Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure

Panpan Kong^{1,7}, Vasily S. Minkov^{1,7}, Mikhail A. Kuzovnikov^{2,7}, Alexander P. Drozdov¹, Stanislav P. Besedin¹, Shirin Mozaffari³, Luis Balicas³, Fedor Fedorovich Balakirev⁴, Vitali B. Prakapenka⁵, Stella Chariton⁵, Dmitry A. Knyazev⁶, Eran Greenberg⁵ and Mikhail I. Eremets^{1*}

¹Max-Planck-Institut für Chemie, Hahn-Meitner Weg 1, Mainz 55128, Germany

²Institute of Solid State Physics Russian Academy of Sciences, 2 Academician Ossipyan Str., Chernogolovka, Moscow District 142432, Russia

³National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

⁴NHMFL, Los Alamos National Laboratory, MS E536, Los Alamos, New Mexico 87545, USA

⁵Center for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637, USA

⁶ Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, Halle (Saale) 06120, Germany

⁷These authors contributed equally: Panpan Kong, Vasily S. Minkov, Mikhail A. Kuzovnikov

*e-mail: m.eremets@mpic.de

Supplementary Table 1. List of samples synthesized and studied in the present work. Pressure values are estimated using the hydrogen scale¹ if the corresponding high-frequency vibron from H₂ or D₂ medium could be observed in Raman spectra (P_H) and diamond scale² following the shift of the stressed diamond line edge (P_D).

Sample	Photo	Synthesis conditions	Electrical measurements	X-ray diffraction
	before LH H ₂	YH ₃ + H ₂ . Pressurized to P _H =237 GPa (P _D =255 GPa) and kept for 3 weeks at room temperature. H ₂ was in large excess	Two steps at $T_c = 227 \text{ K} (\text{likely YH}_9)$ $T_c = 208.5 \text{ K} (\text{YH}_6)$ Fig.4e, filled red circle and star, both outlined by the red circles	A dominant phase <i>Im-3m</i> YH ₆ : <i>a</i> =3.452(1) Å, <i>V</i> =41.1(1) Å ³ ; with a minor impurity of <i>I4/mmm</i> YH₄: <i>a</i> =2.616(1) Å, <i>c</i> =5.184(1) Å, <i>V</i> =35.5(1) Å ³ . Supplementary Fig.2a
1	1	The same sample heated by a pulse laser below 700 K (no visible glowing)	<i>T_c</i> = 237 K Fig.4a, blue curve; Fig.4e, filled red circle	A mixture of P6₃/mmc YH ₉ : $a=3.364(1) \text{ Å}, c=5.153(1) \text{ Å}, V=50.5(1) \text{ Å}^3;$ and Im-3m YH ₆ : $a=3.457(1) \text{ Å}, V=41.3(1) \text{ Å}^3;$ and traces of I4/mmm YH ₄ . Supplementary Fig.2b
		The same sample decompressed to <i>P_H</i> =215 GPa	<i>T</i> c∼242 K Fig.4e, open red circles	n/a
	after LH 20 μm	The same sample compressed to P _H =255 GPa (P _D =284 GPa) and then heated by a pulse laser at ~1000 K (weak glowing)	T _c = 235 K Fig.4e, filled red circles	A dominant phase P6₃/mmc YH ₉ : a=3.336(1) Å, $c=5.088(4)$ Å, $V=49.1(1)$ Å ³ ; with traces of Im-3m YH ₆ : a=3.417(1) Å, $V=39.9(1)$ Å ³ . Fig.1c; Supplementary Fig.2c

