenceDGmix(с)

at given T and P and are independent on GA and GB. In its turn,

the function vG/vc, which determines the position of the phase

transformation curve on the T-P diagram, does not depend on

the concentration c and is solely determined by the thermo-

dynamic properties of crystals of pure components A and B.

Interstitial solid solutions

To proceed from the solid substitutional solutions to inter-

stitial hydrogen solutions, imagine that the interstitial solu-

tion is a substitutional solution of the componentsA¼Me and

B ¼ MeHz, where z ¼ const. Then the concentration cz of 1 mol

of this interstitial solution will be equal to

cz ¼ NMeHz

NMeHz þNMe
¼ NH=z

NA
; (11)

where NA is the Avogadro number; NMe and NMeHz are the

numbers of “molecules” of the components, andNH is the total

number of hydrogen atoms in 1 mol of the solution. For vG/vcz
this gives

https://doi.org/10.1016/j.ijhydene.2022.03.034
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vG
vcz

¼ vG
vNH

,
1

vcz=vNH
¼ vG

vNH
,zNA ¼ zmsol

H ,NA (12)

where msol
H ¼ vG=vNH is the chemical potential of hydrogen in

solid solution.

Thermodynamic equilibrium between the hydrogen in a

sample of the solid solution and in the gaseous hydrogen

surrounding the sample is reached when

1
2
m
gas
H2 ¼msol

H ;

where m
gas
H2 is the chemical potential of molecular hydrogen.

Multiplying both sides of this equation by zNA and using

condition (10) of two-phase equilibrium, we obtain

z
2
Ggas

H2 ¼ vG
vcz

¼ GMeHz � GMe;

wherefrom

GMe þ z
2
Ggas

H2 ¼ GMeHz

This energy balance exactly corresponds to the reactionMe

þ(z/2)H2 ¼ MeHz, in which z ¼ const.
Estimates of the deviation of the DG0(T) and
DG0(1/T)/T dependences from linearity due to
changes in DH0 and DS0 with increasing
temperature

The T and P values in Eqs. (9) and (10) for the common tangent

are points on the equilibrium line for the isomorphic trans-

formation Me1eyHy þ ½(xey)H2 ¼ Me1exHx. The equilibrium

line is distinguished by the condition DG ¼ 0 for the Gibbs

energy of this transformation. The dependences of ln P vs. 1/T

analyzed in the present work determine a completely

different, standard Gibbs energy DG0(T,P0) referred to the

pressure P0 ¼ 1 atm. Since at T ¼ const, the differential

dG ¼ eSdT þ VdP ¼ VdP and, therefore, GðPÞ ¼ GðP0Þ þ
ZP

P0

VdP;

then for each fixed temperature T and equilibrium trans-

formation pressure P(T), the standard Gibbs energy can be

calculated from the condition DG0ðP0Þ þ
ZP

P0

DVdP ¼ 0; where

DV (T,P) ¼ VMeHz (T,P) e VMe(T,P) e (z/2)VH2(T,P) is the change in

the molar volume of the MeeH system. Correspondingly,

DG0 ¼
ZP0
P

DVdP:

For transformations at low hydrogen pressures up to

several tens of atmospheres and temperatures of the order of

the room one and above, gaseous hydrogen is well described

by the Clapeyron-Clausius equation PV ¼ nRT, where n is the

number of moles, and the difference between the molar vol-

umes of the hydride and metal is negligible compared to the

volume of hydrogen (z/2)VH2. Under these conditions, with

good accuracy
DG0ðT; P0Þ¼ � z
2

ZP0
P

VH2dP ¼ z
2
RT

ZP

P0

dP
P

¼ z
2
RT lnðP =P0Þ

and we arrive at the well-known Eq. (1). If DH0(P0) и DS0(P0) are

independent of temperature, Eq. (1) gives a linear dependence

ln P vs. 1/T, and the equation DG0(T)¼ DH0(T)e T∙DS0(T) gives a
linear dependence DG0 vs. T.

