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ABSTRACT

A comparison is made between the three principal methods for the analysis of neutron and x-ray diffraction data from noble gas fluids by
direct Fourier transform. All three methods (standard Fourier transform, Lorch modification, and Soper–Barney modification) are used to
analyze four different sets of diffraction data from noble gas fluids. The results are compared to the findings of a full-scale real-space struc-
ture determination, namely, Empirical Potential Structure Refinement. Conclusions are drawn on the relative merits of the three Fourier
transform methods, what information can be reliably obtained using each method, and which method is most suitable for the analysis of
different kinds of diffraction data. The mathematical validity of the Lorch method is critically analyzed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161033

I. INTRODUCTION

A. Analysis of fluid diffraction data via Fourier
transform: The Qmax cutoff problem

On a fundamental level, the interpretation of diffraction data
from fluids, network glasses, and amorphous solids is simple. The
coherent scattering intensity Icoh(Q) (of x rays or neutrons) is pre-
dicted by the Debye scattering equation, given below for a fluid
composed of spherically symmetric identical particles:

Icoh(Q) ¼
XN
m¼1

XN
n¼1

f (Q)2sin(Qrmn)
Qrmn

" #
: (1)

Here, f (Q) is the atomic form factor (x rays) or scattering
length (neutrons) (tabulated data are available for this1) and N is
the number of particles in the beam. The parameter rmn refers to
the distance between particles m and n. The structure factor S(Q) is

obtained from the coherent scattering intensity Icoh(Q) according to
Eq. (2),2,3

S(Q) ¼ Icoh(Q)

Nf (Q)2
: (2)

If the coherent scattering intensity Icoh(Q) is defined according
to the Debye scattering equation, then the definition of S(Q)
according to Eq. (1) will result in lim

Q!1 S(Q) ¼ 1.

In reality Icoh(Q), as defined by the Debye scattering equation,
cannot be obtained. Instead, the experimentally measured scatter-
ing data undergo a series of corrections to calculate the raw coher-
ent scattering intensity from the sample Iraw(Q) as reliably as
possible. The remaining normalization to obtain S(Q) is performed
using Eq. (3) through division by N 0f (Q)2, where N 0 is an arbitrary
scaling parameter to ensure that lim

Q!1 S(Q) ¼ 1. The normalization

via N 0 accounts for several effects including the fact that Iraw(Q)
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[unlike Icoh(Q)] depends on the incident beam intensity,

S(Q) ¼ Iraw(Q)

N 0f (Q)2
: (3)

All further analysis utilizes this definition of S(Q).
The radial distribution function g(r) enables parameters such

as the co-ordination number (CN) describing sample properties in
real space to be obtained. The g(r) function can be derived by a
Fourier transform (FT) of the structure factor S(Q) provided by the
diffraction data. For a fluid composed of spherically symmetric
identical particles, the FT relationship given in Eq. (4)2,3 is exactly
correct. The parameter g0 is an arbitrary constant, which is elimi-
nated in any case when g(r) is normalized (as outlined in the sup-
plementary material),

4πr2
h
g(r)� g0

i
¼ 2

π

ð1
0
Qr

h
S(Q)� 1

i
sin(Qr)dQ: (4)

By definition, g(r) represents the probability of finding par-
ticles separated by a particular distance. Therefore, g(r)
has certain mathematical properties, which most arbitrary func-
tions do not. Notably, only functions which can be derived
from an ensemble of point positions in space are possible g(r)
functions.

For fluids, there are further physical constraints: In the
absence of long range order, one must have g(r) ¼ 1 at long range;
furthermore, g(r) and its derivatives must be continuous. From
Eq. (4), these constraints also apply to S(Q).

We can, therefore, identify four distinct constraints on any
meaningful S(Q),

1. The associated g(r) must correspond to an ensemble of points
in space.

2. For atoms with finite size, g(r) must be positive everywhere and
go to zero for r approximately equal to the atomic diameter.

3. S(Q) must be continuous.
4. Derivatives of S(Q) must be continuous.

In fact, constraints 3 and 4 are consequences of constraint 1,
but we list them separately because methods exist to resolve them.
Only a very small fraction of possible functions satisfy these neces-
sary constraints, and there is no reason to suppose that S(Q)
derived from real data via Eq. (3) will do so.

One problem is that real diffraction data cover a range in Q
only from a finite minimum value of Q, Qmin, up to some finite
value, Qmax . In this work, we will focus primarily on solutions to
the problems caused by Qmax , 1. We will, however, return to a
discussion of the potential problems caused by Qmin . 0 in the
conclusions. The Qmax problem is particularly severe for x-ray dif-
fraction, where destructive interference between x rays scattered
from different parts of the same atom prevents scattering at large
Q. This phenomenon is represented mathematically using the
parameter known as the atomic form factor f (Q). Even for neutron
diffraction, the range in Q covered by the data is limited by its rela-
tion to the scattering angle (which cannot exceed 180°) and by
the reduction in Icoh(Q) at large Q that takes place independently of

the effect of changes to f (Q), via the 1/Q factor in the Debye scat-
tering equation [Eq. (1)]. This phenomenon, in both x-ray and
neutron diffraction experiments, is known as the Qmax-cutoff
problem. This problem leads to all four types of unphysicalities
described above.