2	before LH	YH ₃ + H ₂ . Pressurized to P_H =201 GPa (P_D =238 GPa) and kept for 1 month at room temperature. H ₂ was in large excess	<i>T_c</i> ~ 211 K Fig.4a, black curve; Fig.4e, black star marked by red circle	A mixture of <i>Im-3m</i> YH ₆ : a=3.492(1) Å, $V=42.6(1)$ Å ³ ; and <i>I4/mmm</i> YH ₄ : a=2.656(5) Å, $c=5.190(10)$ Å, $V=36.6(1)$ Å ³ . Fig.1b; Supplementary Fig.2d
	after LH H ₂	The same sample heated by a pulse laser at 2000(10) K	T _c = 243 K Fig.4a, red curve; Fig.4e, filled black circle; Fig.4d, black curve	A mixture of P6₃/mmc YH ₉ : a=3.406(1) Å, $c=5.210(8)$ Å, $V=52.3(1)$ Å ³ ; and Im-3m YH ₆ : a=3.492(1) Å, $V=42.6(1)$ Å ³ ; and traces of I4/mmm YH ₄ . Supplementary Fig.2e
	decompression 20 μm	The same sample decompressed to P _H =159 GPa (P _D =189 GPa)	T _c = 220 K (three-probe measurements) Fig.4e, open black star	Almost pure <i>Im-3m</i> YH ₆ : <i>a</i> =3.571(1) Å, <i>V</i> =45.5(1) Å ³ . Supplementary Fig.2f
3	before LH H ₂ after LH 30 μm	Y + H ₂ . Pressurized to P _H =186 GPa (P _D =228 GPa) and heated by a pulse laser at ~1500 K	<i>T_c</i> = 239 K Fig.4e, violet circle	A mixture of <i>I4/mmm</i> YH ₄ : a=2.666(1) Å, $c=5.194(1)$ Å, $V=36.9(1)$ Å ³ ; <i>Im-3m</i> YH ₆ : a=3.529(1) Å, $V=43.9(1)$ Å ³ ; and <i>P6₃/mmc</i> YH ₉ : a=3.432(3) Å, $c=5.251(3)$ Å, $V=53.6(1)$ Å ³ .

4	before LH H ₂ 30 μm	Y + H ₂ . Pressurized to P _H =183 GPa (P _D =189 GPa) and heated by a pulse laser at ~1500 K	<i>T</i> _c = 220 K Fig.4c, olive curve; Fig.4e, olive star	A mixture of <i>I4/mmm</i> YH ₄ : a=2.708(1) Å, $c=5.195(2)$ Å, $V=38.1(1)$ Å ³ ; and <i>Im-3m</i> YH ₆ : a=3.542(2) Å, $V=44.4(1)$ Å ³ ; and unidentified impurity(ies). Fig.1a; Supplementary Fig.9a
5	before LH H ₂ after LH 30 μm	Y + H₂. Pressurized to P _H =160 GPa (P _D =185 GPa) and heated by a pulse laser at ~1500 K	T _c = 214 K (three-probe measurement) Fig.4e, cerulean star; Fig.5a	A dominant phase <i>Im-3m</i> YH ₆ : <i>a</i> =3.570(5) Å, <i>V</i> =45.5(1) Å ³ ; with impurities of <i>I4/mmm</i> YH ₄ and unidentified phase(s). Supplementary Fig.9a
	before LH after LH	YD ₃ + D ₂ . Pressurized to P_{H} =202 GPa (P_{D} =209 GPa) and kept for 16 days at room temperature. D ₂ was in large excess	T _c = 165 K Fig.4b, black curve; Fig.4f, blue stars marked by red circles	A mixture of I4/mmm YD ₄ : a=2.685(10) Å, $c=5.195(10)$ Å, $V=37.4(1)$ Å ³ ; and Im-3m YD ₆ : a=3.499(5) Å, $V=42.8(1)$ Å ³ . Supplementary Fig.3a
6 20 μm D ₂	The same sample kept for 140 days and heated by a pulse laser at 1800(50) K. P_{H} =205 GPa $(P_{D}$ =212 GPa)	T _c = 172 K Fig.4b, red curve; Fig.4f, blue circle; Fig.5b	A dominant phase P6₃/mmc YD ₉ : a=3.404(5) Å, c=5.244(5) Å, V=52.6(1) Å ³ and Im-3m YD ₆ : a=3.507(5) Å, V=43.1(1) Å ³ . Supplementary Fig.3b	
7	before LH	YD ₃ + D ₂ . Pressurized to P_H =173 GPa (P _D =194 GPa) and heated by a pulse laser at ~1500 K	T _c = 168 K Fig.4c, magenta curve; Fig.4f, magenta stars	Im-3m YD ₆ : a=3.552(1) Å, V=44.8(1) Å ³ ; I4/mmm YD ₄ : a=2.712(1) Å, c=5.190(1) Å, V=38.2(1) Å ³ .
	D ₂ 20 μm	The same sample pressurized to P _D =212 GPa and repeatedly heated by a pulse laser at ~1500 K	T _c = 172 K (likely YD₃) Fig.4f, magenta circle	n/a

