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1. Dataset A real-space structure determination 

We performed real-space structure determination on Dataset A using the Dissolve software package 

[19], producing a 𝑔(𝑟) in agreement with that obtained from standard FT of the dataset for the full 

range in 𝑄-values.  The simulation employed a 5000 atom simulation box and the OPLS-Noble Gases 

forcefield potential.  It was not necessary in this case to refine the potential.  The structure was 

sampled over 5000 accumulations.  Figure S1 shows both 𝑔(𝑟) functions. 

 

Figure S1.  The 𝑔(𝑟) functions for Dataset A obtained via standard Fourier transform using the full 

range of 𝑄-values for 𝑆(𝑄), and via real-space structure determination using the Dissolve package. 

  



2. Dataset B experimental methods 

Pressure was applied using a custom-constructed piston-cylinder diamond anvil cell (DAC) equipped 

with 600 μm diameter culets and a 2𝜃 = 20° opening on the cylinder (downstream) side.  This 

opening corresponds to 𝑄 = 5.15 Å-1.  Data collected at higher 𝑄 than this were not utilized in our 

analysis, therefore it was not necessary to collect / compute a transmission function for the DAC 

seats as was done in ref. [2].  An indented stainless steel gasket was utilized, in which a hole was 

prepared using a custom-constructed spark eroder device.  Argon (BOC zero grade, 99.999%) was 

loaded cryogenically by placing the DAC in a small chamber into which Argon was pumped after 

purging the chamber of air.  The chamber was placed in a bath of liquid nitrogen in order to 

condense the Argon, and the screws were turned to close the DAC whilst it was completely 

immersed in liquid Argon. 

Synchrotron X-ray diffraction data were collected at Diamond Light Source beamline I15 using a 29.3 

keV X-ray beam.  The beam was focussed to 9 μm x 6 μm (FWHM) and a Pilatus CdTe 2M detector was 

used.  The sample-to-detector distance (approx. 424 mm) and beam energy were calibrated using a 

CeO2 standard.  Typical data acquisition time was 30 s.  Azimuthal integration was performed using 

Dioptas v0.5.5 software.  Detector artefacts, Bragg peaks from diamond anvils and shadows from 

beamstop and other auxiliary equipment were manually masked, and all detector images were 

processed with the same mask to enable a subtraction of individual patterns.  “The X-ray beam was 

aligned to the centre of the sample chamber before collecting each pattern”. 

Pressure was measured using the Ruby photoluminescence method.  Due to the need to collect many 

closely spaced datapoints, pressure was measured before and after each X-ray diffraction pattern was 

collected and data were rejected if the change in pressure during data collection exceeded 30 MPa. 

The experiment on I15 in which these data were collected was setup at short notice following an 

altnernate experiment being aborte for technical reasons.  As a result, the I15 beamline was not setup 

with the optimum X-ray wavelength, geometry and detector for this experiment. 

 

3. Dataset B normalization 

In pressure points comprising dataset B 𝐼𝑟𝑎𝑤(𝑄), the raw coherent scattering intensity from the 

sample, was obtained from the total raw scattering intensity by subtraction of a background 

originating from either the empty DAC or the DAC containing Ar in the solid state.  Figure S2 below 

shows examples of both these calculations. 



 

 

Figure S2.  Examples of background subtraction on dataset B to obtain 𝐼𝑟𝑎𝑤(𝑄) by subtraction of the 

background signal from Ar confined in the DAC in the solid state (upper) and from the empty DAC 

(lower). 

Dataset B was normalized according to equation 3, reproduced below: 

𝑆(𝑄) =
𝐼𝑟𝑎𝑤(𝑄)

𝑁′𝑓(𝑄)2
 

The parameter 𝑁′ is a fitting parameter to ensure that 𝑆(𝑄) → 1 in the high 𝑄 limit, whilst 𝑓(𝑄) is the 

atomic form factor.  The most commonly used set of values are those given in the International Tables 

for Crystallography [1].  We used the linear interpolations between the values given in the 



International Tables for Crystallography shown in figure S3.  In practice, performing background 

subtraction that produced reasonable outcomes at all 𝑄 without obtaining negative 𝐼𝑟𝑎𝑤(𝑄) for some 

low values of 𝑄 was challenging.  The data were therefore shifted by a small constant (less than 5% of 

the peak value) to ensure that the lowest value of 𝑆(𝑄) was at least zero. 

