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A model explaining a high proton conductivity of water in mesoporous materials has been proposed. The
model is based on the theory of an intermediate phase of water with an ordered oxygen lattice and a destroyed
proton lattice and involves various types of interaction of water molecules with an interface. The model is in
fact based on an analogy of the interface and a liquid-like surface layer of ice. Possible methods for increasing
the proton conductivity, experiments for testing the proposed model, and application of the results to the cre-
ation of efficient proton-exchange membranes have been discussed.
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INTRODUCTION

Water and ice as its solid phase are the most wide-
spread, important, and unusual materials on the
Earth. Their physical properties were studied in thou-
sands of works. In the last two decades, attention was
focused on the study of confined water, which has
properties significantly different from the properties of
bulk water and plays a significant role in biology,
chemistry, and technology. In particular, in most of
the efficient proton-exchange membranes used to cre-
ate hydrogen fuel cells, proton transport occurs
through water filling a porous medium. An increase in
the proton conductivity of such membranes, the upper
limit of working temperatures, and the time of contin-
uous operation is an important applied problem.

At the same time, a detailed understanding of the
nature of a high proton conductivity of water in meso-
porous materials is still absent. Indeed, the specific
proton conductivity of fairly efficient proton-
exchange membranes can be as high as about 10 S/m
at a temperature of 298 K [1]. At the same time, upper
estimates of the diffusion coefficient and concentration
of H;O" ions for pure bulk water are 3.5 X 10~ m?/s and
1.1 x 10?2 m~3, respectively. As a result, the conductiv-
ity of bulk water is about 10~* S/m, which is five orders
of magnitude below the conductivities of the best
membranes.

Why is the proton conductivity of water confined in
channels of mesoporous materials noticeably higher
than the conductivity of bulk water? How can the size
of channels responsible for a high proton conductivity
be estimated? What is the role of impurities in the for-
mation of a high proton conductivity? How can the
conductivity be further increased? The aim of this

work is to develop a theoretical model to partially
answer these questions.

It is also noteworthy that numerous ab initio
molecular dynamics studies of the behavior of con-
fined water have already been reported. These studies
give many interesting results but do not provide the
complete solution of the problem for the following
reasons. First, they do not provide a qualitative under-
standing of proton transport in confined water. As a
result, it is impossible to give practical recommenda-
tions for increasing the proton conductivity. Second,
the accuracy of numerical results because of the finite
dimensions of a cluster and a finite simulation time
remains unclear. The latter circumstance is particu-
larly important because the energy spectrum of vari-
ous configurations of water molecules has numerous
local minima, which results in a very slow relaxation.
For these reasons, in this work, we try to develop a
simple analytical model of proton transport in con-
fined water.

DESCRIPTION OF THE MODEL

Our model is based on the existence of a liquid-like
surface layer of ice [2, 3], which has an anomalously
high surface conductivity many orders of magnitude
higher than the conductivity of bulk ice [4]. To
describe the physical properties of this layer, a model
based on an intermediate state of ice with the ordered
oxygen lattice and disordered proton lattice was
recently proposed [5, 6]. To describe the behavior of
water in a mesoporous material, in view of experimen-
tal data, we assume that water near pore walls is also in
this intermediate state. Violations of the ice rules or
point proton defects move over a network of hydrogen
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bonds through the Grotthuss mechanism [7], thus
ensuring proton transfer such as in ordinary ice [8]. In
fact, our approach is a direct analog of the model of
the liquid-like surface layer of ice [5]. A more detailed
description of all foundations of the model is given
below.

In ordinary hexagonal ice at zero absolute tem-
perature, oxygen ions form an ordered wurtzite-type
lattice, whereas protons are distributed over hydrogen
bonds according to the ice rules: two protons near each
oxygen ion and one proton on each hydrogen bond.
Such a structure of the proton subsystem is frozen; i.e.,
neither the relaxation of the proton sublattice nor pro-
ton transport is possible [9]. Ice at a nonzero tempera-
ture includes H;O" and OH~ ionic defects and D and
L bond defects violating the ice rules [10]. These
defects in the physics of ice serve as classical quasipar-
ticles whose motion is responsible for electric relax-
ation and proton transport. Their effective charges,
mobilities, and equilibrium concentrations can be
extracted from various experiments [11].