D ₂ before LH after LH		Y + D ₂ . Pressurized to P_D =195 GPa and heated by a pulse laser at ~1500 K. D ₂ was in deficiency	T _c = 166 K (likely YD₀) Fig.4f, orange stars	n/a
8	8	Compressed to <i>P</i> _D =330 GPa	T _c = 156 K (likely YD₅) Fig.4f, orange stars	n/a
9	D ₂ 20 μm	YD ₃ + D ₂ . Pressurized to P _H =227 GPa (P _D =242 GPa) and kept for 2 weeks at room temperature. D ₂ was in large excess	T _c = 166 K (likely YD ₆) Fig.4f, red star marked by red circle	n/a
10	before LH D2	YD ₃ + D ₂ . Pressurized to P_{H} =244 GPa (P_{D} =262 GPa) and kept for 3 weeks at room temperature. D ₂ was in large excess	T _c = 160 K Fig.4f, green star marked by red circle	A dominant phase <i>I4/mmm</i> YD ₄ : a=2.645(5) Å, $c=5.135(5)$ Å, $V=35.9(1)$ Å ³ ; and <i>Im-3m</i> YD ₆ : a=3.455(5) Å, $V=41.3(1)$ Å ³ ; and a minor unidentified impurity(ies).
<u>20 μm</u>		The same sample heated by a pulse laser at 1700(50) K	n/a	A mixture of <i>P6</i>₃/mmc YD ₉ : a=3.392(5) Å, $c=5.180(5)$ Å, $V=51.6(1)$ Å ³ and <i>Im-3m</i> YD ₆ : a=3.478(5) Å, $V=42.1(1)$ Å ³ .
11	before LH after LH 20 µm	YH₃ + NH₃BH₃. Pressurized to P _D =250 GPa and heated by a pulse laser at 1850(50) K	Metallic behavior on cooling with R of ~0.07 Ω at 78 K Supplementary Fig.4a and 8a	A mixture of I4/mmm YH ₄ : a=2.620(1) Å, $c=5.161(2)$ Å, $V=35.4(1)$ Å ³ ; and distorted Fm-3m YH ₃ : a=4.17(1) Å, $V=72.8(3)$ Å ³ . Supplementary Fig.4b

12	before LH 20 μm	YH ₃ . Pressurized to P _D =130 GPa and heated by a pulse laser at ~1000 K	Metallic behavior on cooling with R of ~0.04 Ω at 5 K Supplementary Fig.8a	A mixture of Fm-3m YH ₃ : <i>α</i> =4.373(6) Å, V=83.6(4) Å ³ ; and Fm-3m YH ₁ : <i>α</i> =3.986(2) Å, V=63.4(1) Å ³ .
13	before LH 50 μm	YD ₃ . Pressurized to P _D =135 GPa and heated by a pulse laser at ~1000 K	Metallic behavior on cooling with R of ~0.03 Ω at 5 K Supplementary Fig.4a and 8	A mixture of Fm-3m YD ₃ : <i>a</i> =4.332(1) Å, <i>V</i> =81.3(1) Å ³ ; and Fm-3m YD ₁ : <i>a</i> =3.975(1) Å, <i>V</i> =62.8(1) Å ³ . Supplementary Fig.6b
14	50 μm	YD ₃ . Pressurized to <i>P</i> _D =180 GPa	Metallic behavior on cooling with R of ~0.5 Ω at 5 K	A mixture of distorted Fm-3m YD ₃ : a=4.279(2) Å, $V=78.3(2)$ Å ³ ; and Fm-3m YD ₁ : a=3.876(1) Å, $V=58.2(1)$ Å ³ .
15	50 μm	YH ₃ . Pressurized to <i>P</i> _D =170 GPa	Metallic behavior on cooling with R of ~0.05 Ω at 5 K Supplementary Fig.4a and 8a	A mixture of distorted Fm-3m YH ₃ : <i>a</i> =4.286(2) Å, <i>V</i> =78.8(1) Å ³ ; and Fm-3m YH ₁ : <i>a</i> =3.901(1) Å, <i>V</i> =59.4(1) Å ³ . Supplementary Fig.6a