In the absence of data, Eq. (4) can only be applied to experi-
mental data if some theoretical assumption is made about
S(Q . Qmax). The simplest theory is to take[S(Q . Qmax)� 1] ¼ 0
(equivalently, integrate only to Qmax). This “absence of evidence is
evidence of absence” theory is so widely used that it is often not
even recognized as an assumption. It almost certainly violates all
the physical constraints described above: most obviously it intro-
duces a discontinuity in S(Q).

Mathematically, this sharp cutoff at Qmax means that the FT
generates a “g(r),” which is a convolution of the true g(r) data with
the FT of a step function fS(Q): this latter is a sinc function which
produces spurious oscillations at a frequency determined by Qmax.
These manifest as peaks in g(r) at unfeasibly small r, and in
extreme cases, even negative g(r) (both leading to g(r) violating
condition 2 above).

We can write the FT of data up to Qmax as

4πr2
h
g(r)� g0

i
¼ 2

π

ð1
0
Qr[S(Q)� 1]sin(Qr)fS(Q)dQ

¼ 2
π

ðQmax

0
Qr[S(Q)� 1]sin(Qr)fS(Q)dQ, (5)

where fS(Q) is the step function (see Fig. 1), which means that
beyond Qmax , the integrand is zero and can be ignored. We note
that if the data are extensive enough that [S(Q . Qmax)� 1] ¼ 0,

FIG. 1. Modification functions which permit the application of Eq. (4) in the
absence of data for Q . Qmax, plotted as a function of Q/Qmax . The black line
indicates a step function fS which is discontinuous at Qmax , a method referred to
as “direct FT.” The blue line is the Lorch function fL, and the red line is the
Soper–Barney function fSB. These are discontinuous in the first derivative. All
functions continue to infinity with a value of zero.
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this also gives a zero integrand above Qmax and the step function is
unnecessary.

This discussion may appear unnecessarily pedantic, but its
purpose is to introduce the concept of fS(Q). While the step func-
tion preserves the integrity of the data up to Qmax , any function
that is equal to zero above Qmax makes it possible to perform a
complete FT in spite of the missing data. As described, the step
function (sinc convolution) may produce nonsensical results,
which are typically undesirable. A different function, which modi-
fies the data but does not introduce a discontinuity, may produce a
g(r) which is less obviously wrong.

B. Solution to the Qmax cutoff problem by the Lorch
modification function

In 1969, Lorch proposed a solution4 to the discontinuity
arising from the Qmax cutoff problem, beginning from Eq. (4).
Where we use S(Q), Lorch used the notation i(Q). Lorch’s method
is essentially to make a compromise. Instead of seeking to deter-
mine the exact value of g(r) for all r, we will obtain the integrated
value of g(r) over a range of values about some central value r0:
(r0 � Δ) � r � (r0 þ Δ) (Lorch used Δ/2 instead). In this case, both
sides of Eq. (4) are integrated with respect to r within these limits
and Lorch obtained an equation which is reproduced below using
our notation as Eq. (6),

4πr20

h
g(r0)� g0

i
¼ 2

π

ðQmax

0
Qr0[S(Q)� 1]sin(Qr0)

sin(QΔ)
QΔ

� �
dQ

fL(QΔ) ¼ sin(QΔ)
QΔ

: (6)

The result of this compromise is an expression on the right
hand side identical to Eq. (5) except that the integrand is now mul-
tiplied by a modification function fL(QΔ), the sinc function.
Qmax ¼ π/Δ is usually chosen as this makes QmaxΔ correspond to
the first zero in the sinc function. In this case, constraint 3 as listed
above will be satisfied: We now integrate [S(Q)� 1]fL which is con-
tinuous at Qmax instead of [S(Q)� 1]fS, which is not. Beyond Qmax ,
the integrand of the FT must be zero: this can be achieved by some
assumption on the data: [S(Q . Qmax)� 1] ¼ 0, or by setting
fL(Q . Qmax) ¼ 0. These yield identical results: to maintain com-
patibility with the step function approach, we adopt the second
interpretation throughout.

Equation (6) has been used as a standard method to address
the Qmax-cutoff discontinuity problem for the 50 years since
Lorch’s paper was published; it has 571 citations to date, 125 of
which are from the last 5 years. The method has been used in
many papers fundamental to our understanding of fluids, network
glasses, and amorphous solids.

However, in 20115 it was shown that if the integral is per-
formed as instructed in Lorch’s original paper one in fact obtains
the equation reproduced below in our notation as Eq. (7). Here, the
application of a cutoff at some finite value of Q cannot be justified
for the second integral, which is not necessarily small compared to
the first integral.

4πr20

h
g(r0)� g0

i

¼ 2
π

ðQmax

0
Qr0[S(Q)� 1]sin(Qr0)

sin(QΔ)
QΔ

� �
dQ

þ 2
π

ð1
0
[S(Q)� 1]

sin(QΔ)cos(Qr0)
QΔ

� cos(Qr0)cos(QΔ)

� �
dQ:

(7)

Over the decades, Lorch’s method has been very successful at
removing unphysical oscillations in g(r) functions but this does not
prove that the method is producing g(r) functions which are
correct. This naturally raises the question: can Lorch’s result
[Eq. (6)] be recovered through the use of reasonable approxima-
tions? Let us examine the problem carefully.