A pair of ionic defects is formed at the displace-
ment of a proton along bond, and a pair of bond
defects is formed at the displacement of a proton from
one bond to another. The pair formation energy con-
sists of two terms: the formation energy of defects with
opposite charges at the minimum distance and energy
of their separation at a large distance (about an average
distance between defects). The latter term of the
energy decreases with increasing concentration of
defects due to the screening of the Coulomb interac-
tion. However, a decrease in the formation energy
results in an increase in the concentration. This posi-
tive feedback at increasing temperature leads to a sharp
stepwise increase in the concentration of defects, i.e.,
to the melting of the proton sublattice at the held
structure of the oxygen lattice [6].

In this case, the oxygen lattice in bulk samples also
becomes unstable, the complete melting of ice occurs,
and the intermediate state called liquid ice or solid
water does not appear. However, the intermediate
state with the melted proton sublattice and held oxy-
gen lattice can appear in certain situations, e.g., in the
surface layer of ice. In [5], we showed that the combi-
nation of outward ordering of protons on the surface
and the transition to the aforementioned intermediate
phase results in the formation of a fairly wide surface
layer with an increased concentration of defects violat-
ing the ice rules. This liquid-like layer of ice is respon-
sible for a low coefficient of friction, adhesion of ice,
flow of glaciers, freezing of snow, and a high surface
proton conductivity. The inner part of the layer, where
the concentration of bond defects is below the critical
value for the destruction of the oxygen lattice is a Far-
aday layer, which differs from both ice and water [2].
The concentration of bond defects in the outer part is
above the critical value; for this reason, the oxygen lat-
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tice is destroyed, and this part is a usual water film or
a Thomson layer [3].

BASIC EQUATIONS

We now describe water filling a cylindrical channel
in a hydrophobic material. Taking into account
numerous experimental results, we assume that water
in a sufficiently narrow channel is much more ordered
in oxygen than bulk water. For this reason, the
description of proton transport in confined water by
the Jaccard model is even more justified than the
description in bulk water [12, 13]. Consequently, the
Jaccard theory initially developed for ice can be fur-
ther used to describe proton transport. The interface
between water with the hydrophobic material is phys-
ically similar to the ice—air interface, and we assume
that water molecules at the interface will also be ori-
ented with protons toward the channel walls.

Using the results obtained in [5], we represent the
free energy in electronvolts per hydrogen bond as a
function of the concentration of bond defects in the

form
2
Fomy = | Bl + 5|y
1+ xb

+ kT[2nIn(n) + (1 = 2n) In(1 — 2n)].

(1)

Here, E314 = 0.05 eVis the formation energy of a pair of
bond defects at the minimum distance b = +/2/375q,

where rq is the hydrogen bond length; E324 =0.63 eV
is the separation energy of bond defects at a large dis-
tance; n = N;,/2N is the relative concentration of
bond defects; and N3, and N are the volume concen-
trations of bond defects and water molecules, res-
pectively. The inverse screening length is given by the

formula
f16TCN 2
K= n. 2
e kT 34 )

Here, €., = 3.2 is the high-frequency dielectric con-

stant and ¢;, = 0.36e is the effective charge of bond
defects, where e is the elementary charge. The concen-
tration of ionic defects can be neglected at this stage
because it is five or six orders of magnitude lower than
the concentration of bond defects [6]. The equilibrium
concentration of defects is determined by minimizing
Eq. (1), which is schematically shown in Fig. 1. The
right minimum corresponds to a metastable state at
temperatures below the transition temperature and to
a stable state at temperatures above the transition tem-
perature.

The concentration near the interface with pore
walls and channels is nonuniform; i.e., it depends on
coordinates n(r). In this case, instead of Eq. (1), one
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should minimize the functional including gradient
term:

Pl = N[\ 2w’ + s v, @
V

where the parameter A characterizes the capability of
the system to keep a uniform concentration distribu-
tion [5, 14]. This parameter can be either constant in a
model with a short-range interaction or a function of
the concentration in more complex models. In the for-
mer case considered in this work, this constant is

A= Er(fo, where E is the energy constant about the
formation energy of a pair of bond defects (about 1 V).
The equation obtained by minimizing functional (3)
should be supplemented with boundary conditions
characterizing the interaction of water molecules with
walls:

n(rs) = n. (4)

For the free surface of ice, ng = 0.5, and this condition
is also assumed for the interface between water and the
hydrophobic surface. This physically corresponds to
the orientation of molecules near the interface by pro-
tons to the surface. In this case, the boundary value of
the concentration of L defects will be equal to the
above value.