16	50 μm	YD₃. Pressurized to <i>P</i> _D =61 GPa	Metallic behavior on cooling with R of ~0.17 Ω at 5 K Supplementary Fig.8a	n/a
17	before LH 20 μm	YH₃ + NH₃BH₃. Pressurized to P _D =410 GPa and heated by a pulse laser at 2250(10) K	n/a	Single phase of P6₃/mmc YH₃: <i>a</i> =3.234(1) Å, <i>c</i> =4.915(1) Å, <i>V</i> =44.5(1) ų. Fig.3b
10	after LH	YH₃ + NH₃BH₃. Pressurized to P _D =395 GPa and heated by a pulse laser at 1815(5) K	n/a	A mixture of <i>Im-3m</i> YH ₆ : a=3.316(5) Å, <i>V</i> =36.5(1) Å ³ ; and <i>I4/mmm</i> YH ₄ : a=2.458(5) Å, <i>c</i> =5.140(5) Å, <i>V</i> =31.1(1) Å ³ .
18 20 μm	The same sample heated several times by a pulse laser at 1830(5) K	n/a	A mixture of <i>P6</i>₃/mmc YH ₉ : a=3.254(5) Å, $c=4.914(5)$ Å, $V=45.1(1)$ Å ³ ; and <i>Im-3m</i> YH ₆ : a=3.316(5) Å, $V=36.5(1)$ Å ³ .	
	before LH after LH	$YH_3 + NH_3BH_3$. Pressurized to $P_D=325$ GPa	n/a	Distorted Fm-3m YH₃: <i>α</i> =4.05(5) Å, <i>V</i> =66(2) ų.
19	20 μm	The same sample compressed to P_D =341 GPa and heated by a pulse laser several times at 1725(5) K	n/a	A mixture of P6₃/mmc YH ₉ : a=3.292(5) Å, $c=5.022(5)$ Å, $V=47.1(1)$ Å ³ ; Im-3m YH ₆ : a=3.370(5) Å, $V=38.3(1)$ Å ³ ; and Fm-3m YH ₃ : a=3.914(5) Å, $V=60.0(1)$ Å ³ ; and a minor unidentified impurity(ies).

20	before LH after LH 20 μm	YH₃ + NH₃BH₃. Pressurized to P _D =335 GPa and heated by a pulse laser at 2060(10) K	n/a	A mixture of <i>Im-3m</i> YH ₆ : a=3.370(5) Å, <i>V</i> =38.3(1) Å ³ ; and <i>I4/mmm</i> YH ₄ : a=2.536(5) Å, c =5.126(5) Å, <i>V</i> =33.0(1) Å ³ .
21	before LH	YH₃ + NH₃BH₃. Pressurized to P _D =332 GPa and heated by a pulse laser at 1890(5) K	n/a	A mixture of <i>Im-3m</i> YH ₆ : a=3.377(5) Å, $V=38.5(1)$ Å ³ ; and <i>I4/mmm</i> YH ₄ : a=2.540(5) Å, $c=5.120(5)$ Å, $V=32.9(1)$ Å ³ ; with minor amounts of <i>P6₃/mmc</i> YH ₉ : a=3.300(5) Å, $c=5.015(5)$ Å, $V=47.3(1)$ Å ³ ; and <i>Fm-3m</i> YH ₃ : a=4.008(5) Å, $V=64.4(1)$ Å ³ ; and unidentified phase(s).
		Decompressed to P _D =223 GPa	n/a	I4/mmm YH₄: a=2.645(5) Å, c=5.100(5) Å, V=35.7(1) Å ³ . Supplementary Table 2
	before LH after LH	YH ₃ + NH ₃ BH ₃ . Pressurized to P _D =235 GPa (P=231 GPa according to MgO gasket)	n/a	Distorted Fm-3m YH₃: a=4.17(1) Å, V=72.5(10) ų.
22	<u>Πομ</u>	The same sample heated by a pulse laser at 2275(5) K	n/a	A mixture of <i>Im-3m</i> YH ₆ : a=3.458(5) Å, $V=41.3(1)$ Å ³ ; and <i>I4/mmm</i> YH ₄ : a=2.623(5) Å, $c=5.168(5)$ Å, $V=35.6(1)$ Å ³ and <i>P6₃/mmc</i> YH ₉ : a=3.379(5) Å, $c=5.135(5)$ Å, $V=50.8(1)$ Å ³ ; and minor unidentified impurity(ies).
23	before LH H ₂ 20 μm	Y + H ₂ . Pressurized to P_H =187 GPa (P_D =214 GPa) and heated by a pulse laser at 2150(50) K	n/a	P6₃/mmc YH ₉ : <i>a</i> =3.428(5) Å, <i>c</i> =5.262(5) Å, <i>V</i> =53.6(1) Å ³ ; and unidentified phase(s).