To begin, we integrate Eq. (3) exactly as described within the
specified limits [Eq. (8)]. The left hand side gives us the integrated
value of g(r) straightforwardly but, in order to continue referring to
the non-integrated value of g(r) [as is done in Ref. 4 and in
Eqs. (6) and (7)], it is necessary to make additional assumptions.
We assume that Δ � r0 and that g(r) does not vary significantly
over the region covered by the integral over r. Equation (9) specifies
the exact, and approximate, relationships between g(r) and its inte-
grated equivalent which we shall label G(r0, Δ),

ðr0þΔ

r0�Δ
4πr20

h
g(r)� g0

i
dr ¼ 2

π

ððr¼r0þΔ,Q¼1

r¼r0�Δ,Q¼0
Qr[S(Q)� 1]sin(Qr)dQdr,

(8)

G(r0, Δ) ¼
ðr0þΔ

r0�Δ
4πr20[g(r)� g0]dr,

G(r0, Δ) � 2Δ� 4πr20[g(r0)� g0]:

(9)

The right hand side of Eq. (8) is a standard integral of the
form

Ð
xsinxdx. Application of trigonometric identities

cos(Aþ B) ¼ cosAcosB� sinAsinB, etc. results in Eq. (7), in agree-
ment with Ref. 5.

Nevertheless, we will now see that the Lorch function is recov-
erable. If we implement the condition that Δ � r0 on the right
hand side of Eq. (8) also, then the variation of the r term within
the integrand is negligible over the range of the integral so we can
replace it with r0 and simply integrate sin(Qr) with respect to r. In
this case, again by making use of standard trigonometric identities,
Eq. (4) is recovered, i.e., the Lorch function is mathematically valid
under this condition.

It is not correct to also set sin(Qr) ! sin(Qr0) in Eq. (8), as it
would necessitate the far more stringent condition on Δ that
Δ ! 0. This is because we would require the variation in the value
of Qr over the course of r0 � Δ � r � r0 þ Δ to cause negligible
change to the value of sin(Qr) even in the high Q limit.
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C. Other solutions to the discontinuity at Qmax cutoff
problem

Since the work of Lorch, several other solutions have been
proposed to the Qmax cutoff problem. The most notable one is the
modification function proposed by Soper and Barney.5 Similarly to
the Lorch function, this function involves accepting an averaged
value of g(r) over a range +Δ. This function [Eq. (10)] takes values
in the low Q and high Q limits identical to the sinc function pro-
posed by Lorch [Eq. (6)] and is inserted into the FT equation in an
analogous manner [Eq. (11)],

fSB(QΔ) ¼ 3

(QΔ)3
(sin(QΔ)� QΔcos(QΔ)), (10)

4πr20

h
g(r0)� g0

i
¼ 2

π

ðQmax

0
Qr0[S(Q)� 1]sin(Qr0)fSB(QΔ)dQ: (11)

Figure 1 shows the Lorch and Soper–Barney modification
functions. Compared to the Lorch function, the Soper–Barney
function has a wider central maximum (to second order in QΔ,
fL ¼ 1� (QΔ)2

3! and fSB ¼ 1� (QΔ)2

10 ) but then attenuates the data at
higher Q far more than the Lorch function. If Δ is set analo-
gously to the procedure used above with the Lorch function,
then the wider central maximum causes a given value of Qmax to
result in a larger value for Δ. Setting fSB(Qmax) ¼ 0 is essential
to eliminate the discontinuity in S(Q). This results in
Δ ¼ 4:49(1)/Qmax , compared to Δ ¼ π/Qmax for the Lorch
method. In some cases, the Soper–Barney function has been
implemented with the width Δ being r-dependent, though we
will not pursue that here.

An alternative to the use of a modification function is to
perform the FT [Eq. (5) or equivalent] to obtain g(r), then
perform the inverse FT to return to S(Q), followed by an iterative
process to transform back and forth seeking physically reasonable
behavior [in particular, ensuring that g(r) ¼ 0 within the atomic
radius]. This approach was pioneered first by Kaplow et al.,6 then
outlined in more detail by Eggert et al.2 The adjustable fitting
parameters in this process are g0 (representing the density) and
two scaling factors specific to their method for background
subtraction.

Unfortunately, to perform this analysis it was necessary to
smooth the original S(Q) data using a cubic-spline smoothing
routine in which the amount of smoothing applied varied as a
function of Q. In addition, the optimum values of the density
and scaling factors varied substantially according to the value
chosen for Qmax , not converging to a stable value (let alone the
correct value for the density) within the range of Qmax studied
(6–10 Å−1). Due to these difficulties (in particular, the need for
Q-dependent smoothing), we have not pursued the iterative
approach in the present work. Iterative approaches are, however,
available in the software packages Amorpheus7 and
LiquidDiffract.8

D. A Bayesian view on the modification functions

The Lorch method tackled the discontinuity problems (3 and
4 above) by modifying the measured S(Q) by a function which goes

to zero at Qmax . This has the cost that the data have to be adulter-
ated to alleviate the problems of the discontinuity.

Another way to write the exact same transformation is

4πr2
h
g(r)� g0

i
¼ 2

π

ð1
0
[Qr[S(Q)� 1]sin(Qr)fB(Q/Qmax)

þ Qr[Sp(Q)� 1]sin(Qr)[1� fB(Q/Qmax)]]dQ, (12)

with Sp(Q) ¼ 1. The second term is introduced to connect the
modification approach to a Bayesian framework. In the Bayesian
approach to data, one starts with a prior assumption [Sp(Q)� 1]
for the data, and this is modified by the data. As well as the prior,
an essential ingredient for the Bayesian method is the “strength” of
the prior.