In the next section, we use the derived equations to
describe the concentrations of proton defects and to

estimate the conductivity of water in narrow cylindri-
cal channels.

RESULTS

The minimization of the functional for the cylin-
drical channel geometry (in the case of axial symme-
try) gives the problem

dr’ rdr Aon’
After the determination of the concentration of bond
defects n(r), the concentration of ionic defects m(r)

can be calculated with a sufficient accuracy by the for-
mula

n(r = R) = n,. ®))

—2exol—| E' E 6
m(r) 3exp{ (Elz +1+443\/H/7Tj/2kT} (6)

where m = N,,/N and N,, are the relative and volume
concentrations of ionic defects, respectively, and

E}, = 0.67 eVand E}, = 0.73 €V are the formation and
separation energies of ionic defects, respectively, sim-

ilar to Ej, and E324 for bond defects, respectively [5].
The physical meaning of Eq. (6) is very simple. It is the
usual Arrhenius law, where the formation energy of
defects depends on coordinates because of the screen-
ing of bond defects. The knowledge of the concentra-
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Fig. 1. Free energy of the proton subsystem versus the con-
centration of bond defects at the critical temperature of a
first order phase transition. The concentration of defects
decreases with increasing distance from the surface:
motion on the line from right to left. The largest contribu-
tion to the transient layer comes from the region of the
right minimum, because the rate of change in the concen-
tration with the distance is proportional to the square root

of the free energy.

tion will allow us to find the low- and high-frequency
conductivities.

Nonlinear equation (5) with the function f(n)
specified by Eq. (1) can be solved numerically. How-
ever, an analytical solution can also be obtained with a
sufficient accuracy. To find it, we note that our aims
require knowing the behavior of the function f(n)
only near the first minimum in Fig. 1. For this reason,
we take this function in the form

ﬂm=%m—%m? (7)

The substitution of Eq. (7) into Eq. (5) gives the zeroth
order Bessel equation

rn" +rn' — %rz(n = M) = 0. (8)

Its solution satisfying the boundary condition can be
written in the form

MJF - 9)
Iy(R/a)

where [, is the zeroth order modified Bessel function
and a =A/o = 1y, if o= E. The condition of
absence of any singularity at the center of the channel
was taken as the second condition for the second-
order equation.

Figure 2 shows the dependence of the concentra-
tion of bond defects n(z) on the dimensionless dis-
tance from the center of channel z = r/a for various
channel radii Z = R/a. According to Fig. 2, the con-
centration of bond defects decreases rapidly with
increasing distance from the wall. The effect of the

nr) = (s = Myin)
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0. = 4.83,4.02,3.48,3.10,2.83 (10’ S/m). (13)

According to these results, the low-frequency con-
ductivity of confined water characterizing the proton
transport rate is about an order of magnitude higher
than the corresponding conductivity of bulk water.
This excess is due to the assumption that the oxygen
lattice holds, i.e., that the mobilities of proton defects
in ice can be extrapolated to high temperatures in
water. The high-frequency conductivity determining
electric relaxation times is several times higher in con-

fined water than in bulk water.

n ? o
ez ¢ il
045 073 I
ot Fole
040 ~4Z=5 VR IR
--a—-7Z=6 $ Doog
03 » Foro
351 . e
e
0.30 s AR ERT
________ .____Q———"‘ / // ! 1
[ 2 5} /. / ‘
025 Qs’ y /A /I
0.20 RPN
I~ _Lr
' O—mmm <>————<>—"<>“<> ‘- de‘ /Af
-~ A
0.151 [P - —w-w " ’A/A/AA &
s e ottt
1 St St S i S 1 L 1 1
0.10 -

10°

Fig. 2. Concentration of bond defects versus the dimen-
sionless distance from the center of the cylindrical channel
with the radii Z = 2, 3, 4, 5, and 6 at room temperature of

T=298 K.

surface on the concentration at the center of the chan-
nel is manifested only for a channel radius of about
several hydrogen bond lengths, i.e., for a channel
diameter of about several nanometers. In this case, the
concentration increases not too strongly, and the pro-
ton conductivity of water confined in the channel is
seemingly about the conductivity of bulk water.