24	24 before LH	YD ₃ + D ₂ . Pressurized to P _H =175 GPa and heated by a pulsed laser at ~1500 K	n/a	A dominant phase <i>Im-3m</i> YD ₆ : <i>a</i> =3.536(1) Å, <i>V</i> =44.2(1) Å ³ ; <i>I4/mmm</i> YD ₄ : <i>a</i> =2.722(5) Å, <i>c</i> =5.192(5) Å, <i>V</i> =38.5(2) Å ³ and unidentified phase(s).
	<u>30 μm</u>	Decompressed to P _D =135 GPa	n/a	I4/mmm YD ₄ : a=2.773(5) Å, c=5.212(5) Å, V=40.1(2) Å ³ . Supplementary Table 3
25	before LH H ₂ 50 μm	YH ₃ + H ₂ . Pressurized to P_H =150 GPa (P_D =155 GPa) and heated by a pulse laser at 1800(50) K. H ₂ was in deficiency	n/a	Unidentified phase(s); and remains of Fm-3m YH ₃ : <i>a</i> =4.284(3) Å, <i>V</i> =78.6(2) Å ³ . Supplementary Fig.9a
	H2	Y + H ₂ . Pressurized to P _D =17 GPa	n/a	Fm-3m YH ₃ : <i>α</i> =4.971(10) Å, V=122.8(3) Å ³ . Supplementary Fig.1a
26	The same sample pressurized to <i>P</i> _D =143 GPa (according to MgO gasket)	n/a	Fm-3m YH₃: a=4.367(10) Å, V=83.3(3) ų. Supplementary Table 4	
27	Y + H ₂ . Compressed to P_D =23 GPa	n/a	Fm-3m YH₃: a=4.930(10) Å, V=119.8(3) ų. Supplementary Fig.1b	
	H ₂ 30 μm	The same sample compressed to P=140 GPa (according to MgO gasket) and heated by a pulse laser at ~2600 K	n/a	Unidentified phase(s); and remains of Fm-3m YH ₃ : <i>a</i> =4.397(10) Å, V=85.0(3) Å ³ . Supplementary Table 5

	hofeve 11	Y + H ₂ . Pressurized to P_H =105 GPa (P_D =110 GPa)	n/a	Fm-3m YH₃: a=4.452(1) Å, V=88.2(1) Å ³ . Supplementary Fig.9b
28	The same sample heated by a pulse laser several times at 1500(50) K	n/a	A mixture of Fm-3m YH ₃ : a=4.459(1) Å, V=88.7(1) Å ³ ; and Im-3m YH ₄ : a=3.564(1) Å, V=45.2(1) Å ³ . Supplementary Fig.9c	
	20 μm	The same sample pressurized to P_D =130 GPa and heated by a pulse laser several times at 2600(50) K	n/a	A mixture of Fm-3m YH₃: <i>a</i> =4.388(1) Å, V=84.5(1) ų; and unidentified phase(s). Supplementary Fig.9a
29	after LH H ₂ 50 μm	YH ₃ + H ₂ . Pressurized to P _H =120 GPa (P _D =120 GPa) and slightly heated by a pulse laser at ~700 K. H ₂ was in large excess	n/a	Mainly Fm-3m YH ₃ : a=4.421(5) Å, V=86.4(1) Å3;and traces of unidentified impurity(ies).
30	before LH H ₂ 20 μm	Y + H₂. Pressurized to P _H =85 GPa (P _D =90 GPa) and heated by a pulsed laser at ~1000 K	n/a	<i>Fm-3m</i> YH₃: a=4.519(5) Å, V=92.3(1) ų.
31	<u>50 μm</u>	YD₃. Pressurized to <i>P</i> _D =168 GPa at ~100 K and then warmed	n/a	Distorted Fm-3m YD ₃ phase: <i>a</i> =4.28(1) Å, <i>V</i> =78.4(10) Å ³ ; and traces of Fm-3m YD ₁ .

Phase	lm-3r	n YH6		I4/mmm YH ₄		Fm-3ı	n YH₃
P _D (GPa)	<i>a</i> (Å)	V (ų)	a (Å)	<i>c</i> (Å)	V (ų)	a (Å)	<i>V</i> (ų)
332	3.377(5)	38.5(1)	2.540(5)	5.120(5)	32.9(1)	4.008(5)	64.4(1)
323	3.370(1)	38.3(1)	2.547(5)	5.137(5)	33.3(1)	4.023(5)	65.1(1)
315	3.400(1)	39.3(1)	2.564(5)	5.137(5)	33.8(1)	4.029(5)	65.4(1)
305	3.380(1)	38.6(1)	2.564(5)	5.143(5)	33.8(1)	4.038(5)	65.8(1)
282	*	*	2.588(5)	5.161(5)	34.6(1)	*	*
251	*	*	2.609(5)	5.184(5)	35.3(1)	*	*
223	*	*	2.645(5)	5.100(5)	35.7(1)	*	*

Supplementary Table 2. Changes in lattice parameters of *Fm-3m* YH₃, *I4/mmm* YH₄, and *Im-3m* YH₆ in sample 21 upon decompression. Pressure values are estimated using the diamond scale,² P_D .