Taking fB as the step function and the prior as “zero signal,”
we can read this equation as placing full weight on the data where
it exists, up to Qmax , then full weight on the prior beyond Qmax .
The Lorch and Soper–Barney modification can be seen as placing
some weight on the prior at all Q., e.g., at Q ¼ Qmax/2, these
methods determine g(r) by placing approximately equal weight to
the prior as the real data.

Of course, there is no requirement for the prior to be chosen
as zero, one might, e.g., choose the results of a simulation, or a pre-
vious experiment. Whatever prior is chosen, where one has full
confidence in the data one can set fB ¼ 1 and the prior will be
ignored, if one has no confidence in the data, e.g., because it does
not exist, the non-zero prior means that the second term can
provide non-zero contribution to the FT from Q . Qmax .

There are several approaches to the use of the prior: it can be
used to combine theory and experiment with weights determined
by the researcher, or it can be deployed in the spirit of Lorch/
Soper–Barney to remove the discontinuity.

In this second case, one might choose fB to be the step func-
tion, and the prior to be a function which matches the data at Qmax

and decays gracefully to zero (the form of the prior at Q , Qmax is
irrelevant, because it will be multiplied by zero). Such an approach
retains the advantages of Lorch and Soper–Barney in addressing
the Qmax cutoff problem, but does not compromise the integrity of
the measured data.

E. The effect of noise in the S(Q) data

Even if data are available up to extremely high Q, encompass-
ing all oscillations in S(Q), there remains the problem of noise.
From the Debye scattering equation [Eq. (1)], we expect that the
physically significant oscillations in S(Q) will decay in amplitude
upon Q increase. However, the noise amplitude in real experimen-
tal data does not decay on Q increase. In Eq. (4), S(Q) is multiplied
by Q in order to construct a valid FT to invert. The effect of this at
high Q is simply to amplify noise. As we see throughout this work,
it is common practice to smooth S(Q) data so this problem can be
avoided—including implementation of Q-dependent smoothing.
This, however, raises a separate set of uncertainties: How can one
be certain that features of physical significance have not also been
lost in the smoothing process?
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F. Binning requirements for numerical integration to
obtain g(r)

Regardless of whether we employ the standard FT method,
Lorch modification function or Soper–Barney modification func-
tion, g(r0) is obtained by a numerical integration to Q ¼ Qmax of a
function including sin(Qr0). We, therefore, require the S(Q) data to
be binned at sufficiently fine resolution in Q such that a single
cycle in the sin(Qr0) function covers a large number of Q-values in
the experimental data. Thus, if the binning interval is δQ we
require

r0δQ � π: (13)

Thus, we can see that the finite binning interval in the S(Q)
data can cause the numerical integration procedure to fail when
used at large r0.

G. Calculation of co-ordination number (CN)

The co-ordination number (CN) can be obtained from diffrac-
tion data via g(r) using Eq. (14),

CN ¼ 4πρ
ðrmax

0

r2g(r)dr: (14)

Here, rmax is the radius of the minimum following the first
and highest peak in g(r). However, as shown in Eq. (14), this
method can only be used if the density ρ is known reasonably
accurately.

II. METHODS

We analyzed four different sets of neutron/x-ray diffraction
S(Q) data (described later). The numerical integrations to perform
the FT and CN calculations were performed using our Octave code,
which is available (with documentation) in the supplementary
material. When using the Lorch and Soper–Barney modification
functions g(r) was obtained from G(r, Δ) via the approximate rela-
tionship in Eq. (9). In all cases, g(r) was calculated for 1000 values
of r, up to a maximum of 20 Å. Equations (5), (6), and (11) fail if
we attempt to calculate g(r ¼ 0) so the minimum value of r was
therefore 0.02 Å. Normalization was performed automatically by
the code, simply by addition/subtraction to ensure g(0:02 Å) ¼ 0
then division by g(20 Å) to ensure g(r) ¼ 1 in the high r limit.
In cases where ripples in g(r) in the low r region caused
g(0:02 Å) . g(20 Å) normalization and calculation of the CN were
not attempted.

The CN was obtained by numerical integration of the first
peak in g(r). The integration limits for the calculation of the CN
were obtained automatically by the code by locating the
maximum value of g(r), then the adjacent minimum values and
integrating between these limits. This was chosen instead of inte-
grating from r ¼ 0 to reduce the effect of unphysical ripples in
g(r) at low r.

In all cases (see Sec. I D), the finite binning in the S(Q) data
could cause the g(r) obtained at large r to be unreliable. When FT

has been performed using the Lorch or Soper–Barney modification
function, g(r) may be unreliable at low r (we require r � Δ).
Allowing ourselves a factor of 10 in these criteria, we obtain the
conditions given in Eq. (15), which are marked on all graphs of
g(r) where they are within the range covered in the plot,

rmax ¼ π

10δQ
,

rmin ¼ 10π
Qmax

,
(15)

The datasets were as follows:

- Dataset A is a neutron S(Q) from liquid Ar at 85 K, ambient pres-
sure (a density of 2.13 × 1028 at./m3) from Ref. 9. The data are
collected to 12 Å−1, covering all features in S(Q). The binning is
δQ ¼ 0:0294 Å

�1
, leading to rmax ¼ 10:7(1) Å. The data were

smoothed by the authors of Ref. 9 using a method communi-
cated to them via private communication, and not described in
Ref. 9.