Figure S4 shows, for example data at 830 MPa, the stages in the normalization process beginning with 

𝐼𝑟𝑎𝑤(𝑄).  Firstly, 𝐼𝑟𝑎𝑤(𝑄) is divided by 𝑓(𝑄)2, after which it is normalized to 1 in the high-Q limit.  

Since the value of with 𝐼𝑟𝑎𝑤(𝑄) is still oscillating at 𝑄 = 5 Å-1, this was done by normalizing such that 

the average value of the second peak (at 𝑄 ≈ 4 Å-1), and the trough following it, was 1. 

 

 

Figure S3. Tabulated f(Q) data from the Intl. Tables for Crystallography [1] (points) and our 

interpolation (line). 



 

Figure S4.  Stages in the normalization process to obtain 𝑆(𝑄) from 𝐼𝑟𝑎𝑤(𝑄) at 830 MPa.  The division 

by 100 applied to 𝐼𝑟𝑎𝑤(𝑄) and (𝐼𝑟𝑎𝑤(𝑄)/𝑓(𝑄)
2) was performed solely to enable presentation on this 

figure alongside 𝑓(𝑄) and 𝑆(𝑄), and was not part of the normalization process.  The arrows indicate 

the points selected in the last stage of the normalization process: Ensuring that the average value of 

S(Q) between these points is 1. 

 

4. Phase diagrams 

Figure S5 (below) shows the phase diagrams of  fluid Ar (from ref. [18]) and Kr (compiled for this work 

using the methodology presented in ref. [18]), with the P,T points marked at which the different 

datasets in the present work were collected. 



 

 

Figure S5. (a) Phase diagram of Ar (from ref. [18] with the P,T points for datasets A and B added) and 

panel (b) Phase diagram of Kr (compiled using the methodology of ref. [18] with the P,T points for 

datasets C and D added). 

 

5. Code documentation 

The Fourier transform (FT) results described in the text were obtained using our own code as 

documented below.  We used Octave (an open-source version of Matlab) throughout.  There are three 

separate scripts, one for the standard Fourier transform and one for each modification function.  The 

code calculates a FT using the full range of the input data (all 𝑄 values) and a FT using Q values only 

up to a certain lower cutoff.  The scripts for the modification functions are based closely on the script 

for the standard Fourier transform so we will document this first.  All three scripts are available to 

download with this supplementary information. 



 

5.1 Standard Fourier transform 

The 𝑆(𝑄) input data should be provided in tab separated variable format where the first column is 

filled with the 𝑄-values (in Å-1) and the second column with the 𝑆(𝑄) values.  All text such as column 

headings must be deleted from the input data file by the user prior to running the script.  The data 

should be stored in the same directory as the script, in which case to load the data it is simply 

necessary to write the file name including extension in line 4 and the file name without the extension 

in line 5. 

The following additional data need to be entered by the user: 

• Line 6, the number density of particles p in at./m3. 

• Line 7 Qmax, the row number in the 𝑆(𝑄) input data file at which to stop for the FT using the 

cutoff at lower Q. 

• Line 9 n, the number of (equally spaced) values of r at which to calculate 𝑔(𝑟). 

• Line 10, r_max, the maximum value of r (in metres) to which to calculate 𝑔(𝑟).  

The remaining variables are as follows: 

Name Purpose 

Q_values 
Array of 𝑄 values (read from file in Å-1, converted immediately to m-1 when array 
is filled). 

S_Q_values Array of normalized 𝑆(𝑄) values read from file. 

r_values 

The array of n values of r (in metres) for which 𝑔(𝑟) is to be calculated, starting 
at r_spacing (since equation 4 in the main text fails at 𝑟 = 0) and ending at 
r_max. 

r_spacing the spacing between r values. 

Q_values_cutoff Equivalent of Q_values but containing data only up to Q_values(Qmax). 