It is worth noting that models with temperature-

independent values of DH0 and DS0 describe quite satisfacto-

rily the lines of phase transformations at moderate tempera-

tures in many metal alloys without light elements. For most

metals and alloys, the Debye temperatures are in the range of

250e450 K, therefore their heat capacities CP z CV are close to

3R per gram-atom already at room temperature in accordance

with the Dulong and Petit rule. With the transformation

xA þ yB ¼ AxBy, an increase in temperature from T1 to T2 leads

to an increase in enthalpy by dH0ðT2Þ ¼
ZT2

T1

CPdTand entropy by

dS0ðT2Þ ¼
ZT2

T1

CP

T
dT for each of the phases. For the enthalpy and

entropy of the phase transformation, this gives

dðDH0ðT2ÞÞ ¼
ZT2

T1

DCPdTz0 and dðDS0ðT2ÞÞ ¼
ZT2

T1

DCP

T
dTz0;

because

DCP ¼ ðxþyÞCAxBy
P � ðx ,CA

P þy ,CB
PÞz3R,½ðxþyÞ�ðxþyÞ�z3R ,0 -

¼ 0: Heat capacities close to the sum of the heat capacities of

the components have been observed in many alloys and

compounds, and this has even been called the Neuman-Kopp

rule [11].

According to the results of Section Interstitial solid

solutions, in the metal-hydrogen systems with a symmetric

miscibility gap, the quantities DH0(P0) and DS0(P0) acquire a

clear physical meaning as the differences in thermodynamic

quantities for a hydride of a fixed composition MeHz, gaseous

hydrogen in a fixed amount (z/2)H2, and the parent metal Me

without hydrogen. This made it possible for the first time to

estimate the changes in DH0(P0) and DS0(P0) with increasing

temperature and the contribution of these changes to the

temperature dependence DG0(T,P0) for transformations be-

tween the phases of variable composition.

The PdeH and Pd-D systems

The experimental values of the decomposition pressure of

palladium hydrides and deuterides taken from the literature

[1e3] are shown in Fig. 1a. The positions of the critical points

from Ref. [4] are also added, and they are found to be in good

agreement with the linearly extrapolated dependences of the

decomposition pressures. The decomposition pressures were

chosen for the analysis because in metal-hydrogen systems,

these pressures are usually much closer to the equilibrium

pressures than the pressures of hydride formation [1,12].

Fig. 5a shows the dependences DG0/T ¼ (zR/2)ln(P/P0) for

the PdeH and Pd-D systems calculated in accordance with

https://doi.org/10.1016/j.ijhydene.2022.03.034
https://doi.org/10.1016/j.ijhydene.2022.03.034


Fig. 5 e Experimental values of the standard Gibbs energy DG0 for the reactions Pdþ (0.63/2)H2 / PdH0.63 (open red symbols)

and Pd þ (0.63/2)D2 / PdD0.63 (solid black symbols) plotted as DG0/T vs. 1/T (a) and DG0 vs. T (b). Designations as in Fig. 1a.

(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 1 e Standard (at P0 ¼ 1 atm) enthalpy DH0 and
entropyDS0 of formation of PdH0.63 and PdD0.63 calculated
from the temperature dependences of the decomposition
pressures of, respectively, palladium hydrides and
deuterides measured in Refs. [1e3].

System DH0,
kJ/mol of
PdH0.63

or PdD0.63

DS0,
J/mol/K of
PdH0.63

or PdD0.63

Reference
and

method

PdeH �12.6 (2) �29.9 (4) This paper,

DG0/T vs. 1/T

�12.6 (2) �30.2 (4) This paper,

DG0 vs. T

�12.3 (1) �28.7 (3) Ref. [1],

ln P vs. 1/T

�12.3 (2) �29.1 (4) Ref. [2],

ln P vs. 1/T

Pd-D �11.6 (2) �30.6 (4) This paper,

DG0/T vs. 1/T

�11.5 (2) �30.3 (4) This paper,

DG0 vs. T

�11.7 (1) �30.8 (3) Ref. [1],

ln P vs. 1/T

�11.2 (2) �29.4 (4) Ref. [2],

ln P vs. 1/T
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Eq. (1) using the experimental values of ln P vs. 1/T presented

in Fig. 1a. A value of z ¼ 0.63 was chosen for the calculations

for both hydride and deuteride at T ¼ 0 K, since the

maximum values of z obtained at the lowest measurement

temperature T ¼ 194.5 K in Ref. [1] were z ¼ 0.635 for the

hydride and z ¼ 0.625 for the deuteride. Fig. 5a also presents

the values of the enthalpy DH0 and entropy DS0 of formation

of the PdH0.63 and PdD0.63 phases obtained by linear inter-

polation of the experimental dependences DG0/T vs. 1/T.