- Dataset B is a set of synchrotron x-ray diffraction S(Q) data from
fluid Ar at 300 K covering eight pressures from 46 to 830MPa
(densities from 9.89 × 1027 to 2.59 × 1028 at./m3). The binning is
δQ ¼ 2:1� 10�3 Å

�1
, leading to rmax ¼ 149:6(1) Å. Since these

data have not been published previously, we outline here how
S(Q) was obtained from the raw data. The raw coherent scatter-
ing intensity Iraw(Q) was obtained from the experimental data
by subtraction of the background signal from either the empty
DAC or the DAC containing solid Ar following masking of the
solid Ar Bragg peaks. The structure factor S(Q) was obtained by
obtaining Iraw(Q)/ f (Q)

2 and normalizing [i.e., accounting for
the factor of N 0 in Eq. (3)] to ensure appropriate behavior in
the high-Q limit. We have three comments to make on this
process:

1. The f (Q) values are obtained from tabulated data in the
International Tables for Crystallography.1 To obtain f (Q) at the
exact values of Q corresponding to our experimental data, it is
necessary to find an empirical equation that fits the tabulated
data, or to do a linear interpolation between the datapoints. We
used a linear interpolation. The easier alternative of fitting an
empirical equation has some pitfalls. The tabulated f (Q) data in
the literature are far more closely spaced at low Q, so it would be
easy to overfit to these data at the expense of a good fit to the
more sparse data at high Q. In addition, since f (Q) ! 0 at high
Q, a small error in f (Q) in absolute terms will be large as a pro-
portion of f (Q) and lead to noise in Iraw(Q) being amplified by
an arbitrary amount.

2. Since the signal-to-noise ratio becomes very poor due to the
decreasing f (Q) by the second peak in Iraw(Q), it is challenging
to accurately normalize S(Q) in the high Q limit. We normal-
ized by measuring the peak scattering intensity from the
second peak in Iraw(Q) and the minimum scattering intensity
from the trough following this peak and normalizing to make
the average of these values equal to 1. Clearly, this normaliza-
tion choice is arbitrary, however, in the absence of S(Q)
data encompassing all oscillations in S(Q) there is no possible
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normalization method that does not involve some arbitrary
choice.

3. At the lowest values of Q at which data are present, Iraw(Q) , 0
in most cases, due to difficulties with the background subtraction
procedure. A small constant [1%–5% of the peak value of S(Q) ]
was therefore added to set S(Q) � 0 for all Q.

Further information on dataset B, including figures, and
experimental details, are given in the supplementary material.

- Dataset C is a set of neutron diffraction S(Q) data from supercrit-
ical fluid Kr10 covering 17 pressures up to 20MPa and densities
up to 6.2 × 1027 at./m3 at 300 K. The data are collected to
Q ¼ 4 Å

�1
. We have analyzed selected data from this set using

Empirical Potential Structure Refinement (EPSR)11,12 and pub-
lished this elsewhere.13 The binning is δQ ¼ 0:05 Å

�1
, leading

to rmax ¼ 6:3(1) Å . The data were smoothed by visual observa-
tion by the original authors prior to presentation in tabulated
form in Ref. 10.

- Dataset D is a set of neutron diffraction S(Q) data from supercrit-
ical fluid Kr13 collected up to significantly higher pressure and
density at 310 K (seven pressures ranging from 40 up to 200
MPa, 1.62 × 1028 at./m3). We have published an EPSR analysis of
all these data elsewhere.13 The binning is δQ ¼ 0:05 Å

�1
,

leading to rmax ¼ 6:3(1) Å. In contrast to dataset C, these data
have not been smoothed.

In each case, the pressures have been measured experimentally
and the densities were calculated from the pressures using the rele-
vant fundamental equation of state via NIST REFPROP14 (Ref. 15
for Ar and Ref. 16 for Kr). In the case of dataset C, the densities
given in the source (Ref. 10) were calculated from the experimen-
tally measured pressures using an earlier equation of state.17 We
have calculated the measured pressures from the densities using
Ref. 17 and then recalculated the densities using the fundamental
EOS.16 This has resulted in a change of ca. 10% in the higher calcu-
lated densities.

The pressure–temperature phase diagrams of Ar (from
Ref. 18) and Kr (compiled for this work using the methodology
presented in Ref. 18) are given in the supplementary material, with
the P,T points marked at which the datasets in the present study
were collected.

III. RESULTS

A. Dataset A

To begin, we performed a standard FT of the entirety of
dataset A. Figure 2 shows the g(r) obtained from this FT, with the
original S(Q) shown in the inset. The FT result is in agreement
with the g(r) shown in Ref. 9 (the source of dataset A). The g(r)
obtained is also in agreement with that obtained using real-space
structure determination implemented in the Dissolve package19

(see the supplementary material) and leads to a CN of 11.9. This is
clearly a reasonable value for dataset A; however, it is worth noting
that even with this very good quality data there are unphysical
oscillations present in g(r) for r , 3 Å, where g(r) ¼ 0 is expected.
On one level, this does not matter (we do not need a FT to tell us

that atoms are not allowed to overlap) but it does introduce an
error in the normalization of g(r), and hence CN calculation.