S_Q_values_cutoff Equivalent of S_Q_values but containing data only up to S_Q_values(Qmax). 

raw_g_r Array of all (unnormalized) [𝑔(𝑟) − 𝑔0] values for the FT of the full dataset. 

raw_g_r_cutoff Equivalent to raw_g_r but for the FT of the data up to Q_values(Qmax). 

norm_g_r Normalized g(r) for full FT. 

norm_g_r_cutoff Ditto but for cutoff FT (same number of r values in both cases). 

Q_value Value of Q at the cutoff point. 

CN Calculated co-ordination number (CN) with full range 𝑔(𝑟). 

CN_cutoff 
Calculated co-ordination number (CN) with 𝑔(𝑟) obtained with 𝑆(𝑄) cutoff at 
lower Q-value. 

 

Table S1.  Names of principal non-user-defined variables in the code for the standard Fourier 

transform. 

The code obtains the normalized 𝑔(𝑟) and the co-ordination number (CN) for the full set of 𝑆(𝑄) data 

and the data cutoff at the lower value of 𝑄 in the following steps.  Firstly, the equation below (equation 

4 from the main text rearranged and with upper and lower limits inserted in the integral) is used to 

calculate [𝑔(𝑟) − 𝑔0]. 

𝑔(𝑟) − 𝑔0 =
1

2𝜋2𝑟2
∫ 𝑄𝑟[𝑆(𝑄) − 1]𝑠𝑖𝑛(𝑄𝑟)𝑑𝑄
𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

 



This is performed for each value of 𝑟 using the trapz numerical integration function.  The parameter 

𝑄𝑚𝑖𝑛 is simply the minimum value of 𝑄 for which 𝑆(𝑄) experimental data is provided. 

The same procedure is used to normalize the 𝑔(𝑟) functions for both the full and reduced range in 𝑄-

values.  A constant is added to the value of 𝑔(𝑟) at all 𝑟 to ensure that 𝑔(𝑟𝑚𝑖𝑛) = 0 (essentially just 

removing the arbitrary constant 𝑔0).  Then the 𝑔(𝑟) data at all 𝑟 are divided by 𝑔(𝑟𝑚𝑎𝑥).  Clearly, this 

procedure will not work if the ripples in 𝑔(𝑟) at low 𝑟 result in 𝑔(𝑟𝑚𝑎𝑥) < 𝑔(𝑟𝑚𝑖𝑛) so first the code 

checks for this and displays an error message if this is the case.  Clearly it would be possible to contrive 

other, more complex, procedures for normalizing 𝑔(𝑟) in this case but we suggest that if this is 

required then the data are not worth the effort. 

The final calculation performed is the further integration to obtain the CN for both normalized g(r) 

functions using the equation below: 

CN = 4𝜋𝜌 ∫ 𝑟2𝑔(𝑟)𝑑𝑟

𝑟2

𝑟1

 

Mathematically, the CN calculation consists of integrating 𝑟2𝑔(𝑟) from the minimum before the first 

peak (𝑟1) to the minimum after the first peak (𝑟2).  The code locates the highest peak in 𝑔(𝑟), then 

locates the minima on each side and integrating using the trapz numerical integration function.  In 

contrast to the theoretical definition of the CN (an integration starting from 𝑟 = 0, equation 14 in the 

main text) the finite lower limit on 𝑟 has to be included when analysing 𝑔(𝑟) originating from FT of 

real experimental data to avoid including the area of unphysical ripples at very low 𝑟 in the calculation. 

If the unphysical ripples in 𝑔(𝑟) caused by the FT process cause the first physically meaningful peak to 

not be the highest peak, then the procedure will fail.  It is the responsibility of the user to check this by 

viewing the graphs of the relevant functions produced by the code. 

The CNs calculated from both 𝑔(𝑟) functions are outputted in variables that the user can read in the 

Octave workspace, and the following outputs are saved to file: 

• The raw [𝑔(𝑟) − 𝑔0] and normalized 𝑔(𝑟) functions obtained with the full 𝑆(𝑄) dataset. 

• The normalized g(r) function obtained with the 𝑆(𝑄) dataset over a reduced range in 𝑄. 

The following figures are created: 

• Figure 1.  The 𝑆(𝑄) that was provided, over the full range in 𝑄. 