Generally speaking, interpolation of experimental data as a

function of reciprocal temperature is not the most accurate

method to obtain any thermodynamic values, since this pro-

cedure greatly overestimates the statistical weight of the

experimental points obtained at low temperatures e under
the conditions most difficult to achieve thermodynamic

equilibrium. In this regard, we have also prepared Fig. 5b with

the dependences DG0(T), which should be linear as well and

more suitable for precise interpolation.

Table 1 compares the values ofDH0 and DS0 obtained in this

paper and in Refs. [1,2]. Along with the experimental results

from Refs. [1,2], the datasets analyzed in this paper include

results for the near-critical region in the PdeH system [3] and

the positions of the critical points in both PdeH and Pd-D

systems [4]. The values of DH0 and DS0 presented in Refs.

[1,2] were recalculated for the compositions PdH0.63 and

PdD0.63. As seen from Table 1, the values obtained in our paper

well agree with those from Refs. [1,2]. This suggests that the

high-temperature points from Refs. [3,4] fall onto almost the

same linear dependences as the low-temperature points

considered previously [1,2].

To assess the changes dH0(T) and dS0(T) occurring in DH0(T)

and DS0(T) with an increase in temperature from the mini-

mum experimental value Tmin to the temperature Tcr of the

critical point, we used the previously published temperature

dependences of the heat capacity of the phases participating

in the reactions Pd þ (z/2)H2 ¼ PdHz и Pd þ (z/2)D2 ¼ PdDz at

z ¼ 0.63. The results are shown in Fig. 6.

The heat capacities CP ofmolecular hydrogen (blue curve in

Fig. 6a) and deuterium (magenta curve in Fig. 6b) weakly

depend on temperature and are approximately equal to (7/2)R,

because in the temperature range shown on the figures, all

rotational modes of H2 and D2 molecules are already excited,

and the temperature is not high enough to excite a noticeable

number of stretching modes. The differences dC in the heat

capacities that determine the changes in DH0(T) and DS0(T)

with increasing temperature are shown at the bottom of

Fig. 6a and b with thick cyan lines. In contrast to what is

observed in the formation of substitutional alloys without

light elements (see Section Estimates of the deviation of the

DG0(T) and DG0(1/T)/T dependences from linearity due to

changes in DH0 and DS0 with increasing temperature), this

differences are by nomeans negligible in comparisonwith the

heat capacities of the components of the reactions.
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Fig. 6 e Heat capacities of the phases participating in the reactions Pdþ (0.63/2)H2 ¼ PdH0.63 (a) and Pdþ (0.63/2)D2 ¼ PdD0.63

(b). The CP values for gaseous H2 (blue curve) at T ≥ 298 K are taken from Ref. [13] and at T < 298 K from Ref. [14]. The CP values

for D2 (magenta curve) at T ≥ 298 K are from Ref. [15] and at T < 298 K from Ref. [16]. Heat capacity CV for Pd (olive curve) is

calculated from its Debye temperature q ¼ 275 K at T ¼ 298 K [17]. Heat capacities CV for acoustic modes (orange curve) and

optical modes (red curve) in PdH0.63 (a) and PdD0.63 (b) are from Ref. [18]. The thick cyan curve shows the calculated difference

in the heat capacities, which determines the changes dH0(T) and dS0(T) occurring in DH0(T) and DS0(T) with increasing

temperature. The dashed vertical lines indicate the temperature ranges 194.5e565 K (a) and 194.5e549 K (b), in which the

decomposition pressures of, respectively, palladium hydrides and deuterides were experimentally determined. (For

interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7 e Temperature changes in the standard enthalpy (red curve); entropy (blue curve, right vertical scale); Gibbs energy

(green curve), and the eT∙dS0(T) term of the Gibbs energy (black curve) for the reactions Pd þ (0.63/2)H2 ¼ PdH0.63 (a) and

Pd þ (0.63/2)D2 ¼ PdD0.63 (b). (For interpretation of the references to color in this figure legend, the reader is referred to the

Web version of this article.)
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Fig. 7 shows temperature-induced variations in the stan-

dard enthalpy dH0ðTÞ ¼
ZT

Tmin

dCðTÞ,dT, entropy dS0ðTÞ ¼

ZT

Tmin

dCP

T
dT, Gibbs energy dG0(T) ¼ dH0(T) e T∙dS0(T) and, sepa-

rately, in the eT∙dS0(T) term of the Gibbs energy for the re-

actions Pd þ (0.63/2)H2 ¼ PdH0.63 and Pd þ (0.63/2)D2 ¼ PdD0.63.