Attempting the standard FT using cutoffs at successively lower
Q leads to the ripples at r , 3 Å becoming larger, until at a Q
cutoff of 8 Å

�1
the obtained g(r) is no longer physically realistic,

due to the low-r ripples preventing accurate normalization.
Figure 3 shows the g(r) obtained with the standard FT, Lorch, and
Soper–Barney modifications with Dataset A at 8 Å

�1
Q-cutoff. The

Lorch and Soper–Barney modification functions both give

FIG. 3. Normalized g(r ) for liquid Argon at 85 K (dataset A) obtained from the
neutron S(Q) truncated at 8 Å−1. FT with abrupt truncation Lorch and Soper–
Barney modification are shown. The standard FT g(r ) is 410 for clarity.

FIG. 2. Normalized g(r) for liquid Argon at 85 K (dataset A) obtained by direct
FT (i.e., assuming that [S(Q . Qmax )� 1] ¼ 0) of the full neutron S(Q) (the
inset).
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reasonable results at cutoffs for which the standard FT fails. The
functions give very similar results, the only significant difference
being that the principal maximum in g(r) is slightly wider for the
Soper–Barney modification function due to the 8 Å

�1
Q-cutoff

resulting in a slightly larger value for Δ.
Our final investigation with this dataset is to study how low

the Qmax cutoff can be made with each modification function while
still obtaining a physically reasonable g(r). Using both the Lorch
and Soper–Barney modification functions, even a cutoff as low as
3 Å−1 does not result in ripples at low r as bad as those shown for
the standard FT in Fig. 3. A more rigorous test is whether the CN
calculated remains reasonable. Figure 4 shows the CNs calculated
using all three methods for Qmax cutoffs all the way from 3 to
12 Å−1. At 12 Å−1 (as previously discussed), all ripples in S(Q) are
included in the data and the pure FT gives a g(r) in agreement
with that resulting from EPSR analysis of the data. This leads to a
CN of 11.9—as would be expected for a liquid near the triple point.
So it is reasonable to take this as the correct value. At 12 Å−1

cutoff, both modification functions produce a CN slightly larger
than the maximum physically realistic value of 12; however, as the
cutoff is reduced to 5 Å−1 the g(r) at least remains stable at this
value around 2.5% too large when the FT is done with a modifica-
tion function. In contrast, the CN oscillates wildly when the FT is
performed using the standard method.

B. Dataset B

Remaining with fluid Ar, dataset B is a set of synchrotron
x-ray data (unlike datasets A, C, and D which are all neutron data)
collected at nine pressures up to 830MPa. Due to the rapid
decrease in scattering intensity upon Q increase (caused primarily

by the decrease in the atomic form factor f (Q)), the signal-to-noise
ratio beyond the first peak in Iraw(Q) is very poor. Only the highest
pressure S(Q) produced a g(r) that could be normalized using the
method outlined earlier. Even in this case, to achieve a g(r) that
could be normalized it was necessary to adopt the Lorch or Soper–
Barney modification function and to use a Qmax cutoff that only
included the first peak in S(Q).

Figure 5(a) shows the normalized S(Q) functions at 830 and
444MPa, illustrating the difficulties caused by the need to normal-
ize on the basis of noisy data at high Q. The first peak in S(Q) is
more intense at the lower pressure.

To obtain any reasonable g(r) function, it was necessary to
use the S(Q) data only up to a Qmax at the minimum after the first

FIG. 4. CN of liquid Ar at 85 K (dataset A) obtained by standard FT of the
neutron diffraction data, and FT utilizing the Lorch and Soper–Barney modifica-
tion functions for a variety of Qmax cutoffs. The g(r) functions produced by the
standard FT for 4 and 5 Å−1 cutoff could not be normalized so calculation of the
CN was not attempted.

FIG. 5. (a) Normalized S(Q) from dataset B at 830 and 444 MPa. (b) g(r) func-
tions at 830 MPa produced from FT of the S(Q) with Lorch modification (cutoff of
2.66 Å−1) and from EPSR using Iraw (Q).
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peak in S(Q) (i.e., ca. 2.5–3 Å−1). For this reason, analysis could
only be performed using the Lorch and Soper–Barney modification
functions. Even with this methodology, only the highest pressure
yielded a g(r) that could be normalized. The obtained CN varied
massively depending on which modification function was used:
25.4 with the Lorch modification function and 19.7 with the
Soper–Barney modification function. Both of these are far larger
than is physically realistic.

Figure 5(b) shows the normalized g(r) obtained using FT with
the Soper–Barney modification function at 830MPa. Although the
normalization procedure is mathematically valid, it is clear that due
to the size of the ripple at low r and the existence of negative g(r)
in some regions the resulting function is not physically realistic.