* cannot be refined because reflections are strongly overlapped with those from other phases.

Supplementary Table 3. Changes in lattice parameters of I4/mmm YD₄ and Im-3m YD₆ in sample 24 with a variation in the pressure. Pressure values are estimated using the diamond scale,² P_D .

Phase	<i>Im-3m</i> YD ₆		I4/mmm YD ₄		
P _D (GPa)	<i>a</i> (Å)	V (ų)	a (Å)	<i>c</i> (Å)	V (ų)
175	3.536(1)	44.2(1)	2.722(5)	5.192(5)	38.5(2)
186	3.519(1)	43.6(1)	2.707(5)	5.185(5)	38.0(2)
179	3.529(1)	43.9(1)	2.716(5)	5.196(5)	38.3(2)
173	3.537(1)	44.3(1)	2.722(5)	5.195(5)	38.5(2)
165	3.542(1)	44.4(1)	2.731(5)	5.205(5)	38.8(2)
161	3.552(1)	44.8(1)	2.739(5)	5.200(5)	39.0(2)
155	3.556(1)	45.0(1)	2.747(5)	5.214(5)	39.3(2)
152	3.564(1)	45.3(1)	2.755(5)	5.203(5)	39.5(2)
147	3.575(1)*	45.7(1)*	2.743(5)	5.228(5)	39.3(2)
135	disapp	eared	2.773(5)	5.212(5)	40.1(2)

* the phase becomes distorted

Supplementary Table 4. Changes in lattice parameters of *Fm-3m* YH₃ in sample 26 upon pressurizing. Pressure values are estimated using the diamond scale² at 17 GPa and the equation of state of MgO³ (gasket) during pressurizing.

Phase	<i>Fm-3m</i> YH₃		
P (GPa)	a (Å)	V (ų)	
17	4.971(10)	122.8(3)	
75	4.600(10)	97.3(3)	
90	4.517(10)	92.2(3)	
112	4.442(10)	87.6(3)	
125	4.398(10)	85.1(3)	
143	4.367(10)	83.3(3)	

Supplementary Table 5. Changes in lattice parameters of *Fm-3m* YH₃ in sample 27 upon pressurizing. Pressure values are estimated using the diamond scale² at 23 GPa and the equation of state of MgO³ (gasket) upon further pressurizing.

Phase	<i>Fm-3m</i> YH₃		
P (GPa)	a (Å)	V (ų)	
23	4.930(10)	119.8(3)	
51	4.779(10)	109.1(3)	
64	4.689(10)	103.1(3)	
70	4.653(10)	100.8(3)	
93	4.545(10)	93.9(3)	
107	4.485(10)	90.2(3)	
119	4.448(10)	88.0(3)	
125	4.424(10)	86.6(3)	
133	4.413(10)	85.9(3)	
140	4.397(10)	85.0(3)	

Supplementary Table 6. Fitting parameters of the Vinet⁴ equation of state for *Fm-3m* YH₁/YD₁, *Fm-3m* YH₃/YD₃, *I4/mmm* YH₄/YD₄, *Im-3m* YH₆/YD₆ and *P6*₃/*mmc* YH₉/YD₉ yttrium hydrides studied at present. We assumed the pressure *P* as an independent variable and numerically solved the Vinet equation with respect to *V* for all values of the fitting parameters *V*₀ and *B*₀ and experimental *P* values using a value of $B'_0 = 4$ for the bulk modulus pressure derivative typical of many metals and hydrides. The resulting fits are shown by the solid curves in Figure 2a.

Compound	Pressure range, GPa	V₀ (ų/M atom)	<i>B</i> ₀ (GPa)	B'_0
<i>Fm-3m</i> YH ₁ /YD ₁	130-180	23.2(15)	163(50)	4(fixed)
<i>Fm-3m</i> YH ₃ /YD ₃	17-341	36.0(10)	91(15)	4(fixed)
<i>I4/mmm</i> YH ₄ /YD ₄	135-395	26.7(7)	274(40)	4(fixed)
Im-3m YH ₆ /YD ₆	147-395	31.3(10)	264(50)	4(fixed)
P6 ₃ /mmc YH ₉ /YD ₉	186-410	36.6(10)	326(40)	4(fixed)

Supplementary Figure 1 X-ray powder diffraction patterns for the *Fm-3m* YH₃ phase in samples 26 and 27 synthesized by exposing Y to H₂ at room temperature.

a, **b** X-ray powder diffraction patterns show the *Fm-3m* phase of YH₃ in samples 26 and 27, respectively, at several pressures. Pressure values were estimated from the MgO gasket using the equation of state of MgO.³ The ticks below each X-ray diffraction pattern correspond to the calculated peak positions for the *Fm-3m* phase. The refined lattice parameters are summarized in Supplementary Tables 1, 4 and 5.