Tmin ¼ 194.5 K is the minimum temperature at which the

decomposition pressures of palladium hydrides and deu-

terides were experimentally determined. The resulting de-

pendences DG0(1/T)/T e dG0(1/T)/T and DG0(T) e dG0(T) are

shown in Fig. 8.

The total changes accumulated in going from Tmin to Tcr are

not very large, but noticeable. For example, in the Pd-D
system, DH0 and DS0 change by about 12%, and DG0 changes by

about 6%. The change in DG0 is approximately two times less,

because dH0 and dS0 have the same sign and the terms dH0 and

eT∙dS0 in dG0 partially compensate each other. In the PdeH

system, the compensation is more perfect: DH0 changes by

4%, DS0 by 3%, while the change in DG0 is a few times less and

only reaches 0.6%. As seen fromFig. 8a, the dependenceDG0(T)

e dG0(T) is well approximated by a straight line in the PdeH

system and satisfactorily in the Pd-D system. Fig. 8b shows

that the dependences DG0(1/T)/T e dG0(1/T)/T are linear with

good accuracy in both systems.

The NieH and Ni-D systems

Phase transformations in the NieH and Ni-D systems occur at

pressures of the order of 1 GPa, when hydrogen can no longer
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Fig. 8 e Copies of Fig. 5a and b with additional dependences shown by thick dashed lines and obtained by subtracting the

calculated dependences dG0(1/T)/T (a) and dG0(T) (b). The dependences dG0(T) for the reactions Pd þ (0.63/2)H2 ¼ PdH0.63 and

Pdþ (0.63/2)D2 ¼ PdD0.63 are depicted with green curves in Fig. 6a and b, respectively. The dashed curves demonstrate what

the DG0(1/T)/T and DG0(T) dependences would look like if DH0 and DS0 were constants. These dependences are also

approximated with thin straight lines. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

Fig. 9 e Experimental values of the standard Gibbs energy

DG0 for the reactions Ni þ (1/2)H2 / NiH (open red

symbols) and Ni þ (1/2)D2 / NiD (solid black symbols)

plotted as a function of temperature [9]. (For interpretation

of the references to color in this figure legend, the reader is

referred to the Web version of this article.)
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be considered an ideal gas, and its molar volume decreases to

such an extent that, compared with it, the differences in the

molar volumes of solid phases cannot be neglected. Accord-

ingly, when calculating the standard (at P0 ¼ 1 atm) Gibbs

energy from the condition DG0ðP0Þ þ
ZP

P0

DVdP ¼ 0; the differ-

ence DV(T,P) ¼ VMeHz(T,P) e VMe(T,P) e (z/2)VH2(T,P) signifi-

cantly differs from (z/2)VH2(T,P), and VH2(T,P) is much larger

than the volume of an ideal gas. Compared to the PdeH and

Pd-D systems, the factor z drops out of the formulas for the

NieH and Ni-D systems, since the compositions of nickel

hydrides and deuterides are close to NiH and NiD at T / 0 K

(see Fig. 3b).

In addition, the mixing energy DGmix(T,P,c) of solid solu-

tions considered in Section Thermodynamics of solid

solutions with a symmetric energy of mixing is a function of

pressure. Decomposition of hydrides and deuterides of

palladium occurs at pressures of the first tens of atmospheres,

and its effect on DGmix is negligible. In the NieH and Ni-D

systems, the pressure of the isomorphic phase trans-

formation is not small, but its effect on DGmix can also be

neglected, since, as has been shown in Ref. [19] and confirmed

in Ref. [10], solid nickel-hydrogen solutions well obey the

Vegard law and their molar volume y varies linearly over the

entire concentration range 0 � x � 1. Accordingly, when the

solution is separated into phases with different hydrogen

concentrations, the volume of the sample does not change

and, therefore, its DGmix does not change either, since

d(DGmix) ¼ Dy·dP at a constant temperature. Thus, on the T-x

phase diagram ofmetastable NieH solutions at P0 ¼ 1 atm, the

critical temperature and boundary concentrations of the

miscibility gap will be the same as at the equilibrium high

pressures.