We have also performed a full EPSR refinement of the datasets
at 830 and 444MPa, with densities of 43 049 and 37 341 mol/m3.
Due to the aforementioned issues with the normalization of the
S(Q), we have decided to entirely bypass this and provide to EPSR
directly the Iraw(Q) as measured. In principle, any lack of correction
applied to the Iraw(Q) should come out of EPSR as a meaningful
trend in the residuals. We employed a 5000 Ar atom simulation
box and used the OPLS-Noble Gases forcefield as the reference
potential (the same potential parameters as included in Dissolve).
Once the box equilibrated, empirical potential (EP) refinement was
allowed until a fit that was deemed satisfactory was achieved. At
this point, the EP was frozen and prevented from further changing,
and the structure was sampled over 5000 accumulations. We
achieved an excellent quality of fit to the data, yielding a physically
reasonable g(r) and an associated CN of 11.42(15) at 444MPa.
This is below 12, not exceeding the maximum justifiable coordina-
tion and is what we would expect on the liquid-like side of the
Frenkel line. As expected, the residuals from the fitting process
show a clear functional Q-dependence, highlighting the lack of
appropriate corrections that should have been performed to obtain

S(Q) from Iraw(Q). An example g(r) resulting from the EPSR is
shown in Fig. 5(b) and an example S(Q) (with residuals) is shown
in Fig. 6.

C. Dataset C

Datasets C and D are both from fluid Kr. Dataset C is col-
lected to a relatively low value of Q (4 Å−1), at which significant
oscillations in S(Q) are still present. It is, therefore, not surprising
that the standard FT produces a physically unrealistic result, com-
pared to performing the transform using the Lorch method [Fig. 7
shows the transforms for the highest density point in this dataset,
and the S(Q) data]. The standard FT produces massive oscillations
in the low r limit, and also smaller oscillations in the high r limit
which are not physically realistic given the gas-like density (less
than half the density of the Frenkel line in Kr at 300 K). Due to the
fact that the S(Q) data extend only to 4 Å−1, combined with the
wide binning interval, the low and high-r regions in which g(r)
may be unreliable due to binning and Q-cutoff issues, respectively,
overlap for these data.

Figure 8 shows the CNs obtained by Fourier transform of
Dataset C at densities from 2.8 to 6.1 × 1027 at./m3. This corre-
sponds to pressures up to ca. 20MPa, not reaching the liquid-like
side of the Widom lines, let alone the Frenkel line. We would,
therefore, expect the CN to vary in a smooth and monotonic
manner throughout. This is the case when the Lorch or Soper–
Barney modification functions are employed. Data are also available
in Ref. 10 at four lower densities; however, none of the FT proce-
dures utilized here produced physically realistic g(r) functions in
these cases. The standard FT resulted in a g(r) that could not be
normalized, while the Lorch and Soper–Barney modification func-
tions produced a g(r) with no clear minimum following the first
peak. This resulted in subsequent peaks also being included in the

FIG. 6. The experimental Iraw (Q) data and the fitted S(Q) from EPSR at
444 MPa, demonstrating the excellent quality of fit achieved by EPSR when
given the measured Iraw (Q), and residuals highlighting the lack of corrections.

FIG. 7. Normalized g(r ) obtained from direct FT and FT with Lorch modification
of neutron S(Q) from supercritical fluid Kr at 300 K (6.10 × 1027 at./m3 density).10

Inset: S(Q) data from Ref. 10.
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integration to obtain the CN and an unrealistically high value
being obtained.

We have published an analysis of selected neutron diffraction
data from Ref. 10 elsewhere.13 The CNs obtained from EPSR are in
reasonable agreement with those obtained by direct FT via both
Lorch and Soper–Barney modification functions (Fig. 8). It is hard
to discern the extent to which quantitative agreement exists
between the g(r) functions produced by modified FT and EPSR
due to the +Δ broadening in r caused by the modification process
(Fig. 7).

D. Dataset D

Finally, we present our analysis of dataset D. The large
amount of noise in this data prevents meaningful results being
obtained by direct Fourier transform, despite the large Qmax

(20 Å−1). Beginning with a high density datapoint [176MPa
(1.57 × 1028 at./m3)] we can see that above 6 Å−1 the data are just
noise [Fig. 9, the inset shows the S(Q) data to 15 Å−1]. In Fig. 9, we
show g(r) functions obtained with the Soper–Barney modification
function for two cutoffs (6 and 15 Å−1). The data for 15 Å−1 are
ruined by ripples resulting from Fourier transforming noise, while
the data for 6 Å−1 exhibit a principal peak in g(r) that is somewhat
larger than the ripples and leads to a CN of 12.4 (our EPSR analy-
sis of this data published previously indicated a CN of 11.7). The
highest density datapoint (200MPa) can be analyzed in a similar
manner (CN of 12.5) but for the next lowest pressure (148MPa)
the Fourier transform produces a g(r) that cannot be normalized.

IV. CONCLUSIONS

The results and analysis presented here throw light on some
important, but hitherto neglected, aspects of the analysis of fluid
x-ray and neutron diffraction data by FT from reciprocal space to
real space. In the analysis of x-ray data, and even (to some extent)
neutron data, various arbitrary choices are unavoidably made in
the analysis. It is, therefore, difficult to judge the reliability or oth-
erwise of g(r) functions generated by FT of diffraction data without
knowledge of the details of these arbitrary choices: In particular,
the methodology used to normalize S(Q) and g(r), and the meth-
odology used to obtain f (Q) at the required Q-values from the tab-
ulated data in the literature. In addition, it is essential to know the
resolution in the binning of the experimental data as this deter-
mines the validity of the resulting g(r) function at high r.