• Figure 2.  The raw [𝑔(𝑟) − 𝑔0] functions obtained from the FT of the full 𝑆(𝑄) dataset and the 

dataset over a reduced range in 𝑄. 

• Figure 3.  The normalized 𝑔(𝑟) functions obtained from the FT of the full 𝑆(𝑄) dataset and 

the dataset over a reduced range in 𝑄. 

 

5.2 Fourier transform with Lorch modification function 

In this case, when the Fourier transform is performed to obtain [𝑔(𝑟0) − 𝑔0] equation 6 from the main 

text is utilized, but with a finite lower limit 𝑄𝑚𝑖𝑛 similarly to the direct FT described above.  𝑄𝑚𝑎𝑥 is 

the maximum value of Q for which S(Q) data are provided for the FT process, and ∆ is obtained from 

𝑄𝑚𝑎𝑥 using ∆= 𝜋 𝑄𝑚𝑎𝑥⁄  as justified in the main text. 

 



5.3 Fourier transform with Soper-Barney modification function 

In this case, when the Fourier transform is performed to obtain [𝑔(𝑟0) − 𝑔0] equation 11 from the 

main text is utilized, but with a finite lower limit 𝑄𝑚𝑖𝑛 similarly to the direct FT described above.  𝑄𝑚𝑎𝑥 

is the maximum value of 𝑄 for which 𝑆(𝑄) data are provided for the FT process, and ∆ is obtained 

from 𝑄𝑚𝑎𝑥 using ∆= 4.49 𝑄𝑚𝑎𝑥⁄  as justified in the main text. 

 

6. Code 

It should be possible to copy and paste this code directly into Octave or Matlab.  Each code is a 

separate self-contained script.  The code is also available on request in Octave (.m) format. 

 

6.1 Standard Fourier transform 

## STEP 1: LOAD S(Q) DATA ## 

 

clear variables 

load Ar_335977.txt; 

data_file = Ar_335977; 

p = 1.75132E+27; #number density of particles 

Qmax = 50; #Q cutoff variables 

 

Q_values = data_file(:,1)*10^10; #Q 

S_Q_values = data_file(:,2); #S(Q) 

n = 1000; #number of points to be calculated 

r_max = 20*10^-10; 

r_spacing = r_max/n; 

r_values = r_spacing:r_spacing:r_max; #array of r values 

 

Q_value = Q_values(Qmax)*10^-10; #Just for readout, the actual value of Q cutoff in A^-1 

Q_values_cutoff = []; 

S_Q_values_cutoff = []; 

 

for i = 1:Qmax #input values into Q for cutoff integral 

  Q_values_cutoff = [Q_values_cutoff;Q_values(i)]; 

  S_Q_values_cutoff = [S_Q_values_cutoff;S_Q_values(i)]; 

end 

 

## STEP 2: FINDING G(R) - G0 ## 

raw_g_r = []; #g(r) - g0 with full range 

raw_g_r_cutoff = []; #g(r) - g0 with cut-off 

 

for i = 1:length(r_values) #we integrate for all values of r 

  #the full-range integral 

  F = Q_values.*(S_Q_values-1).*sin(Q_values*r_values(i)); 

  g = trapz(Q_values,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r = [raw_g_r;gr]; 

  #the cut-off integral 



  F = Q_values_cutoff.*(S_Q_values_cutoff-1).*sin(Q_values_cutoff*r_values(i)); 

  g = trapz(Q_values_cutoff,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r_cutoff = [raw_g_r_cutoff;gr]; 

end 

 

## STEP 3: NORMALIZATION ## 

 

norm_g_r = []; #normalized g(r) for full range 

norm_g_r_cutoff = []; #normalized g(r) for cut-off 

 

if (raw_g_r(1) > raw_g_r(length(r_values))) 

  disp('Full range g(r) data cannot be normalized'); 

end 

 

if (raw_g_r_cutoff(1) > raw_g_r_cutoff(length(r_values))) 

  disp('Qmax cutoff g(r) data cannot be normalized'); 

end 

 

for i = 1:length(r_values) 

  norm_g_r = [norm_g_r;(raw_g_r(i) - raw_g_r(1))]; 

  norm_g_r_cutoff = [norm_g_r_cutoff;(raw_g_r_cutoff(i) - raw_g_r_cutoff(1))]; 

end 

 

for i = 1:length(r_values) 

  norm_g_r(i) = norm_g_r(i) / norm_g_r(length(r_values)); 

  norm_g_r_cutoff(i) = norm_g_r_cutoff(i) / norm_g_r_cutoff(length(r_values)); 

end 

 