Supplementary Figure 2 X-ray powder diffraction patterns for samples 1 and 2.

a *Im-3m* YH₆ phase in sample 1 synthesized by exposing YH₃ to H₂ at P_{H} =237 GPa (P_{D} =255 GPa) for 3 weeks at room temperature. **b** The $P6_{3}/mmc$ YH₉ phase formed after subtle laser heating (T<700 K) in sample 1. **c** Further conversion of YH₆ into YH₉ resulted from the subsequent pressure increase to P_{H} =255 GPa (P_{D} =284 GPa) and laser heating at *T* ~1000 K. **d** The *Im-3m* YH₆ phase in sample 2 formed after exposing YH₃ to H₂ at P_{H} =201 GPa (P_{D} =238 GPa) for 4 weeks at room temperature. **e** The formation of the $P6_{3}/mmc$ YH₉ phase after laser heating (*T*=2000(10) K) in sample 2. **f** The *Im-3m* YH₆ phase in sample 2 at P_{H} =159 GPa (P_{D} =189 GPa) resulted from the decomposition of YH₉ on decompression. Red and green curves indicate the contributions of the *Im-3m* YH₆ and $P6_{3}/mmc$ YH₉ phases, respectively. Black circles and blue curves correspond to the experimental data and residues, respectively.

Supplementary Figure 3 X-ray powder diffraction patterns for sample 6 before and after laser heating.

a X-ray powder diffraction pattern shows the *Im-3m* YD₆ and *I4/mmm* YD₄ phases in sample 6 after exposing YD₃ to D₂ at P_{H} =202 GPa (P_{D} =209 GPa) for 16 days at room temperature. **b** X-ray powder diffraction pattern illustrating the formation of the $P6_{3}/mmc$ YD₉ phase after storing sample 6 for 140 days at room temperature and subsequent laser heating at 1800(50) K. Red, brown and green curves indicate the contributions of the *Im-3m* YD₆, *I4/mmm* YD₄ and *P6*₃/*mmc* YH₉ phases, respectively. Black circles and blue curves correspond to the experimental data and residues, respectively.

Supplementary Figure 4 Electrical resistance measurements for *Fm-3m* YH₃ and *I4/mmm* YH₄ at high pressures.

a Temperature dependence of the resistance for the mixture of *I4/mmm* YH₄ and *Fm-3m* YH₃ at P_D =250 GPa (sample 11, blue curve), *Fm-3m* YH₃ at P_D =170 GPa (sample 15, red curve), and *Fm-3m* YD₃ at P_D =135 GPa (sample 13, black curve). All three curves demonstrate the typical behaviour of a metal. **b** The X-ray powder diffraction pattern of sample 11 at P_D =250 GPa and the Rietveld refinement of the mixture of *I4/mmm* YH₄ and *Fm-3m* YH₃ phases with a refined weight ratio of 0.9:0.1. The structural distortions in the *Fm-3m* lattice of YH₃ affect the (200) reflection, marked by black arrow. Black circles, red and blue curves correspond to the experimental data, Rietveld fit and residues, respectively. Black and magenta ticks indicate the calculated peak positions for the *I4/mmm* YH₄ and *Fm-3m* YH₃ phases, respectively.

Supplementary Figure 5 Summarized $T_c(P)$ dependencies measured in the yttrium-hydrogen system at high pressures. The pressure dependence of T_c for superconducting transitions in the Im-3m YH₆ (stars) and $P6_3/mmc$ YH₉ (circles) phases measured in the present study in comparison with the data published by Troyan et al.⁵ (orange square) and Snider et al.⁶ (dark yellow squares). Different colours represent different samples. Open symbols are the data obtained on decompression. Symbols marked by red circles are the data for the unheated samples. Curves are the guides for the eye. The data reported in Ref.⁶ have systematically higher T_c s than the data collected in the present study and Ref.⁵

Supplementary Figure 6 Formation of the new *Fm-3m* YH_1 and YD_1 phases upon compression of $YH_{2.92(5)}$ and $YD_{2.87(5)}$ above 90 GPa.