Moving beyond these issues, the analysis of diffraction data by
direct FT, or by FT using a modification function, is always subject
to some extent to the Qmax-cutoff problem. We find many cases
where the Lorch and Soper–Barney modification functions can
produce a non-pathological g(r) while direct FT cannot and despite
concerns raised in recent years, the Lorch modification function is
a mathematically rigorous method to analyze fluid diffraction data.

However, mathematical rigor is no guarantee of physical cor-
rectness. We have identified four ways in which the Qmax-cutoff
problem can produce physically unreasonable g(r) functions when
diffraction data from disordered materials are analyzed by FT, but
only one of these [the continuity of S(Q) at Qmax] is addressed by
the Lorch and Soper–Barney modification functions. Neither
method attempts to address the issue of missing data beyond Qmax ,
the discontinuity in slope of S(Q). Neither method guarantees that
the g(r) corresponds to any possible arrangement of atoms in
space, certainly not the correct one. Neither method guarantees
positive g(r), nor zero g(r) at unphysically small distances. We
found that the g(r) functions produced by these methods are
highly sensitive to choice of Qmax , and strong evidence that the
results have not converged for typical values of Qmax .

The fundamental problem with purely data-driven Fourier
methods is that they necessarily require some theoretical assump-
tion about the missing data above Qmax . All the methods used here
assume that [S(Q . Qmax)� 1] ¼ 0 and seek only to address the

FIG. 8. CNs obtained by Fourier transform (present work) and EPSR (Ref. 13)
of dataset C (neutron diffraction data from Kr at 300 K to 4 Å−1 from Ref. 10).

FIG. 9. g(r ) functions for fluid Kr at 310 K, 176 MPa obtained by FT with Soper
modification function with different cutoffs as indicated. Inset: S(Q) data for Kr at
310 K, 176 MPa.
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discontinuity. These mathematical tricks remove some pathological
errors in g(r), but the sensitivity to Qmax gives little confidence that
the non-pathological g(r) are accurate.

The mathematical elegance of these models should not dis-
guise the fact that they serve to suppress the high-Q data. It can be
argued that measurement of [S(Q)� 1] may be less reliable at
high-Q; however, the solution to unreliable data is to downweight
its importance in analysis, not to pretend that it is smaller than
measured, or even zero, which is what the Lorch and Soper–Barney
methods do. Indeed, by “modifying” the data away from the experi-
ment in a way designed to avoid pathologies, rather than based on
physics, an inaccuracy (broadening) in g(r) is caused.

The problem of missing or unreliable data can be approached
with Bayesian-type methods. These provide a framework to
combine experimental and theoretical results with appropriate
Q-dependent weights. They also indicate a way to remove the Qmax

discontinuities without modifying the data.
Nevertheless, direct FT methods can address only two of the

four constraints on g(r) which must be satisfied. To our knowledge,
there is no method to determine whether a given function “g(r)” or
“S(Q)” can correspond to any 3D ensemble of atomic arrange-
ments. Therefore, assuming one wishes the data analysis to produce
a g(r) which respects the atomic theory of matter, one needs to use
a method beginning from real-space configurations. EPSR11,12 is an
example of this approach. It exploits the fact that for any given
interatomic potential, V(r), both g(r) and S(Q) are uniquely
defined and respect the atomic theory of matter. So EPSR seeks to
find a V(r) consistent with S(Q), and a g(r) which automatically
satisfies all four unphysicality issues. EPSR has elements of the
Bayesian approach, with the prior being a potential that is modified
by the data to produce a best fit to the measured S(Q) from func-
tions constrained to be physically reasonable.

Comparison of EPSR results for all four datasets has shown
that EPSR can provide physically realistic results even for very poor
quality data for which analysis by FT fails. It appears that, histori-
cally, S(Q) data have often been smoothed to allow analysis by FT.
Results presented here indicate that EPSR can provide physically
realistic results with the unsmoothed data. Therefore, if smoothing
of the S(Q) data is necessary to allow analysis by FT then EPSR
should be attempted instead.

Finally, while the Lorch and Soper–Barney modification func-
tions make some progress toward addressing the Qmax-cutoff
problem, neither address the other cutoff problem: The fact that real
S(Q) data do not extend to Q ¼ 0. In any real diffraction experi-
ment, Iraw(Q) data cannot be collected at Q � 0 as there is no way
to distinguish between x rays/neutrons that have been transmitted
without interacting with the sample, and those scattered at low Q.
While lim

Q!0
S(Q) = 0, the contribution to the value of [g(r)� g0]

from low-Q scattering in Eq. (4) (and modified FT functions
derived from it) does vanish due to the presence of the sin(Qr) term
in the integral so the substitution of the zero lower limit in the inte-
gral with a small but finite minimum value of Q should be accept-
able. However, it is worth noting that analysis methods beginning
from real-space configurations and predicting S(Q) in the Q-range
for which data exists also avoid this potential pitfall.

In future, the work presented here can be extended to cover
other fluids comprised of spherically symmetric particles such as

metallic fluids and CH4, and molecular fluids for which different
partial S(Q) data are obtained by isotopic substitution in neutron
diffraction.

SUPPLEMENTARY MATERIAL

Supplementary material is provided, consisting of g(r) func-
tion obtained by performing EPSR on dataset A, full description of
the experimental methods and analysis to obtain S(Q) for dataset
B, the Octave/Matlab code used, and documentation for this code.
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