Taking into account all the above, temperature de-

pendences of the standard Gibbs energy DG0(T) of hydride

(deuteride) formation in the NieH and Ni-D systems were
calculated in Ref. [9]. These dependences and the values of

DH0 and DS0 obtained by their linear interpolation are shown

in Fig. 9. The dependences of DG0/T vs. 1/T shown in Fig. 3a are

recalculated from the experimental data presented in Fig. 9.

As seen from Figs. 3a and 9, the dependences of both types are

linear with good accuracy. The parameters DH0 and DS0 of the

linear fit indicated in Fig. 9 are preferable. No critical point is

indicated on the dependencies for the Ni-D system, since its

position has not yet been determined.
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Fig. 10 e Heat capacities of the components of the reactions Ni þ (1/2)H2 / NiH (a) and Ni þ (1/2)D2 / NiD (b). The CP(T)

dependences for gaseous H2 (blue curve) and D2 (magenta curve) are the same as in Fig. 6a and b, respectively. The heat

capacities CV for Ni (olive curves) and for acoustic modes in NiH and NiD (orange curves) are calculated from their Debye

temperatures qNi ¼ 360 K and qNiH ¼ 300 K determined in Ref. [22]. Heat capacities CV for optical modes (red curves) in NiH (a)

and NiD (b) are from Ref. [18]. The magnetic contribution to the heat capacity of Ni (green curves) is taken from Ref. [20]. The

thick cyan curves show the difference in the heat capacities, which determines the changes dH0(T) and dS0(T) occurring in

DH0(T) and DS0(T) with increasing temperature. The dashed vertical black lines indicate the temperature range 298e633 K, in

which the decomposition pressures of nickel hydrides and deuterides were measured [9]. (For interpretation of the

references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 11 e Temperature changes in the standard enthalpy (red curve); entropy (blue curve, right vertical scale); Gibbs energy

(green curve), and the eT∙dS0(T) term of the Gibbs energy (black curve) for the reactions Ni þ (1/2)H2 ¼ NiH (a) and Ni þ (1/2)

D2 ¼ NiD (b). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)
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The temperature dependences of the heat capacities of the

phases involved in the reactions Ni þ (1/2)H2 / NiH and

Ni þ (1/2)D2 / NiD are presented in Fig. 10. Unlike palladium,

nickel is a ferromagnet, and the magnetic contribution to its

heat capacity [20] is shown in Fig. 10a and b by the green

curves. Nickel hydride remains paramagnetic at temperatures

down to 0.3 K [21]. Consequently, there is no magnetic

contribution to its heat capacity in the investigated tempera-

ture range above 298 K.

Fig. 11 shows temperature dependences dH0(T), dS0(T),

dG0(T), andeTdS0(T) for the NieH andNi-D systems, calculated

by the same formulas as for the PdH and Pd-D systems (see

Section The PdeH and Pd-D systems) using the dC(T) de-

pendences plotted with thick cyan curves at the bottom of
Fig. 10a and b, respectively. The resulting dependences DG0(T)

e dG0(T) are plotted with thick dashed curves in Fig. 12.

Similar to what we observed in the PdeH and Pd-D sys-

tems, the terms dH0 and eT∙dS0 significantly compensate

each other in dG0 of the NieH and Ni-D systems. For

example, as seen from Fig. 10a, the value of dG0 z 0.5 kJ/mol

NiH in the NieH system at the maximum temperature

Tcr ¼ 633 K turns out to be approximately two times less

than |dH0| and three times less than |eT∙dS0|. Compared to

the total change in DG0(T) upon heating from 298 to 633 K,

this dG0 contributes less than 3% and only leads to a negli-

gibly small deviation of the DG0(T) e dG0(T) dependence from

the linearity (see the dashed blue line in Fig. 12). The line-

arity of the DG0(T) e dG0(T) dependence in the Ni-D system

https://doi.org/10.1016/j.ijhydene.2022.03.034
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Fig. 12 e A copy of Fig. 9 with additional dependences