However, this conclusion disregards that the inter-
action of water molecules with the channel walls
assumingly keeps the structure of the oxygen lattice.
This means that the mobilities or diffusion coefficients
of defects in confined water can be taken from the
physics of ice and be extrapolated to the correspond-
ing temperatures. We numerically estimate the low-
and high-frequency conductivities of water. Using the
mobilities at a temperature of 253 K for ice and activa-
tion energies from [11], we obtain the following values
for the diffusion coefficients of defects at a tempera-

ture of 298 K:
D, =3.1x10"° m’/s, D, =1.06 10~ m’/s,

~ P ~ 5, 0
Dy = 0x10° m’/s, D, =2.3x107 m%/s.

Using these values and formulas for the low- and high-
frequency conductivities of ice, we arrive at the formu-

las [15]

V4 V4
o= L0 mareds, 0. =23 [aredz. ()
0 0

Z

Further, from Egs. (6), (9), and (11), we obtain the
following estimates of specific conductivities at chan-

nelradii Z =2, 3,4, 5, 6:

o, =1.41,1.29,1.19,1.12,1.0 10 S/m),  (12)
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The reported results indicate a slight increase in the

low-frequency proton conductivity in confined water.

However, this increase is insufficient to explain the
experimental conductivity of water in porous poly-
meric membranes. In order to correct this deficiency
of the theory, we first note that a comparatively low
low-frequency proton conductivity is due to the low
concentration of ionic defects calculated by Eq. (6). In
fact, we consider bond defects as the main type of
defects leading to a phase transition and impose
boundary conditions on bond defects by analogy with
the free surface of ice. In this case, the concentration
of ionic defects is five or six orders of magnitude lower
than the concentration of bond defects in the layer
immediately adjacent to the wall; i.e., the relative con-
centration of ionic defects near the wall is about 107 or
even lower.
Let the material of the wall contain protons and be

able to release them to empty dangling bonds of water
as, e.g., in Nafion films. This mathematically means

that a boundary condition such as m(R) = mg should
be imposed on the concentration of ionic defects. The
function m(r) also satisfies an equation similar to
Eq. (8), which has a solution similar to Eq. (9) with
only one difference: the concentration of ionic defects
in the right minimum m,;, will be much lower. An
analog of solution (9) can be represented in the form

1y(r/a)
Iy(R/a)

min) 'min>» (14)

m(r) = (mg —m

where mg ~ 107> and m,,, = 107°. Figure 3 shows the
dependences of m(r) on the distance from the center
of the channel. Using these results, we obtain the fol-
lowing estimates for the average specific low-fre-

quency conductivity:

c, =16.0,12.4,9.9,8.2,7.0 <10’ S/m). (15)
These conductivity values are comparable with the
conductivity of Nafion films. It is seen that the addi-
tion of only one proton on the channel wall side per
100 interface molecules results in a very high proton
conductivity and the addition of excess protons can fur-
ther increase the low-frequency proton conductivity.
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Fig. 3. Concentration of ionic defects versus the dimen-
sionless distance from the center of the cylindrical channel
with the radii Z = 2, 3, 4, 5, and 6 at room temperature of

T=298 K.

CONCLUSIONS

We emphasize that our model is based on two
assumptions. First, it is assumed that the rules of ice
are strongly violated in channels with nanometer radii;
i.e., the proton sublattice is in fact melted but the oxy-
gen lattice keeps its structure. This circumstance
allows the extrapolation of mobilities (or diffusion
coefficients) characteristic of ice to room temperature.
This assumption is confirmed by numerous experi-
mental results [16—19]. Second, it is assumed that
interface molecules interact with channel walls; as a
result, molecules are ordered with protons toward
walls. This slightly increases the low-frequency proton
conductivity, but this increase is insufficient to explain
a high proton conductivity of such materials as
Nafion. Finally, under the assumption that channel
walls can release at least a small number of protons to

dangling bonds of water molecules, the highest proton
conductivity of currently used proton-exchange mem-
branes can be explained.

In application to Nafion, the last assumption
means that protons from lateral acid branches of
Nafion are transferred to dangling bonds of water mol-
ecules; thus, these acid branches provide proton dop-
ing. This interpretation allows the following recom-
mendation for increasing the proton conductivity: the
conditions of polymerization and final processing of
polymeric proton-exchange membranes should
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