## STEP 4: CO-ORDINATION NUMBER ## 

 

#CN: full range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 



    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN = 4*pi*p*area; 

 

#CN: cutoff range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r_cutoff; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 



      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r_cutoff(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN_cutoff = 4*pi*p*area; 

 

## EXPORTING AND GRAPHS ## 

#Make a descending list of r values so we can save them in a text document 

r_list = []; 

 

for i = 1:length(r_values) 

  r_list = [r_list;r_values(i)*10^10]; 

end 

 

RDFdata = [r_list norm_g_r]; 

RDFdata2 = [r_list raw_g_r]; 

CutOffdata = [r_list norm_g_r_cutoff]; 

save Std_norm_RDF.txt RDFdata; 

save Std_raw_RDF.txt RDFdata2; 

save Std_norm_cutoff_RDF.txt CutOffdata; 

 

figure(1) 

plot(Q_values,S_Q_values) 

xlabel('Q') 

ylabel('S(Q)') 

title('Structure Factor') 

grid on 

box on 

 

figure(2) 

plot(r_values,raw_g_r,'r',r_values,raw_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('G(r) - G0') 

title('Radial Distribution Function: Fourier transform') 

grid on 

box on 

 

figure(3) 

plot(r_values,norm_g_r,'r',r_values,norm_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('g(r)') 

title('Normalised g(r)') 

grid on 

box on 



 

6.2 Fourier transform with Lorch modification 

## STEP 1: LOAD S(Q) DATA ## 

 

clear variables 

load Ar_335953.txt; 

data_file = Ar_335953; 

p = 2.5924E28; #number density of particles 

Qmax = 870; #Q cutoff variables 

 

Q_values = data_file(:,1)*10^10; #Q 

S_Q_values = data_file(:,2); #S(Q) 

n = 1000; #number of points to be calculated 

r_max = 20*10^-10; 

r_spacing = r_max/n; 

r_values = r_spacing:r_spacing:r_max; #array of r values 

 

Q_value = Q_values(Qmax)*10^-10; #Just for readout, the actual value of Q cutoff in A^-1 

Q_values_cutoff = []; 

S_Q_values_cutoff = []; 

 

delta = pi/Q_values(length(Q_values)); 

cutoff_delta = pi/Q_values(Qmax); 

 

for i = 1:Qmax #input values into Q for cutoff integral 

  Q_values_cutoff = [Q_values_cutoff;Q_values(i)]; 

  S_Q_values_cutoff = [S_Q_values_cutoff;S_Q_values(i)]; 

end 

 

## STEP 2: FINDING G(R) - G0 ## 

raw_g_r = []; #g(r) - g0 with full range 

raw_g_r_cutoff = []; #g(r) - g0 with cut-off 

 

for i = 1:length(r_values) #we integrate for all values of r 

  #the full-range integral 

  F = Q_values.*(S_Q_values-

1).*sin(Q_values.*r_values(i)).*(sin(Q_values.*delta)./(Q_values.*delta)); 

  g = trapz(Q_values,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r = [raw_g_r;gr]; 

  #the cut-off integral 

  F = Q_values_cutoff.*(S_Q_values_cutoff-

1).*sin(Q_values_cutoff.*r_values(i)).*(sin(Q_values_cutoff.*cutoff_delta)./(Q_values_cutoff.*cutoff

_delta)); 

  g = trapz(Q_values_cutoff,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r_cutoff = [raw_g_r_cutoff;gr]; 

end 

 