shown by thick dashed lines and obtained by subtracting

the calculated dependences dG0(T), which are depicted with

green curves in Fig. 10a and b and reproduced at the

bottom of this figure. The dashed curves demonstrate what

the DG0(T) dependences would look like if DH0 and DS0

were constants. To illustrate the linearity of these

dependences, they are also approximated with thin

straight lines. (For interpretation of the references to color

in this figure legend, the reader is referred to the Web

version of this article.)
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(dashed orange line in Fig. 12) is even better, since the

contribution from dG0 at 633 K does not exceed 1.5%.
Conclusions

The work was devoted to one of the puzzling problems of

hydrogen materials science, which could not find a solution

for several decades. The problem was that in one of the most

important metal-hydrogen systems, the palladium-hydrogen

system, the logarithm of the hydride formation pressure lin-

early depends on the reciprocal temperature over the entire

investigated temperature range. Since this logarithm is pro-

portional to the standard Gibbs energy DG0 ¼ DH0 e T∙DS0 of

hydride formation divided by temperature, it was assumed

that the standard enthalpy DH0 and entropy DS0 of the reac-

tion remain constant all along the investigated section of the

equilibrium line. This was surprising, since palladiumhydride

does not have a fixed composition and is formed via a tran-

sition between two isomorphic phases of the PdeH solid so-

lution with the hydrogen concentrations approaching each

other with increasing temperature and coinciding at the crit-

ical point, where the transition line breaks off. Attempts to

disclose the specific features of the PdeH system that
maintain the constancy of DH0 along the transition line have

not been successful until recently.

This paper showed that the main feature of the PdeH

system, which ensures the linearity of the DG0/T vs. 1/T

dependence, consists in the symmetry of themiscibility gap in

the solid PdeH solutions with respect to the concentration z/2,

where z is the maximum H-to-metal atomic ratio attained by

the hydride in equilibrium with Pd metal at T / 0 K. A simple

thermodynamic analysis showed that a model with the mix-

ing energy DGmix in the form of a double-well potential sym-

metric relative to z/2 gives a symmetric miscibility gap in the

interstitial solution and makes it possible to determine the

line of the corresponding isomorphic transition using only the

properties of the pure metal and its hydride with a fixed

hydrogen content z.

Switching from the problem with variable phase compo-

sitions to the problem with fixed compositions opened the

possibility to establish the presence and magnitude of

changes in DH0 and DS0 for the reactions of hydride forma-

tion in metal-hydrogen systems with solid solutions. Using

the literature data for the metal and the hydride with the

maximum hydrogen content z, we calculated the tempera-

ture dependences of changes in DH0, DS0, and DG0 for the

PdeH and Pd-D systems, and also for the analog systems

NieH and Ni-D. The calculations showed that the total

changes accumulated in both DH0 and DS0 in going from the

minimum measurement temperature to the critical tem-

perature vary from 12% for the Pd-D system down to 4% in

the PdeH system. The changes dH0 and dS0 in DH0 and DS0 are

mostly of the same sign, and the terms dH0 and eT∙dS0

partially compensate each other in dG0. As a consequence,

the changes in DG0 are two to five times less than the changes

in DH0 and DS0 and reach 6% in the Pd-D system and 0.6% in

the PdeH system. The resulting deviations of the DG0/T vs. 1/

T and G0 vs. T dependences from linearity lie within the

experimental error and can only manifest themselves in

slight changes in the values of DH0 and DS0 obtained by

approximating these dependences by straight lines.

Palladium and its alloys are widely used for purification of

hydrogen, as well as catalysts that promote the hydrogen

absorption and desorption by other metals and alloys, and

also as hydrogen sensors, etc. As was noted many years ago

[4], much fundamental knowledge was gained and a lot of

experimental techniques were developed in the investiga-

tion of the Pd�H system and later implemented in the study

of other, more complex systems important for applications.

Nevertheless, despite a great deal of experimental and

theoretical work on palladium hydrides published since

then, some unusual experimental findings in the PdeH sys-

tem itself have not yet been understood. For example, after

about 50 years of studying the inverse isotope effect in the

superconductivity of the PdeH/D system [23], which strik-

ingly contradicts the Bardeen-Cooper-Schrieffer (BCS) theory

[24], neutron spectroscopy [25] has shown the fallacy of the

conventional explanation [26], relating this effect to the

strong anharmonicity of optical vibrations of hydrogen

atoms in palladium hydride. We believe that thanks to the
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present paper, the number of unexplained phenomena in the

PdeH system has become one less.
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