a, **b** X-ray powder diffraction patterns with Rietveld refinement showing the appearance of new *Fm*-*3m* YH₁/YD₁ phases in sample 15 at P_D =170 GPa and sample 13 at P_D =135 GPa, respectively. Black circles, red and blue curves correspond to the experimental data, Rietveld fits and residues, respectively. Black and red ticks indicate the calculated peak positions for the *Fm*-*3m* YH₃ and *Fm*-*3m* YH₁ phases, respectively. The formation of the *Fm*-*3m* YH₁/YD₁ phases after metallization of YH₃/YD₃ near 80 GPa is accompanied by the appearance of new intensive modes in the Raman spectra for samples 31, (**c**) and 21, (**d**). The Raman spectrum from the mixture of distorted *Fm*-*3m* YH₃ and *Fm*-*3m* YH₁ in sample 21 disappears at approximately 260 GPa upon further compression (**d**). Some Raman modes are associated with the Y-H stretching vibrations and shift to lower wavenumbers at approximately $\sqrt{2}$ for deuteride (**e**).

Supplementary Figure 7 X-ray powder diffraction patterns of specially synthesized *hcp*-YH_{2.92(5)} (a) and *hcp*-YD_{2.87(5)} (b) samples, which were used as the initial reactants for the high-pressure synthesis of the higher hydrides (deuterides) in the DACs. The X-ray powder diffraction patterns were measured at ambient pressure and temperature in an inert atmosphere with Cu K_α radiation. The first (002) reflection marked by the grey-shaded region was excluded from the Rietveld refinement because of strong texture effects in the samples. Black circles, red and blue curves correspond to the experimental data, Rietveld fits and residues, respectively. Red ticks indicate the calculated peak positions for $P6_3/mmc$ YH₃/YD₃.

Supplementary Figure 8 Electrical resistance and Raman spectra of YH₃ and YD₃ at high pressure. a Resistance dependence on pressure for YH₃ (black symbols) and YD₃ (red symbols) at 295 K. The insets show the typical temperature dependence of the resistance after metallization at high pressure (sample 16 at P_D =38 and 61 GPa). **b** The disappearance of the Raman spectrum of YD₃ in sample 13 during metallization on compression. **c** Photos of sample 13 at several pressures demonstrating the appearance of a metallic lustre.

Supplementary Figure 9 Crystalline phases formed in the yttrium-hydrogen system under deficiency of H_2 , after poor laser heating or at pressures below 150 GPa.

a Several X-ray powder diffraction patterns of unidentified crystalline phases collected either from poorly heated areas near the sputtered leads (samples 4 and 5), from samples with evident deficiency of H₂ (sample 25), or at pressure below 150 GPa (sample 28). The simulated patterns for the *Fm-3m* YH₃, *I4/mmm* YH₄, *Im-3m* YH₆ and *P6*₃/*mmc* YH₉ phases are given at the bottom for comparison. **b** Formation of the *Fm-3m* YH₃ phase in sample 28 after exposing Y to H₂ at *P*_H=105 GPa at ambient temperature for three days. **c** Formation of the new *Im-3m* phase with a tentative composition of YH₄ in sample 28 after subsequent pulsed laser heating at 1500(50) K. Black circles, red and blue curves correspond to the experimental data, Rietveld fits and residues, respectively. Black and red ticks show the calculated peak positions for the *Fm-3m* YH₃ and *Im-3m* YH₄ phases, respectively.

References

- 1. Eremets, M. I. & Troyan, I. A. Conductive dense hydrogen. *Nat Mater* **10**, 927 (2011).
- 2. Eremets, M. I. Megabar high-pressure cells for Raman measurements. *J. Raman Spectrosc.* **34**, 515 (2003).
- 3. Dorfman, S. M., Prakapenka, V. B., Meng, Y. & Duffy, T. S. Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. *J. Geophys. Res.* **117**, B08210 (2012).
- 4. Vinet, P., Ferrante, J., Rose, J. H. & Smith, J. R. Compressibility of solids. *J. Geophys. Res.* **92**, 9319-9325 (1987).
- 5. Troyan, I. A. et al. Anomalous high-temperature superconductivity in YH₆. *Adv. Mater.* **33**, 2006832 (2021).
- Snider, E. et al. Synthesis of Yttrium Superhydride Superconductor with a Transition Temperature up to 262 K by Catalytic Hydrogenation at High Pressures. *Phys. Rev. Lett.* **126**, 117003 (2021).