## STEP 3: NORMALIZATION ## 

 

norm_g_r = []; #normalized g(r) for full range 

norm_g_r_cutoff = []; #normalized g(r) for cut-off 

 

if (raw_g_r(1) > raw_g_r(length(r_values))) 

  disp('Full range g(r) data cannot be normalized'); 

end 

 

if (raw_g_r_cutoff(1) > raw_g_r_cutoff(length(r_values))) 

  disp('Qmax cutoff g(r) data cannot be normalized'); 

end 

 

for i = 1:length(r_values) 

  norm_g_r = [norm_g_r;(raw_g_r(i) - raw_g_r(1))]; 

  norm_g_r_cutoff = [norm_g_r_cutoff;(raw_g_r_cutoff(i) - raw_g_r_cutoff(1))]; 

end 

 

for i = 1:length(r_values) 

  norm_g_r(i) = norm_g_r(i) / norm_g_r(length(r_values)); 

  norm_g_r_cutoff(i) = norm_g_r_cutoff(i) / norm_g_r_cutoff(length(r_values)); 

end 

 

## STEP 4: CO-ORDINATION NUMBER ## 

#CN: full range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 



#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN = 4*pi*p*area; 

 

#CN: cutoff range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r_cutoff; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r_cutoff(i)]; #get sets of data points for CN integral 

end 



 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN_cutoff = 4*pi*p*area; 

 

## EXPORTING AND GRAPHS ## 

#Make a descending list of r values so we can save them in a text document 

r_list = []; 

 

for i = 1:length(r_values) 

  r_list = [r_list;r_values(i)*10^10]; 

end 

 

RDFdata = [r_list norm_g_r]; 

RDFdata2 = [r_list raw_g_r]; 

CutOffdata = [r_list norm_g_r_cutoff]; 

save Lorch_norm_RDF.txt RDFdata; 

save Lorch_raw_RDF.txt RDFdata2; 

save Lorch_norm_cutoff_RDF.txt CutOffdata; 

 

figure(1) 

plot(Q_values,S_Q_values) 

xlabel('Q') 

ylabel('S(Q)') 

title('Structure Factor') 

grid on 

box on 

 

figure(2) 

plot(r_values,raw_g_r,'r',r_values,raw_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('G(r) - G0') 

title('Radial Distribution Function: Fourier transform') 

grid on 

box on 

 

figure(3) 

plot(r_values,norm_g_r,'r',r_values,norm_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('g(r)') 

title('Normalised g(r)') 

grid on 

box on 

 

6.3 Fourier transform with Soper-Barney modification 

## STEP 1: LOAD S(Q) DATA ## 

 

clear variables 



load Ar_335953.txt; 

data_file = Ar_335953; 

p = 2.5924E28; #number density of particles 

Qmax = 870; #Q cutoff variables 

 

Q_values = data_file(:,1)*10^10; #Q 

S_Q_values = data_file(:,2); #S(Q) 

n = 1000; #number of points to be calculated 

r_max = 20*10^-10; 

r_spacing = r_max/n; 

r_values = r_spacing:r_spacing:r_max; #array of r values 

 

Q_value = Q_values(Qmax)*10^-10; #Just for readout, the actual value of Q cutoff in A^-1 

Q_values_cutoff = []; 

S_Q_values_cutoff = []; 

 

delta = 4.49./Q_values(length(Q_values)); 

cutoff_delta = 4.49./Q_values(Qmax); 

 

for i = 1:Qmax #input values into Q for cutoff integral 

  Q_values_cutoff = [Q_values_cutoff;Q_values(i)]; 

  S_Q_values_cutoff = [S_Q_values_cutoff;S_Q_values(i)]; 

end 

 

## STEP 2: FINDING G(R) - G0 ## 

raw_g_r = []; #g(r) - g0 with full range 

raw_g_r_cutoff = []; #g(r) - g0 with cut-off 

 

for i = 1:length(r_values) #we integrate for all values of r 

  #the full-range integral 

  F = Q_values.*(S_Q_values-

1).*sin(Q_values.*r_values(i)).*(3./((Q_values.*delta).^3)).*(sin(Q_values.*delta)-

(Q_values.*delta).*cos(Q_values.*delta)); 

  g = trapz(Q_values,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r = [raw_g_r;gr]; 

  #the cut-off integral 

  F = Q_values_cutoff.*(S_Q_values_cutoff-

1).*sin(Q_values_cutoff.*r_values(i)).*(3./((Q_values_cutoff.*cutoff_delta).^3)).*(sin(Q_values_cuto

ff.*cutoff_delta)-(Q_values_cutoff.*cutoff_delta).*cos(Q_values_cutoff.*cutoff_delta)); 

  g = trapz(Q_values_cutoff,F)*2/pi; #integrate 

  gr = g/(4*pi*r_values(i)); #the integral gives 4*pi*r*[g(r) - g0], so divide by 4*pi*r 

  raw_g_r_cutoff = [raw_g_r_cutoff;gr]; 

end 

 

## STEP 3: NORMALIZATION ## 

 

norm_g_r = []; #normalized g(r) for full range 

norm_g_r_cutoff = []; #normalized g(r) for cut-off 

 

if (raw_g_r(1) > raw_g_r(length(r_values))) 



  disp('Full range g(r) data cannot be normalized'); 

end 

 

if (raw_g_r_cutoff(1) > raw_g_r_cutoff(length(r_values))) 

  disp('Qmax cutoff g(r) data cannot be normalized'); 

end 

 

for i = 1:length(r_values) 

  norm_g_r = [norm_g_r;(raw_g_r(i) - raw_g_r(1))]; 

  norm_g_r_cutoff = [norm_g_r_cutoff;(raw_g_r_cutoff(i) - raw_g_r_cutoff(1))]; 

end 

 

for i = 1:length(r_values) 

  norm_g_r(i) = norm_g_r(i) / norm_g_r(length(r_values)); 

  norm_g_r_cutoff(i) = norm_g_r_cutoff(i) / norm_g_r_cutoff(length(r_values)); 

end 

 

## STEP 4: CO-ORDINATION NUMBER ## 

 

#CN: full range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 



end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN = 4*pi*p*area; 

 

#CN: cutoff range 

int_table = []; 

Max_Peak = 0; 

max_peak_pos = 1; #Position of first Cshell max 

coord_max = 1; #Upper limit for CN integration 

coord_min = 1; #Lower limit for CN integration 

func = norm_g_r_cutoff; 

 

for i = 2:length(r_values) #locate tallest peak 

  if (func(i) > Max_Peak) 

    Max_Peak = func(i); 

    max_peak_pos = i; 

  end 

end 

 

#see where minimum is after tallest peak 

Lowest = func(max_peak_pos); 

 

for i = (max_peak_pos+1):length(r_values) 

  if (Lowest > func(i)) #i.e. gradient is negative 

    Lowest = func(i); 

    coord_max = i; 

  else 

    break 

  end 

end 

 

#See where minimum is before tallest peak 

for i = 2:(max_peak_pos-1) 

    if (func(i-1) > func(i)) #So it sets coord_min if there is a negative gradient 

      coord_min = i; 

    endif 

end 

 

for i = coord_min:coord_max #Num should be at the point of the lowest peak 

  int_table = [int_table, (r_values(i)^2).*norm_g_r_cutoff(i)]; #get sets of data points for CN integral 

end 

 

area = trapz(r_values(coord_min:coord_max),int_table); #integrate 

CN_cutoff = 4*pi*p*area; 

 

## EXPORTING AND GRAPHS ## 



#Make a descending list of r values so we can save them in a text document 

r_list = []; 

 

for i = 1:length(r_values) 

  r_list = [r_list;r_values(i)*10^10]; 

end 

 

RDFdata = [r_list norm_g_r]; 

RDFdata2 = [r_list raw_g_r]; 

CutOffdata = [r_list norm_g_r_cutoff]; 

save Soper_norm_RDF.txt RDFdata; 

save Soper_raw_RDF.txt RDFdata2; 

save Soper_norm_cutoff_RDF.txt CutOffdata; 

 

figure(1) 

plot(Q_values,S_Q_values) 

xlabel('Q') 

ylabel('S(Q)') 

title('Structure Factor') 

grid on 

box on 

 

figure(2) 

plot(r_values,raw_g_r,'r',r_values,raw_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('G(r) - G0') 

title('Radial Distribution Function: Fourier transform') 

grid on 

box on 

 

figure(3) 

plot(r_values,norm_g_r,'r',r_values,norm_g_r_cutoff,'b') 

legend('Max Q','Q Cutoff') 

xlabel('r') 

ylabel('g(r)') 

title('Normalised g(r)') 

grid on 

box on 


